1
|
Sun Q, Li D, He Y, Ping Q, Wang L, Li Y. Improved anaerobic digestion of waste activated sludge under ammonia stress by nanoscale zero-valent iron/peracetic acid pretreatment and hydrochar regulation: Insights from multi-omics analyses. WATER RESEARCH 2025; 279:123497. [PMID: 40120189 DOI: 10.1016/j.watres.2025.123497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/23/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
This study developed a novel strategy combining a nanoscale zero-valent iron (nZVI)/peracetic acid (PAA) pretreatment and hydrochar regulation to enhance anaerobic digestion of waste activated sludge (WAS) under ammonia-stressed conditions. The strategy significantly enhanced methane production at ammonia concentrations below 3000 mg/L, with the regulation groups (AN3000/REG) achieving a 50.1 % increase in cumulative methane yield. Metagenomic analysis demonstrated a 14.2 % enrichment of key functional microorganisms, including syntrophic fatty acid-oxidizing bacteria and hydrogenotrophic methanogens, in the AN3000/REG groups. Some of them promote the conversion of butyrate and valerate to acetate through the upregulation of key genes in the fatty acid β-oxidation pathway, thereby supplying sufficient substrates for acetoclastic methanogenesis. Beyond enhancing acetoclastic methanogenesis, the AN3000/REG groups exhibited significant upregulation of other metabolic pathways, with a 34.2 % increase in syntrophic acetate oxidation-hydrogenotrophic methanogenesis genes and a 17.1 % increase in methanol/methylotrophic methanogenesis-related genes. These findings were further validated by the metatranscriptomic and metaproteomic combination analyses. Furthermore, the AN3000/REG groups exhibited a significant enhancement in direct interspecies electron transfer, with functional microbes (e.g., Geobacter, Methanosarcina, and Methanobacterium), pili, and cytochrome c showing significant increases of 1.38-fold, 12.7-fold, and 5.6-fold, respectively. This might be due to the synergistic effects of nZVI and hydrochar in the regulation groups. Additionally, metabolomic analyses revealed that the regulation strategy improved the microbial adaptability to ammonia stress by modulating metabolic products, such as alkaloids. Our study not only provides a promising strategy for alleviating ammonia inhibition during the anaerobic digestion of WAS but also provides a strong basis for understanding the underlying mechanism under ammonia-stressed conditions.
Collapse
Affiliation(s)
- Qiya Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Dunjie Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yunpeng He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| |
Collapse
|
2
|
Wang B, Chen X, Wen G, Duan Z, Xue P, Gao H. Treating nitrobenzene (NB) wastewater via an enhanced iron‒manganese oxides electron transfer strategy: Methods and mechanisms. WATER RESEARCH 2025; 278:123407. [PMID: 40043574 DOI: 10.1016/j.watres.2025.123407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 04/14/2025]
Abstract
Nitrobenzene (NB) is widely used in the fine chemical, pharmaceutical, and textile industries, but its toxicity and resistance to degradation present challenges, and traditional treatment methods are limited due to costs and a lack of efficiency. In this study, using a three-dimensional biofilm electrode reactor (3D-BER) enhanced with iron-manganese oxide catalysts was explored for the treatment of NB wastewater. Modifying polyurethane (PU) sponge fillers with Fe₃O₄ and Mn₃O₄ improved the conductivity and microbial electron transfer of the 3D-BER, significantly enhancing organic compound degradation, nitrogen and phosphorus removal. At the optimal voltage of 6 V and hydraulic retention time (HRT) of 24 h, the reactor achieved CODCr and ammonia nitrogen removal rates of 93.04 % and 86.25 %, respectively, which were more than 20 % higher than those in the control group. The iron and manganese present facilitated increased microbial activity and electron transfer efficiency, and metagenomic sequencing revealed shifts in the microbial communities and the enrichment of specific functional genes related to NB degradation. This integrated bioelectrochemical approach offers an effective and low-cost solution for treating NB wastewater, with broader implications for organic chemical wastewater management.
Collapse
Affiliation(s)
- Baoshan Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China; Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou 730070, PR China.
| | - Xiaojie Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xian University of Architecture and Technology, Xian, 710055, PR China.
| | - Gang Wen
- Shaanxi Key Laboratory of Environmental Engineering, Xian University of Architecture and Technology, Xian, 710055, PR China.
| | - Zihao Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Peiquan Xue
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| | - Hang Gao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China.
| |
Collapse
|
3
|
Liu C, Cao Q, Luo X, Yan S, Sun Q, Zheng Y, Zhen G. In-depth exploration of microbial electrolysis cell coupled with anaerobic digestion (MEC-AD) for methanogenesis in treating protein wastewater at high organic loading rates. ENERGY CONVERSION AND MANAGEMENT 2025; 323:119152. [PMID: 39582929 PMCID: PMC11580529 DOI: 10.1016/j.enconman.2024.119152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
High concentrations of protein wastewater often reduce treatment efficiency due to ammonia inhibition and acid accumulation caused by its low carbon-to-nitrogen ratio (C/N) after digestion, as well as its complex structure. This study investigates the performance of a microbial electrolysis cell (MEC) driving a protein digestion system with gradually increasing organic loading rates (OLR) of bovine serum albumin, elucidating microbial changes and methanogenic metabolic pathways on bioelectrodes under high OLR "inhibited steady-state" (ISS) conditions. The results showed that the accumulation of ammonia nitrogen (AN) from protein hydrolysis under high OLR conditions disrupted microbial growth and caused cell death on the electrode surface, hindering the electron transfer rate. Toxic AN reduced protein hydrolysis, led to propionate accumulation, inhibiting the acetoclastic methanogenesis process and favoring the hydrogenotrophic pathway. As OLR increased from 6 to 11 gCOD/L, cumulative methane production increased significantly from 450.24 mL to 738.72 mL, while average methane yield and production rate decreased by 10.51% and 50.28%, from 375.20 mL/gCOD and 75.04 mL/(gCOD·d) to 335.78 mL/gCOD and 37.31 mL/(gCOD·d), respectively. Despite these declines, the system maintained an ISS. Moderate OLR increases can achieve an ISS, boosting protein waste treatment capacity, methane production, and net energy output (NEO), with an OLR of 6 gCOD/L being optimal for maximizing NEO per unit substrate. These findings provide theoretical insights into the methanogenesis pathway of high OLR proteins in MEC-AD systems and offer an effective method for treating high OLR protein wastewater in future practical applications.
Collapse
Affiliation(s)
- Changqing Liu
- College of Geographical Sciences, College of Carbon Neutral Future Technology, Fujian Normal University, Fuzhou 350007, China
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
| | - Qi Cao
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Shenghan Yan
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Qiyuan Sun
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Yuyi Zheng
- Fujian College and University Engineering Research Center for Municipal Solid Waste Resuscitation and Management, Fuzhou 350007, Fujian, China
- College of Environment and Resources, College of Carbon Neutral Modern Technology, Fujian Normal University; Pollution Control and Resource Recycling Laboratory of Fujian Province, Fuzhou 350007, China
| | - Guangyin Zhen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Chen S, Kong Z, Qiu L, Wang H, Yan Q. Effects of different quorum sensing signal molecules on alleviation of ammonia inhibition during biomethanation. ENVIRONMENTAL RESEARCH 2025; 264:120295. [PMID: 39505134 DOI: 10.1016/j.envres.2024.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
Anaerobic digestion (AD) is a promising technology for achieving both organic wastes treatment and energy recovery. However, challenges such as ammonia inhibition still remain. Quorum sensing (QS) system is relevant with the regulation of microbial community behaviors by releasing and sensing signal molecules, which could improve methane production during AD process. Therefore, the current study explored the effects of different quorum sensing signal molecules on alleviation of ammonia inhibition. The results showed that both secretion of N-butyryl-DL-homoserine lactone (C4-HSL) and N-(β-ketocaproyl)-DL-homoserine lactone (3OC6-HSL) could be inhibited by high ammonia stress while stimulation of N-hexanoyl-L-homoserine lactone (C6-HSL) and N-octanoyl-DL-homoserine lactone (C8-HSL) secretion might be triggered by ammonia toxicity. Moreover, the alleviation of ammonia inhibition could be achieved by both introducing 3OC6-HSL (0.5 μM) and combination of 3OC6-HSL (0.1 μM) and biochar (4 g/L). Exogenous 3OC6-HSL could regulate microbial social behaviors and enhance the secretion of extracellular polymeric substances (EPS) to promote anaerobic digestion. In addition, the mitigation of ammonia inhibition through exogenous 3OC6-HSL and biochar were confirmed by microbial community changes (Methanobacterium, Propionicicella and Petrimonas). Critical enzymes involved in both acidification and methanogenic steps were enhanced after adding the combination of 3OC6-HSL and biochar. The combination of low levels of 3OC6-HSL and biochar could promote both direct interspecies electron transfer (DIET) process and communication between different anaerobic microorganisms to mitigate ammonia inhibition. The current study will provide primary insights for conquering ammonia inhibition during biomethanation.
Collapse
Affiliation(s)
- Siyi Chen
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ziang Kong
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liwei Qiu
- Changzhou Cheff Environmental Protection Technology Co., Ltd, Changzhou, 213164, China
| | - Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China.
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, 215011, China
| |
Collapse
|
5
|
Zhang S, Ren Y, Zhao P, Wang X, Wang Q, Sun X. Ethanol-type anaerobic digestion enhanced methanogenic performance by stimulating direct interspecies electron transfer and interspecies hydrogen transfer. BIORESOURCE TECHNOLOGY 2024; 410:131280. [PMID: 39151565 DOI: 10.1016/j.biortech.2024.131280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Ethanol pre-fermentation of food waste effectively alleviates acidification; however, its effects on interspecies electron transfer remain unknown. This study configured the feed according to COD ratios of ethanol: sodium acetate: sodium propionate: sodium butyrate of 5:2:1.5:1.5 (ethanol-type anaerobic digestion) and 0:5:2.5:2.5 (control), and conducted semi-continuous anaerobic digestion (AD) experiments. The results showed that ethanol-type AD increased maximum tolerable organic loading rate (OLR) to 6.0 gCOD/L/d, and increased the methane production by 1.2-14.8 times compared to the control at OLRs of 1.0-5.0 gCOD/L/d. The abundance of the pilA gene, which was associated with direct interspecies electron transfer (DIET), increased by 5.6 times during ethanol-type AD. Hydrogenase genes related to interspecies hydrogen transfer (IHT), including hydA-B, hoxH-Y, hnd, ech, and ehb, were upregulated during ethanol-type AD. Ethanol-type AD improved methanogenic performance and enhanced microbial metabolism by stimulating DIET and IHT.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuanyuan Ren
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Pan Zhao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaona Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
6
|
Jadhav DA, Yu Z, Hussien M, Kim JH, Liu W, Eisa T, Sharma M, Vinayak V, Jang JK, Wilberforce Awotwe T, Wang A, Chae KJ. Paradigm shift in Nutrient-Energy-Water centered sustainable wastewater treatment system through synergy of bioelectrochemical system and anaerobic digestion. BIORESOURCE TECHNOLOGY 2024; 396:130404. [PMID: 38336215 DOI: 10.1016/j.biortech.2024.130404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
With advancements in research and the necessity of improving the performance of bioelectrochemical system (BES), coupling anaerobic digestion (AD) with BES is crucial for energy gain from wastewater and bioremediation. Hybridization of BES-AD concept opens new avenues for pollutant degradation, carbon capture and nutrient-resource recovery from wastewater. The strength of merging BES-AD lies in synergy, and this approach was employed to differentiate fads from strategies with the potential for full-scale implementation and making it an energy-positive system. The integration of BES and AD system increases the overall performance and complexity of combined system and the cost of operation. From a technical standpoint, the primary determinants of BES-AD feasibility for field applications are the scalability and economic viability. High potential market for such integrated system attract industrial partners for more industrial trials and investment before commercialization. However, BES-AD with high energy efficacy and negative economics demands performance boost.
Collapse
Affiliation(s)
- Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Zhe Yu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Mohammed Hussien
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Ju-Hyeong Kim
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Wenzong Liu
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Tasnim Eisa
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Mukesh Sharma
- Department of Chemical Engineering, Chungbuk National University, Cheongju-si, Republic of Korea
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University, Sagar, MP 470003, India
| | - Jae-Kyoung Jang
- National Institute of Agricultural Sciences, Department of Agricultural Engineering Energy and Environmental Engineering Division, 310 Nongsaengmyeong-ro, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Tabbi Wilberforce Awotwe
- Department of Engineering, Faculty of Natural, Mathematical & Engineering Sciences, King's College London, United Kingdom
| | - Aijie Wang
- State Key Lab of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|