1
|
He L, Li J, Tang L, Wang Y, Zhao X, Ding K, Xu L, Gu L, Cheng S, Wei YY. Applying side-stream gas recirculation to promote anaerobic digestion of food waste under ammonia stress: Overlooked impact of gaseous atmospheres on microorganisms. WATER RESEARCH 2025; 281:123571. [PMID: 40184706 DOI: 10.1016/j.watres.2025.123571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/09/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
High ammonia concentrations can be toxic to microorganisms, leading to the accumulation of hydrogen (H2) and acids in anaerobic digestion (AD) system. In this study, a side gas recycling strategy (SGR), coupled with a primary reactor and a small side-stream reactor, which recirculates biogas between primary reactor and side reactor was employed to mitigate ammonia inhibition. This approach enabled the mesophilic side-stream gas recirculation system (SMGR) and the thermophilic side-stream gas recirculation system (STGR) to ultimately withstand ammonia stress levels of 2.5 g/L and 3.5 g/L, respectively, while maintaining lower hydrogen partial pressures. In contrast, the control group experienced system failure at an ammonia concentration of 2 g/L. Enzyme activity, microbial community, and metaproteomic analysis indicated that the side reactor enriched microorganisms with strong hydrogen-utilizing capacity, while the primary reactor was enriched with Methanosaeta. Furthermore, key pathways related to propionate metabolism, ABC transporters, and methane production were enhanced in the primary reactor, along with increased ATPase activity. The activity of key enzymes involved in AD was also significantly enhanced. This study enhances the understanding of the impact of gas atmosphere control on the microbial ecology and metabolic characteristics of AD system, providing valuable insights and practical guidance for the development of Engineering applications in this field.
Collapse
Affiliation(s)
- Linyan He
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Jinze Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Lizhan Tang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Yifei Wang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Xueyu Zhao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Keke Ding
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Linji Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Shang Cheng
- Animal Husbandry Technology Popularization Master Station of Chongqing, Chongqing 401121, China
| | - Yi Yuan Wei
- Animal Husbandry Technology Popularization Master Station of Chongqing, Chongqing 401121, China
| |
Collapse
|
2
|
Gao D, Gong X, Su H, Xu A, Liu Z, Liang H. Impact of salinity stress on shifting microbial community and regulating N 2O and CO 2 dynamics in alkaline wetlands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124603. [PMID: 39970673 DOI: 10.1016/j.jenvman.2025.124603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/01/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Increasingly severe soil salinization in alkaline wetland due to elevated water evaporation under climate warming affected biogeochemical cycling processes, further threatening ecosystem imbalance and global greenhouse gas (GHG) budget. To reveal the underlying relationship between microbial dynamics, nitrous oxide (N2O) and carbon dioxide (CO2) characteristics under salinity stress in alkaline wetland, a 40-day microcosm experiment was conducted using soil collected from Zhalong wetland in northern China. The physiochemical properties, bacterial community, N2O and CO2 emissions were observed in responses to different salinity gradients (0%, 0.1%, 0.3%, 0.6%, 1.0%). The results showed that 1.0% salinity significantly increased cumulative N2O emissions by 578.5% and decreased cumulative CO2 emissions by 58.8% (p < 0.05). Increased nutrients (TOC, NO3--N) and decreased pH induced by salinity significantly regulated N2O (p < 0.05) and CO2 emissions (p < 0.01). Salinity led to significant loss of bacterial community diversity and strongly altered key bacteria related to C and N cycling. The salinity-sensitive taxa Gaiella and higher abundances of NorB than NosZ facilitated incomplete denitrification process, contributing to N2O emissions. Moreover, restrained genes involved in multiple CO2 production such as organics decomposition (glxk), microbial respiration (coxC) and methane oxidation (pmoA, pmoB) enabled alkaline wetland a CO2 sink under salinity stress. This study can provide new insights into salinity on microbial responses and GHG budgets in alkaline wetlands under the increasingly severe salinization trend.
Collapse
Affiliation(s)
- Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Xiaofei Gong
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Huihui Su
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zhenkun Liu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
3
|
Sun Z, Li J, Meng J, Li J. Small-data-trained model for predicting nitrate accumulation in one-stage partial nitritation-anammox processes controlled by oxygen supply rate. WATER RESEARCH 2025; 269:122798. [PMID: 39581117 DOI: 10.1016/j.watres.2024.122798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/25/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Nitrate (NO3--N) accumulation is the biggest obstacle for wastewater treatment via partial nitritation-anammox process. Dissolved oxygen (DO) control is the most used strategy to prevent NO3--N accumulation, but the performance is usually unstable. This study proposes a novel strategy for controlling NO3--N accumulation based on oxygen supply rate (OSR). In comparison, limiting the OSR is more effective than limiting DO in controlling NO3--N accumulation through mathematical simulation. A laboratory-scale one-stage partial nitritation-anammox system was continuously operated for 135 days, which was divided into five stages with different OSRs. A novel deep learning model integrating Gated Recurrent Unit and Multilayer Perceptron was developed to predict NO3--N accumulation load. To tackle with the general obstacle of limited environmental samples, a generic evaluation was proposed to optimise the model structure by leveraging predictive performance and overfitting risk. The developed model successfully predicted the NO3--N accumulation in the system ten days in advance, showcasing its potential contribution to system design and performance enhancement.
Collapse
Affiliation(s)
- Zhenju Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, PR China.
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
4
|
Oliveira HR, Anacleto TM, Abreu F, Enrich-Prast A. New insights into the factors influencing methanogenic pathways in anaerobic digesters. Anaerobe 2025; 91:102925. [PMID: 39617252 DOI: 10.1016/j.anaerobe.2024.102925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Anaerobic digestion integrates waste treatment, energy generation, and nutrient recycling, producing methane mainly through acetoclastic (AM) and hydrogenotrophic methanogenesis (HM). Methanogenic pathway management can improve biogas productivity and quality. The balance between pathways is influenced by environmental and physicochemical conditions, with conflicting results on the effect of different factors often reported. This systematic review aims to clarify the influence of various parameters on methanogenic pathways in anaerobic digesters. METHODS Literature search was conducted in the Web of Science and Scopus databases. The effects of different parameters on the predominant methanogenic pathway were evaluated using Kruskal-Wallis tests and Spearman's rank correlation. RESULTS Thermophilic temperatures and high free ammonia nitrogen concentrations (>300 mg L-1) increase HM, with a strong combined effect of these variables. Conversely, under moderate temperature and ammonia concentrations, the primary feedstock influences the methanogenic pathway, with algae biomass, pig manure, and food industry wastewater showing the lowest contribution of hydrogenotrophic methanogens. pH effect varied with temperature, with acidic and alkaline pH favoring HM in mesophilic and thermophilic digesters, respectively. Furthermore, higher levels of volatile fatty acids (>2000 mg L-1), carbohydrates (>10 g/L) and lipids (>10 g/L) also appeared to favor HM over AM, while most metals - especially Cr, Se and W - promoted AM. CONCLUSION This study emphasizes the role of various factors in methanogenic pathway selection, highlighting the impact of previously overlooked parameters, such as inorganic elements and organic matter composition. These insights are essential for understanding the methanogenic pathway balance and optimizing biogas processes.
Collapse
Affiliation(s)
- Helena Rodrigues Oliveira
- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, Brazil; Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thuane Mendes Anacleto
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Abreu
- Programa de Pós-Graduação em Biotecnologia Vegetal e Bioprocessos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Enrich-Prast
- Unidade Multiusuário de Análises Ambientais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Department of Thematic Studies - Environmental Change and Biogas Solutions Research Center (BSRC), Linköping University, Linköping, Sweden; Institute of Marine Science, Federal University of São Paulo (IMar/UNIFESP), Santos, Brazil.
| |
Collapse
|
5
|
Wang Y, Li H, Ding K, Zhao X, Liu M, Xu L, Gu L, Li J, Li L, He Q, Liang J. Improved anaerobic digestion of food waste under ammonia stress by side-stream hydrogen domestication. WATER RESEARCH 2024; 268:122770. [PMID: 39541850 DOI: 10.1016/j.watres.2024.122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
High ammonia concentration inhibits archaea's activity, causing the accumulation of H2 and acetate, which suppresses methane production in anaerobic digestion (AD). The study aimed to enhance microbial hydrogen metabolism through a side-stream hydrogen domestication (SHD) strategy, which involves applying hydrogen stimulation to a portion of the sludge separately. SHD maintained a stable methane yield of 407.5 mL/g VS at a high total ammonia nitrogen (TAN) concentration of 3.1 g/L. In contrast, the control group gradually decreased and stopped methane production at a TAN concentration of 2.3 g/L. Further analysis using enzyme activity assays, flow cytometry, and metagenomics explored the mechanisms underlying ammonia tolerance of SHD-treated group. SHD reshaped the microbial community, enriching homoacetogens and Methanosaeta-dominated methanogenic archaea. Key metabolic pathways including homoacetogenesis, butyrate degradation, propionate degradation, and methane production were enhanced. The activity of related enzymes also increased. Gene abundance in energy-generating pathways, such as glycolysis, was enhanced, ensuring adequate ATP production. Additionally, the high gene abundance of ion transport systems contributed to regulating proton imbalance and supplementing intracellular K+. This study provides important insights and practical guidance for developing novel techniques in the field of anaerobic digestion.
Collapse
Affiliation(s)
- Yi Wang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Haoyang Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Keke Ding
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Xueyu Zhao
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Miao Liu
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, 174 Shapingba Road, 400045, PR China
| | - Linji Xu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Li Gu
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Jinze Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Lin Li
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Qiang He
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Jianjun Liang
- Key laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| |
Collapse
|
6
|
Gao D, Xu A, Zhang Y, Liu F, Li H, Liang H. Metagenomic insights into carbon and nitrogen cycling in the water-land transition zone of inland alkaline wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170856. [PMID: 38340836 DOI: 10.1016/j.scitotenv.2024.170856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Inland alkaline wetlands play a crucial role in maintaining ecological functions. However, these wetlands are becoming more vulnerable to the effects of water level fluctuations caused by global climate change, especially concerning carbon (C) and nitrogen (N) cycling. Here, metagenomics sequencing was used to investigate microorganism diversity, C and N cycling gene abundance at three water level types (D (dry), MF (middle flooded), HF (high flooded)) along an inland alkaline wetland. Our findings reveal that water level was the most important factor in regulating the microbial communities. Distinct shifts in community composition were found along the water level increases, without fundamentally altering their composition. With the increase of water level, the relative abundance of pmoA decreased from 2.5 × 10-5 to 5.1 × 10-6. The C cycling processes shift from predominantly CO2-generated processes under low water levels to CO2 and CH4 co-generated processes under high water levels. The relative abundance of nosZ reached 4.9 × 10-5 in HF, while in D and MF, it is recorded at 4.5 × 10-5 and 3.4 × 10-5, respectively. Water levels accelerate N cycling and generating N2O intermediates. Furthermore, our study highlights the dynamic competition and cooperation between C and N cycling processes. This research provides a comprehensive biological understanding of the influence of varying water levels on soil C and N cycling processes in wetland.
Collapse
Affiliation(s)
- Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Ao Xu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yupeng Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Fengqin Liu
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Huiju Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
7
|
Qu J, Shi S, Li Y, Liu R, Hu Q, Zhang Y, Wang Y, Ma Y, Hao X, Zhang Y. Fe/N co-doped magnetic porous hydrochar for chromium(VI) removal in water: Adsorption performance and mechanism investigation. BIORESOURCE TECHNOLOGY 2024; 394:130273. [PMID: 38160851 DOI: 10.1016/j.biortech.2023.130273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Four kinds of Fe/N co-doped porous hydrochar were prepared by one/two-step N-doping schemes using microwave/traditional pyrolysis methods for removing Cr(VI) from aqueous phase. Heterocyclic-N was introduced through CO(NH2)2-based hydrothermal carbonization process, which could adjust the electronic structure of the hydrochar framework. Furthermore, Fe0 and Fe3O4 were embedded into hydrochar via carbothermal reduction reaction using FeCl3 as the precursor, which improved the reducibility and magnetism of the material. The modified hydrochar exhibited pH-dependency and rapid kinetic equilibrium, and the maximal adsorption amount of magnetic porous hydrochar obtained by microwave-assisted one-step N-doping (MP1HCMW) reached 274.34 mg/g. Meanwhile, the modified hydrochar had a high tolerance to multiple co-existing ions and the removal efficiency maintained above 73.91 % during five regeneration cycles. Additionally, MP1HCMW efficiently removed Cr(VI) via pore filling, electrostatic attraction, ion exchange, reduction, complexation, and precipitation. Summarily, Fe/N co-doped porous hydrochar was a feasible adsorbent with outstanding remediation potential for Cr(VI)-contaminated water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuhui Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruixin Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yupeng Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, No. 63 Agricultural Road, Zhengzhou 450002, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yunqiao Ma
- Heilongjiang Agricultural Environment and Cultivated Land Protection Station, Harbin 150036, China
| | - Xiaoyu Hao
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin 150086, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|