1
|
Jebali A, Kaur H, Martinez H, Getto S, Gleasner C, Echenique-Subiabre I, Gerber J, Holguin FFO, Nalley J, O'Kelly CJ, Shurin JB, Starkenburg SR, Corcoran AA. Two years of outdoor cultivation in alternate climates produces little divergence in the productivity of Nannochloropsis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179587. [PMID: 40328070 DOI: 10.1016/j.scitotenv.2025.179587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/15/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Local environmental conditions may act as driving forces of natural selection and lead to trait divergence through time in outdoor microalgae cultures. In addition, microalgae phenotypes expressed outdoors may be modulated by other organisms, including pests and associated microbial communities. The present work builds on the long-term cultivation of a Nanochloropsis strain, across four geographically distinct field sites. The strain showed enhanced productivity at a site in California and decreased productivity at a site in New Mexico. The goal of the present work was to determine if those trait differences, among others, were the result of natural selection and evolution, phenotypic plasticity, or changes due to the influence of local microbiomes. To accomplish this goal, we coupled an outdoor common garden experiment in which cultivars from all four sites were grown at a single site in New Mexico with analyses of the algal microbiome. Our work revealed no differences in biomass productivity or biomass composition across strains in a common garden, suggesting that the parent strain exhibits high phenotypic plasticity, allowing growth across a wide range of climatic conditions. With respect to the microbiome, community composition and richness differed across cultivation system scales, parent and replicate ponds, and with and without pest management - but not greatly within the common garden. Our findings suggest that Nannochloropsis plasticity was driving the variation in phenotypic productivity responses to site-specific conditions and disturbances. This study helps in understanding the phenotypic changes and microbial community dynamics over years of cultivation.
Collapse
Affiliation(s)
- Ahlem Jebali
- New Mexico Consortium, 4200 W. Jemez Rd, Los Alamos, NM 87544, United States of America.
| | - Harmanpreet Kaur
- New Mexico State University, 1175 Horseshoe Dr., Las Cruces, NM 88003, United States of America
| | - Heather Martinez
- New Mexico Consortium, 4200 W. Jemez Rd, Los Alamos, NM 87544, United States of America
| | - Stephanie Getto
- New Mexico State University, 1175 Horseshoe Dr., Las Cruces, NM 88003, United States of America
| | - Cheryl Gleasner
- Los Alamos National Laboratory, Bikini Atoll Rd. SM-30, Los Alamos, NM 87545, United States of America
| | - Isidora Echenique-Subiabre
- University of California San Diego, 9500 Gilman Dr., Dept 0116, La Jolla, CA 92093, United States of America
| | - Julia Gerber
- Cyanotech Corporation, 73-4460 Queen Kaahumanu Highway, Kailua Kona, HI 96740, United States of America
| | - F F Omar Holguin
- New Mexico State University, 1175 Horseshoe Dr., Las Cruces, NM 88003, United States of America
| | - Jakob Nalley
- Qualitas Health, 421 E. Imperial St, Imperial, TX 79743, United States of America
| | - Charles J O'Kelly
- Cyanotech Corporation, 73-4460 Queen Kaahumanu Highway, Kailua Kona, HI 96740, United States of America
| | - Jonathan B Shurin
- University of California San Diego, 9500 Gilman Dr., Dept 0116, La Jolla, CA 92093, United States of America
| | - Shawn R Starkenburg
- Los Alamos National Laboratory, Bikini Atoll Rd. SM-30, Los Alamos, NM 87545, United States of America
| | - Alina A Corcoran
- New Mexico Consortium, 4200 W. Jemez Rd, Los Alamos, NM 87544, United States of America; New Mexico State University, 1175 Horseshoe Dr., Las Cruces, NM 88003, United States of America
| |
Collapse
|
2
|
Simionov IA, Barbu M, Vasiliev I, Condrachi L, Titica M, Ifrim G, Cristea D, Nuță FM, Petrea ȘM. Prospective technical and technological insights into microalgae production using aquaculture wastewater effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124537. [PMID: 40020375 DOI: 10.1016/j.jenvman.2025.124537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 03/03/2025]
Abstract
Microalgae biomass is a promising resource addressing climate change and play a role in energy transition for generating biofuels. Due to their ability to produce higher yield per year, biofuels obtained from microalgae are considered 3rd generation-advanced biofuels. The industrial production of microalgae mitigates the effects of CO2 emissions and can be used for wastewater bioremediation since most effluents are rich in nutrients. Using wastewater as growth media for microalgae promotes the principles of circular economy and nutrient recovery. The aquaculture wastewater effluent contains high levels of nitrogenous compounds, as well as phosphates and dissolved organic carbon. The current review aims to identify, centralize, and provide extensive information on the decisive technological and technical factors involved in the growth process of different microalgae species in aquaculture wastewater. The study focuses on technological growth performance indicators, as well as specific control strategies applied to achieve pH control, since it has been highlighted to be one of the most important growth-related cofactors. A bibliometric framework was developed to identify future trends in integrated microalgae production. The scientific literature analysis highlighted the great potential of aquaculture wastewater effluents to be used as growth media for microalgae biomass production, due to superior performance in lipid and carbohydrate productivity. Most control strategies developed for microalgae production systems found in the literature aim at controlling the pH in the bioreactor by injecting CO2, while few other papers consider manipulating the dissolved oxygen. The need for higher-level control arises to not only track pH or DO references but also to maximize the treatment efficiency of the bioreactor.
Collapse
Affiliation(s)
- Ira-Adeline Simionov
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Marian Barbu
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Iulian Vasiliev
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Larisa Condrachi
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Mariana Titica
- GEPEA, CNRS-UMR 6144, Nantes University Saint-Nazaire, France
| | - George Ifrim
- Department of Automatic Control and Electrical Engineering, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Dragos Cristea
- Department of Business Administration, "Dunarea de Jos" University Galati, 800008, Galati, Romania
| | - Florian Marcel Nuță
- Human and Social Sciences Doctoral School, "Ştefan Cel Mare" University of Suceava, Suceava, Romania.
| | - Ștefan-Mihai Petrea
- Department of Food Science, Food Engineering, Biotechnologies and Aquaculture, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Rexdan Research Infrastructure, "Dunarea de Jos" University Galati, 800008, Galati, Romania; Department of Business Administration, "Dunarea de Jos" University Galati, 800008, Galati, Romania.
| |
Collapse
|
3
|
Ben Abdallah M, Saadaoui I, Al-Ghouti MA, Zouari N, Hahladakis JN, Chamkha M, Sayadi S. Advances in polyhydroxyalkanoate (PHA) production from renewable waste materials using halophilic microorganisms: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178452. [PMID: 39824097 DOI: 10.1016/j.scitotenv.2025.178452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that can replace conventional plastics in different sectors. However, PHA commercialization is hampered due to their high production cost resulting from the use of high purity substrates, their low conversion into PHAs by using conventional microbial chassis and the high downstream processing cost. Taking these challenges into account, researchers are focusing on the use of waste by-products as alternative low-cost feedstocks for fast-growing and contamination-resistant halophilic microorganisms (Bacteria, Archaea…). This is of great importance since these extremophiles can use low-cost substrates, produce high PHA content of copolymers or different PHA monomer compositions. They can present high potential for reducing the costs of PHA fermentation and recovery processes, making their use in commercial applications easier. However, little is known about the potential of halophiles in advancing the PHA production from renewable waste materials at lab-scale and their successful implementation at industrial-scale. This review presents actual advances in PHA production by halophilic pure/engineered species (e.g. Haloferax mediterranei, Halomonas spp.) and mixed microbial consortia (MMC) using organic waste streams. The development of optimal PHA production process involves robust genetic engineering strategies, advanced fermentation processes using mixed microbial consortia versus pure/engineered strains as well as algal biomass as feedstocks.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia.
| | - Imen Saadaoui
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mohammad A Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Nabil Zouari
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. Box 2713, Qatar
| | - John N Hahladakis
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
4
|
Narayanasamy A, Patel SKS, Singh N, Rohit MV, Lee JK. Valorization of Algal Biomass to Produce Microbial Polyhydroxyalkanoates: Recent Updates, Challenges, and Perspectives. Polymers (Basel) 2024; 16:2227. [PMID: 39125253 PMCID: PMC11314723 DOI: 10.3390/polym16152227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Biopolymers are highly desirable alternatives to petrochemical-based plastics owing to their biodegradable nature. The production of bioplastics, such as polyhydroxyalkanoates (PHAs), has been widely reported using various bacterial cultures with substrates ranging from pure to biowaste-derived sugars. However, large-scale production and economic feasibility are major limiting factors. Now, using algal biomass for PHA production offers a potential solution to these challenges with a significant environmental benefit. Algae, with their unique ability to utilize carbon dioxide as a greenhouse gas (GHG) and wastewater as feed for growth, can produce value-added products in the process and, thereby, play a crucial role in promoting environmental sustainability. The sugar recovery efficiency from algal biomass is highly variable depending on pretreatment procedures due to inherent compositional variability among their cell walls. Additionally, the yields, composition, and properties of synthesized PHA vary significantly among various microbial PHA producers from algal-derived sugars. Therefore, the microalgal biomass pretreatments and synthesis of PHA copolymers still require considerable investigation to develop an efficient commercial-scale process. This review provides an overview of the microbial potential for PHA production from algal biomass and discusses strategies to enhance PHA production and its properties, focusing on managing GHGs and promoting a sustainable future.
Collapse
Affiliation(s)
- Anand Narayanasamy
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - Sanjay K. S. Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar 246174, Uttarakhand, India;
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Neha Singh
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - M. V. Rohit
- Bioconversion Technology Division, Sardar Patel Renewable Energy Research Institute, Vallabh Vidyanagar, Anand 388120, Gujarat, India; (A.N.); (N.S.); (M.V.R.)
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Mehariya S, Annamalai SN, Thaher MI, Quadir MA, Khan S, Rahmanpoor A, Abdurahman Kashem, Faisal M, Sayadi S, Al Hawari A, Al-Jabri H, Das P. A comprehensive review on versatile microalga Tetraselmis: Potentials applications in wastewater remediation and bulk chemical production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121520. [PMID: 38917540 DOI: 10.1016/j.jenvman.2024.121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Microalgae are considered sustainable resources for the production of biofuel, feed, and bioactive compounds. Among various microalgal genera, the Tetraselmis genus, containing predominantly marine microalgal species with wide tolerance to salinity and temperature, has a high potential for large-scale commercialization. Until now, Tetraselmis sp. are exploited at smaller levels for aquaculture hatcheries and bivalve production. However, its prolific growth rate leads to promising areal productivity and energy-dense biomass, so it is considered a viable source of third-generation biofuel. Also, microbial pathogens and contaminants are not generally associated with Tetraselmis sp. in outdoor conditions due to faster growth as well as dominance in the culture. Numerous studies revealed that the metabolite compositions of Tetraselmis could be altered favorably by changing the growth conditions, taking advantage of its acclimatization or adaptation ability in different conditions. Furthermore, the biorefinery approach produces multiple fractions that can be successfully upgraded into various value-added products along with biofuel. Overall, Tetraselmis sp. could be considered a potential strain for further algal biorefinery development under the circular bioeconomy framework. In this aspect, this review discusses the recent advancements in the cultivation and harvesting of Tetraselmis sp. for wider application in different sectors. Furthermore, this review highlights the key challenges associated with large-scale cultivation, biomass harvesting, and commercial applications for Tetraselmis sp.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Senthil Nagappan Annamalai
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed Abdul Quadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Ali Rahmanpoor
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Abdurahman Kashem
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohamed Faisal
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Sami Sayadi
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa Al Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Hareb Al-Jabri
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
6
|
Ahuja V, Singh PK, Mahata C, Jeon JM, Kumar G, Yang YH, Bhatia SK. A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater. Microb Cell Fact 2024; 23:187. [PMID: 38951813 PMCID: PMC11218116 DOI: 10.1186/s12934-024-02430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Plastic is widely utilized in packaging, frameworks, and as coverings material. Its overconsumption and slow degradation, pose threats to ecosystems due to its toxic effects. While polyhydroxyalkanoates (PHA) offer a sustainable alternative to petroleum-based plastics, their production costs present significant obstacles to global adoption. On the other side, a multitude of household and industrial activities generate substantial volumes of wastewater containing both organic and inorganic contaminants. This not only poses a threat to ecosystems but also presents opportunities to get benefits from the circular economy. Production of bioplastics may be improved by using the nutrients and minerals in wastewater as a feedstock for microbial fermentation. Strategies like feast-famine culture, mixed-consortia culture, and integrated processes have been developed for PHA production from highly polluted wastewater with high organic loads. Various process parameters like organic loading rate, organic content (volatile fatty acids), dissolved oxygen, operating pH, and temperature also have critical roles in PHA accumulation in microbial biomass. Research advances are also going on in downstream and recovery of PHA utilizing a combination of physical and chemical (halogenated solvents, surfactants, green solvents) methods. This review highlights recent developments in upcycling wastewater resources into PHA, encompassing various production strategies, downstream processing methodologies, and techno-economic analyses. SHORT CONCLUSION Organic carbon and nitrogen present in wastewater offer a promising, cost-effective source for producing bioplastic. Previous attempts have focused on enhancing productivity through optimizing culture systems and growth conditions. However, despite technological progress, significant challenges persist, such as low productivity, intricate downstream processing, scalability issues, and the properties of resulting PHA.
Collapse
Affiliation(s)
- Vishal Ahuja
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Pankaj Kumar Singh
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Chandan Mahata
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana- Champaign, 1304 W. Pennsylvania Avenue, Urbana, 61801, USA
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam, 331-825, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600, Forus, Stavanger, 4036, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
7
|
Adetunji AI, Erasmus M. Green Synthesis of Bioplastics from Microalgae: A State-of-the-Art Review. Polymers (Basel) 2024; 16:1322. [PMID: 38794516 PMCID: PMC11124873 DOI: 10.3390/polym16101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The synthesis of conventional plastics has increased tremendously in the last decades due to rapid industrialization, population growth, and advancement in the use of modern technologies. However, overuse of these fossil fuel-based plastics has resulted in serious environmental and health hazards by causing pollution, global warming, etc. Therefore, the use of microalgae as a feedstock is a promising, green, and sustainable approach for the production of biobased plastics. Various biopolymers, such as polyhydroxybutyrate, polyurethane, polylactic acid, cellulose-based polymers, starch-based polymers, and protein-based polymers, can be produced from different strains of microalgae under varying culture conditions. Different techniques, including genetic engineering, metabolic engineering, the use of photobioreactors, response surface methodology, and artificial intelligence, are used to alter and improve microalgae stocks for the commercial synthesis of bioplastics at lower costs. In comparison to conventional plastics, these biobased plastics are biodegradable, biocompatible, recyclable, non-toxic, eco-friendly, and sustainable, with robust mechanical and thermoplastic properties. In addition, the bioplastics are suitable for a plethora of applications in the agriculture, construction, healthcare, electrical and electronics, and packaging industries. Thus, this review focuses on techniques for the production of biopolymers and bioplastics from microalgae. In addition, it discusses innovative and efficient strategies for large-scale bioplastic production while also providing insights into the life cycle assessment, end-of-life, and applications of bioplastics. Furthermore, some challenges affecting industrial scale bioplastics production and recommendations for future research are provided.
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein 9301, South Africa
| | | |
Collapse
|
8
|
Goswami RK, Mehariya S, Verma P. Sub-pilot scale sequential microalgal consortium-based cultivation for treatment of municipal wastewater and biomass production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123796. [PMID: 38518973 DOI: 10.1016/j.envpol.2024.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Municipal wastewater (MWW) was treated by a sequential pilot microalgal cultivation process. The cultivation was performed inside a specifically designed low-cost photobioreactor (PBR) system. A microalgal consortium 2:1 was developed using Tetraselmis indica (TS) and Picochlorum sp. (PC) in the first stage and PC:TS (2:1) in the second stage and the nutrient removal efficiency and biomass production and biomolecules production was evaluated and also compared with monoculture in a two-stage sequential cultivation system. This study also investigated the effect of seasonal variations on microalgae growth and MWW treatment. The results showed that mixed microalgal consortium (TS:PC) had higher nutrient removal efficiency, with chemical oxygen demand (COD), total phosphate (TP), and total nitrate (TN) removal efficiencies of 78.50, 84.49, and 84.20%, respectively, and produced a biomass of 2.50 g/L with lipid content of 37.36% in the first stage of cultivation under indoor conditions. In the second stage of indoor cultivation, the PC:TS consortium demonstrated maximum COD, TP, and TN removal efficiencies of 92.49, 94.24, and 94.16%, respectively. It also produced a biomass of 2.65 g/L with a lipid content of 40.67%. Among all the seasonal variations, mass flow analysis indicated that the combination of mixed consortium-based two-stage sequential process during the winter season favored maximum nutrient removal efficiency of TN i.e. 88.54% (84.12 mg/L) and TP i.e., 90.18% (43.29 mg/L), respectively. It also enhanced total biomass production of 49.10 g in 20-L medium, which includes lipid yield ∼15.68 g compared to monoculture i.e., 82.06% (78.70 mg/L) and 82.87% (40.26 mg/L) removal of TN and TP, respectively, and produced biomass 43.60 g with 11.90 g of lipids.
Collapse
Affiliation(s)
- Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
9
|
Bernard KNM, Prakash O, Juneja C, Panchal D, Sylvere NK, Pal S. Development and techno-economic analysis of Grewia biopolymer-based dual coagulant system for wastewater treatment at pilot scale. BIORESOURCE TECHNOLOGY 2024; 397:130514. [PMID: 38432546 DOI: 10.1016/j.biortech.2024.130514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Use of Grewia biopolymer as a natural coagulant aid was explored in a dual-coagulant system (conventional coagulant + biopolymer) for wastewater treatment. Such use not only improved turbidity removal efficiency over a wide pH range (5-9) but also helped reducing the concentration demand of inorganic coagulants by 25-50 %. Response surface methodology was employed for investigating the interaction between factors (initial pH, coagulant, and biopolymer concentration) affecting coagulation/flocculation of aqueous laterite suspension, and process optimization for more than 80 % turbidity removal in the desired final pH range (6-7). Mechanisms potentially involved in coagulation/flocculation using biopolymer was elucidated. Techno-economic assessment indicated the feasibility of pilot-scale production of the biopolymer and its use in wastewater treatment. This study demonstrates that Grewia biopolymer has the potential to be used as a coagulant aid and will help researchers select appropriate markets for further cost reduction and successful implementation of biopolymer-based wastewater treatment.
Collapse
Affiliation(s)
- Kameni Ngounou M Bernard
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Research Center, National Advanced School of Public Works, P.O. Box 510, Yaounde, Cameroon; Ucac-Icam, BP 5504, Douala, Cameroon; Industrial Filtration and Water Treatment (Chem. Eng.) Group, Department of Process Engineering, ENSAI, University of Ngaoundere, Cameroon
| | - Om Prakash
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Charu Juneja
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepak Panchal
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ndi K Sylvere
- Industrial Filtration and Water Treatment (Chem. Eng.) Group, Department of Process Engineering, ENSAI, University of Ngaoundere, Cameroon
| | - Sukdeb Pal
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Yang JE, Jeon HS, Kim S, Kim YY, Kim JC, Kim HM, Hwang IM, Park HW. Valorization of Cabbage Waste as a Feedstock for Microbial Polyhydroxyalkanoate Production: Optimizing Hydrolysis Conditions and Polyhydroxyalkanoate Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6110-6117. [PMID: 38372212 DOI: 10.1021/acs.jafc.3c07057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Establishing a platform for the bioconversion of waste resources into value-added compounds is critical for achieving a sustainable and eco-friendly economy. Herein, we produced polyhydroxyalkanoate via microbial fermentation using cabbage waste as a feedstock and metabolically engineered Escherichia coli. For this, the hydrolysis conditions of cabbage waste were optimized by focusing on parameters such as substrate and enzyme concentrations to enhance the saccharification efficiency. The phaABC operon, which encodes key enzymes responsible for polyhydroxyalkanoate biosynthesis in Ralstonia eutropha H16, was overexpressed in E. coli. Using cabbage hydrolysate as the feedstock, this engineered E. coli strain could produce poly(3-hydroxybutyrate) with a polymer content of 26.0 wt % of dry cell weight. Moreover, malic acid in cabbage hydrolysate significantly enhanced poly(3-hydroxybutyrate) production; the addition of 0.5 g/L malic acid markedly increased poly(3-hydroxybutyrate) content by 59.9%. This study demonstrates the potential of cabbage waste as a promising raw material for the microbial production of polyhydroxyalkanoate.
Collapse
Affiliation(s)
- Jung Eun Yang
- Technology Innovation Research Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Hye Sung Jeon
- Technology Innovation Research Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Seulbi Kim
- Technology Innovation Research Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
- Division of Applied Bioscience & Biotechnology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Yeong Yeol Kim
- Technology Innovation Research Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jong-Cheol Kim
- Technology Innovation Research Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Ho Myeong Kim
- Technology Innovation Research Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - In Min Hwang
- Technology Innovation Research Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| | - Hae Woong Park
- Technology Innovation Research Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju 61755, Republic of Korea
| |
Collapse
|
11
|
Mehariya S, Das P, Thaher MI, Abdul Quadir M, Khan S, Sayadi S, Hawari AH, Verma P, Bhatia SK, Karthikeyan OP, Zuorro A, Al-Jabri H. Microalgae: A potential bioagent for treatment of emerging contaminants from domestic wastewater. CHEMOSPHERE 2024; 351:141245. [PMID: 38242513 DOI: 10.1016/j.chemosphere.2024.141245] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/24/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Water crisis around the world leads to a growing interest in emerging contaminants (ECs) that can affect human health and the environment. Research showed that thousands of compounds from domestic consumers, such as endocrine disrupting chemicals (EDCs), personal care products (PCPs), and pharmaceuticals active compounds (PhAcs), could be found in wastewater in concentration mostly from ng L-1 to μg L-1. However, generally, wastewater treatment plants (WWTPs) are not designed to remove these ECs from wastewater to their discharge levels. Scientists are looking for economically feasible biotreatment options enabling the complete removal of ECs before discharge. Microalgae cultivation in domestic wastewater is likely a feasible approach for removing emerging contaminants and simultaneously removing any residual organic nutrients. Microalgal growth rate and contaminants removal efficiency could be affected by various factors, including light intensity, CO2 addition, presence of different nutrients, etc., and these parameters could greatly help make microalgae treatment more efficient. Furthermore, the algal biomass harvests could be repurposed to produce various bulk chemicals such as sustainable aviation fuel, biofuel, bioplastic, and biochar; this could significantly enhance the economic viability. Therefore, this review summarizes the microalgae-based bioprocess and their mechanisms for removing different ECs from different wastewaters and highlights the different strategies to improve the ECs removal efficiency. Furthermore, this review shows the role of different ECs in biomass profile and the relevance of using ECs-treated microalgae biomass to produce green products, as well as highlights the challenges and future research recommendations.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed Abdul Quadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Sami Sayadi
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | | | | | - Hareb Al-Jabri
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
12
|
Abreu AP, Martins R, Nunes J. Emerging Applications of Chlorella sp. and Spirulina ( Arthrospira) sp. Bioengineering (Basel) 2023; 10:955. [PMID: 37627840 PMCID: PMC10451540 DOI: 10.3390/bioengineering10080955] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Chlorella sp. and Spirulina (Arthrospira) sp. account for over 90% of the global microalgal biomass production and represent one of the most promising aquiculture bioeconomy systems. These microorganisms have been widely recognized for their nutritional and therapeutic properties; therefore, a significant growth of their market is expected, especially in the nutraceutical, food, and beverage segments. However, recent advancements in biotechnology and environmental science have led to the emergence of new applications for these microorganisms. This paper aims to explore these innovative applications, while shedding light on their roles in sustainable development, health, and industry. From this state-of-the art review, it was possible to give an in-depth outlook on the environmental sustainability of Chlorella sp. and Spirulina (Arthrospira) sp. For instance, there have been a variety of studies reported on the use of these two microorganisms for wastewater treatment and biofuel production, contributing to climate change mitigation efforts. Moreover, in the health sector, the richness of these microalgae in photosynthetic pigments and bioactive compounds, along with their oxygen-releasing capacity, are being harnessed in the development of new drugs, wound-healing dressings, photosensitizers for photodynamic therapy, tissue engineering, and anticancer treatments. Furthermore, in the industrial sector, Chlorella sp. and Spirulina (Arthrospira) sp. are being used in the production of biopolymers, fuel cells, and photovoltaic technologies. These innovative applications might bring different outlets for microalgae valorization, enhancing their potential, since the microalgae sector presents issues such as the high production costs. Thus, further research is highly needed to fully explore their benefits and potential applications in various sectors.
Collapse
Affiliation(s)
- Ana P. Abreu
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
| | - Rodrigo Martins
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
| | - João Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, 3405-155 Oliveira do Hospital, Portugal; (R.M.); (J.N.)
- BLC3 Evolution Lda, 3405-155 Oliveira do Hospital, Portugal
| |
Collapse
|
13
|
Kant Bhatia S, Hyeon Hwang J, Jin Oh S, Jin Kim H, Shin N, Choi TR, Kim HJ, Jeon JM, Yoon JJ, Yang YH. Macroalgae as a source of sugar and detoxifier biochar for polyhydroxyalkanoates production by Halomonas sp. YLGW01 under the unsterile condition. BIORESOURCE TECHNOLOGY 2023:129290. [PMID: 37290712 DOI: 10.1016/j.biortech.2023.129290] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Macroalgae (seaweed) is considered a favorable feedstock for polyhydroxyalkanoates (PHAs) production owing to its high productivity, low land and freshwater requirement, and renewable nature. Among different microbes Halomonas sp. YLGW01 can utilize algal biomass-derived sugars (galactose and glucose) for growth and PHAs production. Biomass-derived byproducts furfural, hydroxymethylfurfural (HMF), and acetate affects Halomonas sp. YLGW01 growth and poly(3-hydroxybutyrate) (PHB) production i.e., furfural > HMF > acetate. Eucheuma spinosum biomass-derived biochar was able to remove 87.9 % of phenolic compounds from its hydrolysate without affecting sugar concentration. Halomonas sp. YLGW01 grows and accumulates a high amount of PHB at 4 % NaCl. The use of detoxified unsterilized media resulted in high biomass (6.32 ± 0.16 g cdm/L) and PHB production (3.88 ± 0.04 g/L) compared to undetoxified media (3.97 ± 0.24 g cdm/L, 2.58 ± 0.1 g/L). The finding suggests that Halomonas sp. YLGW01 has the potential to valorize macroalgal biomass into PHAs and open a new avenue for renewable bioplastic production.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, South Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Hyun-Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, South Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, South Korea; Institute for Ubiquitous Information Technology and Applications, Seoul 05029, South Korea.
| |
Collapse
|