1
|
Bucukovski J, Miller BL. Everything's under Control: Maximizing Biosensor Performance through Negative Control Probe Selection. Anal Chem 2025; 97:3525-3535. [PMID: 39898999 PMCID: PMC11840803 DOI: 10.1021/acs.analchem.4c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
The rapid rise of label-free biosensing technologies has led to multiple creative strategies for the detection of macromolecules in complex biological solutions for disease state monitoring, drug discovery, and basic science research. A challenge with these techniques is that assays conducted in complex media such as serum suffer from nonspecific binding of matrix constituents. In label-free biosensors, it is virtually impossible to distinguish these nonspecific interactions without the use of a reference (negative control) probe. Only with reference subtraction can the specific binding signal be faithfully reported. To date, this has been a sparsely studied area in the biosensing field. Here, we report an FDA-inspired framework for optimum control probe selection and a systematic analysis for determining the optimal negative control probe given two monoclonal antibody capture probes on photonic ring resonator sensors. Briefly, while the differences in assay performance for IL-17A and CRP were found to be subtle, the best-scoring reference control based on the bioanalytical parameters of linearity, accuracy, and selectivity differed for each analyte. In the IL-17A assay, BSA scored the highest at 83%, while mouse IgG1 isotype control antibody placed a close second with 75%. With respect to the CRP assay, the rat IgG1 isotype control antibody scored the highest at 95%, while anti-FITC scored the second highest at 89%. These results suggest that although isotype-matching to the capture antibody may be tempting, the best on-chip reference control must be optimized on a case-by-case basis using the framework we report.
Collapse
Affiliation(s)
- Joseph Bucukovski
- Department
of Biochemistry and Biophysics, University
of Rochester, Rochester, New York 14627, United States
| | - Benjamin L. Miller
- Department
of Biochemistry and Biophysics, University
of Rochester, Rochester, New York 14627, United States
- Institute
of Optics, University of Rochester, Rochester, New York 14627, United States
- Department
of Dermatology, University of Rochester, Rochester, New York 14627, United States
- Program
in
Materials Science, University of Rochester, Rochester, New York 14627, United States
- Department
of Biomedical Engineering, University of
Rochester, Rochester, New York 14627, United States
| |
Collapse
|
2
|
Kalita N, Gogoi S, Minteer SD, Goswami P. Advances in Bioelectrode Design for Developing Electrochemical Biosensors. ACS MEASUREMENT SCIENCE AU 2023; 3:404-433. [PMID: 38145027 PMCID: PMC10740130 DOI: 10.1021/acsmeasuresciau.3c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.
Collapse
Affiliation(s)
- Nabajyoti Kalita
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudarshan Gogoi
- Department
of Chemistry, Sadiya College, Chapakhowa, Assam 786157, India
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pranab Goswami
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Chaudhry M, Lim DK, Kang JW, Yaqoob Z, So P, Bhopal MF, Wang M, Qamar R, Bhatti AS. Electrochemically driven optical and SERS immunosensor for the detection of a therapeutic cardiac drug. RSC Adv 2022; 12:2901-2913. [PMID: 35425323 PMCID: PMC8979105 DOI: 10.1039/d1ra07680a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases pose a serious health risk and have a high mortality rate of 31% worldwide. Digoxin is the most commonly prescribed pharmaceutical preparation to cardiovascular patients particularly in developing countries. The effectiveness of the drug critically depends on its presence in the therapeutic range (0.8–2.0 ng mL−1) in the patient's serum. We fabricated immunoassay chips based on QD photoluminescence (QDs-ELISA) and AuNP Surface Enhanced Raman Scattering (SERS-ELISA) phenomena to detect digoxin in the therapeutic range. Digoxin levels were monitored using digoxin antibodies conjugated to QDs and AuNPs employing the sandwich immunoassay format in both the chips. The limit of detection (LOD) achieved through QDs-ELISA and SERS-ELISA was 0.5 ng mL−1 and 0.4 ng mL−1, respectively. It is demonstrated that the sensitivity of QDs-ELISA was dependent on the charge transfer mechanism from the QDs to the antibody through ionic media, which was further explored using electrochemical impedance spectroscopy. We demonstrate that QDs-ELISA was relatively easy to fabricate compared to SERS-ELISA. The current study envisages replacement of conventional methodologies with small immunoassay chips using QDs and/or SERS-based tags with fast turnaround detection time as compared to conventional ELISA. Cardiovascular diseases pose a serious health risk and have a high mortality rate of 31% worldwide.![]()
Collapse
Affiliation(s)
- Madeeha Chaudhry
- Centre for Micro and Nano Devices, Department of Physics, COMSATS University Islamabad, Tarlai Kalan, Islamabad 45550, Pakistan
- Department of Biosciences, International Islamic University, H-10, Islamabad Capital Territory, 44000 Islamabad, Pakistan
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Muhammad Fahad Bhopal
- Centre for Micro and Nano Devices, Department of Physics, COMSATS University Islamabad, Tarlai Kalan, Islamabad 45550, Pakistan
| | - Minqiang Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Raheel Qamar
- Science &Technology Sector, ICESCO, Rabat, Morocco
| | - Arshad Saleem Bhatti
- Centre for Micro and Nano Devices, Department of Physics, COMSATS University Islamabad, Tarlai Kalan, Islamabad 45550, Pakistan
- Virtual University of Pakistan, M.A Jinnah Campus, Lahore, Pakistan
| |
Collapse
|
4
|
Wang X, Zhang Z, Wu G, Xu C, Wu J, Zhang X, Liu J. Applications of electrochemical biosensors based on functional antibody-modified screen-printed electrodes: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:7-16. [PMID: 34877580 DOI: 10.1039/d1ay01570b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of biomolecular analytes is of great importance in clinical, environmental, and argo-food areas, among which the electrochemical methodology is attracting much attention. In particular, screen-printed electrode (SPE)-based sensing applications have exhibited potential possibility for on-site detection, especially for fast clinical biomarker detection, since they provide a miniaturized but robust and portable electrode detection system. In this context, we focused on the modification of SPE with functional antibodies to improve the electrochemical detection performance in versatile sensing applications, particularly for COVID-19 detection. These antibodies were immobilized onto the electrode surface via various methodologies, through which the powerful potential from the modification of SPE was revealed. Finally, more novel and excellent works on the biomolecular modification of SPE and the prospects of this technology from its state-of-art status to commercialization are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Guolin Wu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Chunxia Xu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jianping Wu
- Department of Clinical Laboratory, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xingguo Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
5
|
Pilevar M, Kim KT, Lee WH. Recent advances in biosensors for detecting viruses in water and wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124656. [PMID: 33308919 DOI: 10.1016/j.jhazmat.2020.124656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 05/09/2023]
Abstract
As there is a considerable number of virus particles in wastewater which cause numerous infectious diseases, it is necessary to eliminate viruses from domestic wastewater before it is released in the environment. In addition, on-site detection of viruses in wastewater can provide information on possible virus exposures in the community of a given wastewater catchment. For this purpose, the pre-detection of different strains of viruses in wastewaters is an essential environmental step. Epidemiological studies illustrate that viruses are the most challenging pathogens to be detected in water samples because of their nano sizes, discrete distribution, and low infective doses. Over the past decades, several methods have been applied for the detection of waterborne viruses which include polymerase chain reaction-based methods (PCR), enzyme-linked immunosorbent assay (ELISA), and nucleic acid sequence-based amplification (NASBA). Although they have shown acceptable performance in virus measurements, their drawbacks such as complicated and time-consuming procedures, low sensitivity, and high analytical cost call for alternatives. Although biosensors are still in an early stage for practical applications, they have shown great potential to become an alternative means for virus detection in water and wastewater. This comprehensive review addresses the different types of viruses found in water and the recent development of biosensors for detecting waterborne viruses.
Collapse
Affiliation(s)
- Mohsen Pilevar
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Keug Tae Kim
- Department of Environmental & Energy Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, South Korea
| | - Woo Hyoung Lee
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
6
|
Xu L, Hu C, Huang Q, Jin K, Zhao P, Wang D, Hou W, Dong L, Hu S, Ma H. Trends and recent development of the microelectrode arrays (MEAs). Biosens Bioelectron 2021; 175:112854. [PMID: 33371989 DOI: 10.1016/j.bios.2020.112854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/27/2022]
Abstract
In this paper, we reviewed the history of microelectrode arrays (MEAs), compared different microfabrication techniques applied to modern MEAs in terms of their material characters, device properties and application scenarios. Then we discussed the biocompatibility of different MEAs as well as corresponding strategy of improvement. At last, we analyzed the growing trend of MEAs' technical route, expected application of MEAs in the field of Electrical impedance tomography (EIT).
Collapse
Affiliation(s)
- Longqian Xu
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou, Jiangsu province, 215163, PR China
| | - Chenxuan Hu
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou, Jiangsu province, 215163, PR China
| | - Qi Huang
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou, Jiangsu province, 215163, PR China
| | - Kai Jin
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou, Jiangsu province, 215163, PR China; International Joint Research Center for Nanophotonics and Biophotonics, School of Science, Changchun University of Science and Technology, Changchun, Jilin province, 130022, PR China
| | - Ping Zhao
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou, Jiangsu province, 215163, PR China; International Joint Research Center for Nanophotonics and Biophotonics, School of Science, Changchun University of Science and Technology, Changchun, Jilin province, 130022, PR China
| | - Dongping Wang
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou, Jiangsu province, 215163, PR China
| | - Wei Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, NO.1 Xinmin Street, Changchun, Jilin province, 130021, PR China
| | - Lihua Dong
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, NO.1 Xinmin Street, Changchun, Jilin province, 130021, PR China
| | - Siyi Hu
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou, Jiangsu province, 215163, PR China
| | - Hanbin Ma
- CAS Key Laboratory of Bio-medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou, Jiangsu province, 215163, PR China.
| |
Collapse
|
7
|
Cimafonte M, Fulgione A, Gaglione R, Papaianni M, Capparelli R, Arciello A, Bolletti Censi S, Borriello G, Velotta R, Della Ventura B. Screen Printed Based Impedimetric Immunosensor for Rapid Detection of Escherichia coli in Drinking Water. SENSORS 2020; 20:s20010274. [PMID: 31947810 PMCID: PMC6982893 DOI: 10.3390/s20010274] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Abstract
The development of a simple and low cost electrochemical impedance immunosensor based on screen printed gold electrode for rapid detection of Escherichia coli in water is reported. The immunosensor is fabricated by immobilizing anti-E. coli antibodies onto a gold surface in a covalent way by the photochemical immobilization technique, a simple procedure able to bind antibodies upright onto gold surfaces. Impedance spectra are recorded in 0.01 M phosphate buffer solution (PBS) containing 10 mM Fe(CN)63−/Fe(CN)64− as redox probe. The Nyquist plots can be modelled with a modified Randles circuit, identifying the charge transfer resistance Rct as the relevant parameter after the immobilization of antibodies, the blocking with BSA and the binding of E. coli. The introduction of a standard amplification procedure leads to a significant enhancement of the impedance increase, which allows one to measure E. coli in drinking water with a limit of detection of 3 × 101 CFU mL−1 while preserving the rapidity of the method that requires only 1 h to provide a “yes/no” response. Additionally, by applying the Langmuir adsorption model, we are able to describe the change of Rct in terms of the “effective” electrode, which is modified by the detection of the analyte whose microscopic conducting properties can be quantified.
Collapse
Affiliation(s)
- Martina Cimafonte
- Department of Physics “Ettore Pancini”, University of Naples “Federico II”, Via Cinthia, 26, 80126 Naples, Italy; (M.C.); (R.V.)
| | - Andrea Fulgione
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055 Portici Naples, Italy; (A.F.); (G.B.)
- Department of Agriculture, University of Naples “Federico II”, Via Università, 133, 80055 Portici Naples, Italy; (M.P.); (R.C.)
| | - Rosa Gaglione
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia, 26, 80126 Naples, Italy; (R.G.); (A.A.)
| | - Marina Papaianni
- Department of Agriculture, University of Naples “Federico II”, Via Università, 133, 80055 Portici Naples, Italy; (M.P.); (R.C.)
| | - Rosanna Capparelli
- Department of Agriculture, University of Naples “Federico II”, Via Università, 133, 80055 Portici Naples, Italy; (M.P.); (R.C.)
| | - Angela Arciello
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia, 26, 80126 Naples, Italy; (R.G.); (A.A.)
| | | | - Giorgia Borriello
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055 Portici Naples, Italy; (A.F.); (G.B.)
| | - Raffaele Velotta
- Department of Physics “Ettore Pancini”, University of Naples “Federico II”, Via Cinthia, 26, 80126 Naples, Italy; (M.C.); (R.V.)
| | - Bartolomeo Della Ventura
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
- Correspondence:
| |
Collapse
|
8
|
Abstract
The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described.
Collapse
|
9
|
Disulfide-modified antigen for detection of celiac disease-associated anti-tissue transglutaminase autoantibodies. Anal Bioanal Chem 2017; 409:3799-3806. [DOI: 10.1007/s00216-017-0322-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
10
|
Catanante G, Rhouati A, Hayat A, Marty JL. An Overview of Recent Electrochemical Immunosensing Strategies for Mycotoxins Detection. ELECTROANAL 2016. [DOI: 10.1002/elan.201600181] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Gaelle Catanante
- BAE: Biocapteurs-Analyses-Environnement; Universite de Perpignan Via Domitia; 52 Avenue Paul Alduy Perpignan Cedex 66860 France
| | - Amina Rhouati
- BAE: Biocapteurs-Analyses-Environnement; Universite de Perpignan Via Domitia; 52 Avenue Paul Alduy Perpignan Cedex 66860 France
- Ecole Nationale Supérieure de Biotechnologie; Constantine-Algérie
| | - Akhtar Hayat
- Interdisciplinary Research centre in Biomedical Materials (IRCBM); COMSATS Institute of Information technology; Lahore Pakistan
| | - Jean Louis Marty
- BAE: Biocapteurs-Analyses-Environnement; Universite de Perpignan Via Domitia; 52 Avenue Paul Alduy Perpignan Cedex 66860 France
| |
Collapse
|
11
|
Menti C, Henriques JAP, Missell FP, Roesch-Ely M. Antibody-based magneto-elastic biosensors: potential devices for detection of pathogens and associated toxins. Appl Microbiol Biotechnol 2016; 100:6149-6163. [DOI: 10.1007/s00253-016-7624-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022]
|
12
|
Ternary DNA chip based on a novel thymine spacer group chemistry. Colloids Surf B Biointerfaces 2015; 125:270-6. [DOI: 10.1016/j.colsurfb.2014.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 10/24/2014] [Accepted: 10/30/2014] [Indexed: 11/24/2022]
|
13
|
Bahadır EB, Sezgintürk MK. A review on impedimetric biosensors. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:248-62. [DOI: 10.3109/21691401.2014.942456] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Loughney JW, Lancaster C, Ha S, Rustandi RR. Residual bovine serum albumin (BSA) quantitation in vaccines using automated Capillary Western technology. Anal Biochem 2014; 461:49-56. [DOI: 10.1016/j.ab.2014.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 10/25/2022]
|
15
|
|
16
|
Borges J, Campiña JM, Silva AF. Probing the Contribution of Different Intermolecular Forces to the Adsorption of Spheroproteins onto Hydrophilic Surfaces. J Phys Chem B 2013; 117:16565-76. [DOI: 10.1021/jp409238b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- João Borges
- Centro de Investigação
em Química-Linha 4 (CIQ-L4), Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - José M. Campiña
- Centro de Investigação
em Química-Linha 4 (CIQ-L4), Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| | - A. Fernando Silva
- Centro de Investigação
em Química-Linha 4 (CIQ-L4), Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal
| |
Collapse
|
17
|
Ahmed A, Rushworth JV, Wright JD, Millner PA. Novel impedimetric immunosensor for detection of pathogenic bacteria Streptococcus pyogenes in human saliva. Anal Chem 2013; 85:12118-25. [PMID: 24256123 DOI: 10.1021/ac403253j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Streptococcus pyogenes , also known as group A streptococcus (GAS), is a Gram positive human pathogen responsible for invasive and noninvasive human infections with a high incidence rate. Traditional detection methods involve cell culture and PCR, which are limited by long processing times or the need for high cost equipment. Impedance-based electrochemical immunosensors provide an alternative by which precise and rapid quantitative detection of the organism can help with rapid clinical decisions. To bring a biosensor for point-of-care applications to market, strict optimization of each level of construction and operation is required. In this paper, commercial screen-printed gold electrodes have been used to construct polytyramine (Ptyr)-based immunosensors. Biotin tagged whole antibodies against S. pyogenes were conjugated to Ptyr amine group via biotin-NeutrAvidin coupling. Sensors were optimized at each level of construction, particularly for Ptyr electrodeposition and antibody concentration, to optimize signal and specificity. Scanning electron microscopy, fluorescence microscopy, and on-sensor analysis (HRP conjugated enhanced chemiluminescence-based semiquantitative method) to detect Ptyr surface amine and bound antibody were performed as supporting techniques. Cumulative and single shot incubations had shown detection range of 100 to 10(5) cells per 10 μL and 100 to 10(4) cells per 10 μL of bacteria in PBS, respectively. Sensors were also able to specifically detect S. pyogenes in 50% (v/v) human saliva, with good selectivity and low cross-reactivity.
Collapse
Affiliation(s)
- Asif Ahmed
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds , Leeds LS2 9JT, U.K
| | | | | | | |
Collapse
|
18
|
Holford TRJ, Holmes JL, Collyer SD, Davis F, Higson SPJ. Label-Free Impedimetric Immunosensor for Nerve Growth Factor Protein Constructed Using an Automated Dispensing System. ELECTROANAL 2013. [DOI: 10.1002/elan.201300132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Holford TR, Holmes JL, Collyer SD, Davis F, Higson SP. Label-free impedimetric immunosensors for psoriasin—Increased reproducibility and sensitivity using an automated dispensing system. Biosens Bioelectron 2013; 44:198-203. [DOI: 10.1016/j.bios.2012.11.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
|
20
|
Template and catalytic effects of DNA in the construction of polypyrrole/DNA composite macro and microelectrodes. Biosens Bioelectron 2012; 41:294-301. [PMID: 23017680 DOI: 10.1016/j.bios.2012.08.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/15/2012] [Accepted: 08/17/2012] [Indexed: 11/22/2022]
Abstract
Electrochemical DNA hybridization-based sensors show great promise as portable and automated analytical devices for routine screening of pathogenic or foreign nucleic acid sequences in biological samples. However, current sensor technologies still exhibit some unresolved issues which hampers their direct application into everyday life. Conducting polymers, such as polypyrrole (PPy), are increasingly being adopted as suitable platforms for DNA probe immobilization and signal transduction. Immobilization of DNA probes during pyrrole electropolymerization is a simple and efficient strategy to build composite electrodes suitable for DNA sensing. However, the effects of the probe state and sequence on PPy growth kinetics have not been studied yet. Here, we show that growth of PPy is drastically affected by the presence of guanine in the DNA probes and whether DNA is present in its single-stranded or double-stranded form. We show that some immobilization protocols may provoke irreversible oxidation of guanine moieties in the probe and that this issue deserves careful investigation as it may interfere with hybridization processes. We have also explored new procedures to build microelectrode arrays bearing immobilized DNA molecules, which are known to show beneficial properties in stirred samples. Overall, we present new techniques and concerns regarding the development of DNA-containing PPy-based composite electrodes, which may be taken into consideration for increasing genosensor reproducibility, response and performance.
Collapse
|
21
|
Holmes JL, Davis F, Collyer SD, Higson SPJ. A new application of scanning electrochemical microscopy for the label-free interrogation of antibody-antigen interactions: Part 2. Anal Chim Acta 2012; 741:1-8. [PMID: 22840698 DOI: 10.1016/j.aca.2012.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/19/2012] [Accepted: 07/03/2012] [Indexed: 11/30/2022]
Abstract
Within this paper we describe the use of scanning electrochemical microscopy (SECM) to fabricate a dotted array of biotinylated polyethyleneimine which was then used to immobilise first neutravidin and then a biotinylated antibody towards a relevant antigen of interest (PSA, NTx, ciprofloxacin). These antigens were selected both for their clinical relevance but also since they display a broad range of molecular weights, to determine whether the size of the antigen used effects the sensitivity of this approach. The SECM was then used to image the binding of both complementary and non-complementary antigens in a label-free assay. Imaging of the arrays before and following exposure to various concentrations of antigen in buffer showed clear evidence for specific binding of the complementary antigens to the antibody functionalised dots. Non-specific binding was also quantified by control experiments with other antigens. This demonstrated non-specific binding across the whole of the substrate, thereby confirming that specific binding does occur between the antibody and antigen of interest at the surface of the dots. The binding of ciprofloxacin was investigated both in simple buffer solution and in a more complex media, bovine milk.
Collapse
|
22
|
Moraes FC, Cesarino I, Coelho D, Pedrosa VA, Machado SAS. Highly Sensitive Neurotransmitters Analysis at Platinum-Ultramicroelectrodes Arrays. ELECTROANAL 2012. [DOI: 10.1002/elan.201200011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Holford TR, Davis F, Higson SP. Recent trends in antibody based sensors. Biosens Bioelectron 2012; 34:12-24. [DOI: 10.1016/j.bios.2011.10.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 12/29/2022]
|
24
|
Loo AH, Bonanni A, Ambrosi A, Poh HL, Pumera M. Impedimetric immunoglobulin G immunosensor based on chemically modified graphenes. NANOSCALE 2012; 4:921-925. [PMID: 22186761 DOI: 10.1039/c2nr11492e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Immunosensors which display high sensitivity and selectivity are of utmost importance to the biomedical field. Graphene is a material which has immense potential for the fabrication of immunosensors. For the first time, we evaluate the immunosensing capabilities of various graphene surfaces in this work. We propose a simple and label-free electrochemical impedimetric immunosensor for immunoglobulin G (IgG) based on chemically modified graphene (CMG) surfaces such as graphite oxide, graphene oxide, thermally reduced graphene oxide and electrochemically reduced graphene oxide. Disposable electrochemical printed electrodes were first modified with CMG materials before anti-immunoglobulin G (anti-IgG), which is specific to IgG, was immobilized. The principle of detection lies in the changes in impedance spectra of the redox probe after the attachment of IgG to the immobilized anti-IgG. It was found that thermally reduced graphene oxide has the best performance when compared to the other CMG materials. In addition, the optimal concentration of anti-IgG to be deposited onto the modified electrode surface is 10 μg ml(-1) and the linear range of detection of the immunosensor is from 0.3 μg ml(-1) to 7 μg ml(-1). Finally, the fabricated immunosensor also displays selectivity for IgG.
Collapse
Affiliation(s)
- Adeline Huiling Loo
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | | | | | | | | |
Collapse
|
25
|
Zhang X, Song C, Chen L, Zhang K, Fu A, Jin B, Zhang Z, Yang K. A novel immunoassay for residual bovine serum albumin (BSA) in vaccines using laser-induced fluorescence millimeter sensor array detection platform. Biosens Bioelectron 2011; 26:3958-61. [DOI: 10.1016/j.bios.2011.02.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 11/25/2022]
|
26
|
Holmes JL, Davis F, Collyer SD, Higson SP. A new application of scanning electrochemical microscopy for the label-free interrogation of antibody–antigen interactions. Anal Chim Acta 2011; 689:206-11. [DOI: 10.1016/j.aca.2011.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/06/2011] [Accepted: 01/14/2011] [Indexed: 11/27/2022]
|
27
|
Sadanandom A, Napier RM. Biosensors in plants. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:736-743. [PMID: 20870451 DOI: 10.1016/j.pbi.2010.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/23/2010] [Accepted: 08/26/2010] [Indexed: 05/29/2023]
Abstract
Biosensors come in an increasing array of forms and their development is defining the rate of advance for our understanding of many natural processes. Developmental biology is increasingly using mathematical models and yet few of these models are based on quantitative recordings. In particular, we know comparatively little about the endogenous concentrations or fluxes of signalling molecules such as the phytohormones, an area of great potential for new biosensors. There are extremely useful biosensors for some signals, but most remain qualitative. Other qualities sought in biosensors are temporal and spatial resolution and, usually, an ability to use them without significantly perturbing the system. Currently, the biosensors with the best properties are the genetically encoded optical biosensors based on FRET, but each sensor needs extensive specific effort to develop. Sensor technologies using antibodies as the recognition domain are more generic, but these tend to be more invasive and there are few examples of their use in plant biology. By capturing some of the opportunities appearing with advances in platform technologies it is hoped that more biosensors will become available to plant scientists.
Collapse
|
28
|
Barton AC, Davis F, Higson SPJ. Labeless Immunosensor Assay for the Stroke Marker Protein S-100[β] Based Upon an AC Impedance Protocol. ANAL LETT 2010. [DOI: 10.1080/00032711003687096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
O'Kennedy R, Townsend S, Donohoe GG, Leonard P, Hearty S, Byrne B. Speedy, Small, Sensitive, and Specific—Reality or Myth for Future Analytical Methods. ANAL LETT 2010. [DOI: 10.1080/00032711003653940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Label-free electrochemical impedance spectroscopy biosensor for the determination of human immunoglobulin G. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0382-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Sonochemically fabricated microelectrode arrays for use as sensing platforms. SENSORS 2010; 10:5090-132. [PMID: 22399926 PMCID: PMC3292166 DOI: 10.3390/s100505090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/15/2010] [Accepted: 04/27/2010] [Indexed: 11/17/2022]
Abstract
The development, manufacture, modification and subsequent utilisation of sonochemically-formed microelectrode arrays is described for a range of applications. Initial fabrication of the sensing platform utilises ultrasonic ablation of electrochemically insulating polymers deposited upon conductive carbon substrates, forming an array of up to 70,000 microelectrode pores cm(-2). Electrochemical and optical analyses using these arrays, their enhanced signal response and stir-independence area are all discussed. The growth of conducting polymeric "mushroom" protrusion arrays with entrapped biological entities, thereby forming biosensors is detailed. The simplicity and inexpensiveness of this approach, lending itself ideally to mass fabrication coupled with unrivalled sensitivity and stir independence makes commercial viability of this process a reality. Application of microelectrode arrays as functional components within sensors include devices for detection of chlorine, glucose, ethanol and pesticides. Immunosensors based on microelectrode arrays are described within this monograph for antigens associated with prostate cancer and transient ischemic attacks (strokes).
Collapse
|
32
|
Komarova E, Reber K, Aldissi M, Bogomolova A. New multispecific array as a tool for electrochemical impedance spectroscopy-based biosensing. Biosens Bioelectron 2010; 25:1389-94. [DOI: 10.1016/j.bios.2009.10.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/01/2009] [Accepted: 10/22/2009] [Indexed: 11/16/2022]
|
33
|
Chang BY, Park SM. Electrochemical impedance spectroscopy. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:207-29. [PMID: 20636040 DOI: 10.1146/annurev.anchem.012809.102211] [Citation(s) in RCA: 430] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This review describes recent advances in electrochemical impedance spectroscopy (EIS) with an emphasis on its novel applications to various electrochemistry-related problems. Section 1 discusses the development of new EIS techniques to reduce measurement time. For this purpose, various forms of multisine EIS techniques were first developed via a noise signal synthesized by mixing ac waves of various frequencies, followed by fast Fourier transform of the signal and the resulting current. Subsequently, an entirely new concept was introduced in which true white noise was used as an excitation source, followed by Fourier transform of both excitation and response signals. Section 2 describes novel applications of the newly developed techniques to time-resolved impedance measurements as well as to impedance imaging. Section 3 is devoted to recent applications of EIS techniques, specifically traditional measurements in various fields with a special emphasis on biosensor detections.
Collapse
Affiliation(s)
- Byoung-Yong Chang
- Department of Chemistry, Pohang University of Science and Technology, Korea.
| | | |
Collapse
|
34
|
Zhang Y, Wang H, Nie J, Zhang Y, Shen G, Yu R. Individually addressable microelectrode arrays fabricated with gold-coated pencil graphite particles for multiplexed and high sensitive impedance immunoassays. Biosens Bioelectron 2009; 25:34-40. [DOI: 10.1016/j.bios.2009.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
|
35
|
James T, Mannoor MS, Ivanov DV. BioMEMS -Advancing the Frontiers of Medicine. SENSORS (BASEL, SWITZERLAND) 2008; 8:6077-6107. [PMID: 27873858 PMCID: PMC3705549 DOI: 10.3390/s8096077] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 09/16/2008] [Accepted: 09/24/2008] [Indexed: 12/22/2022]
Abstract
Biological and medical application of micro-electro-mechanical-systems (MEMS) is currently seen as an area of high potential impact. Integration of biology and microtechnology has resulted in the development of a number of platforms for improving biomedical and pharmaceutical technologies. This review provides a general overview of the applications and the opportunities presented by MEMS in medicine by classifying these platforms according to their applications in the medical field.
Collapse
Affiliation(s)
- Teena James
- Microelectronics Research Center and New Jersey Institute of Technology, Newark, NJ, U.S.A.; E-mail: (M. S. M.)
- Dept of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, U.S.A.; E-mail: (M. S. M.)
| | - Manu Sebastian Mannoor
- Microelectronics Research Center and New Jersey Institute of Technology, Newark, NJ, U.S.A.; E-mail: (M. S. M.)
- Dept of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, U.S.A.; E-mail: (M. S. M.)
| | - Dentcho V. Ivanov
- Microelectronics Research Center and New Jersey Institute of Technology, Newark, NJ, U.S.A.; E-mail: (M. S. M.)
- Dept of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, U.S.A.; E-mail: (M. S. M.)
| |
Collapse
|
36
|
Zhou X, Liu L, Hu M, Wang L, Hu J. Detection of hepatitis B virus by piezoelectric biosensor. J Pharm Biomed Anal 2002; 681:8-15. [PMID: 11682242 DOI: 10.1016/j.aca.2010.09.038] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 01/16/2023]
Abstract
A highly sensitive piezoelectric HBV DNA biosensor has been developed based on the sensitive mass-transducing function of the quartz crystal microbalance and the speciality of nucleic acid hybridization reaction. HBV nucleic acid probe was immobilized onto the gold electrodes of a 9 MHz AT-cut piezoelectric quartz crystal with the polyethyleneimine adhesion, glutaraldehyde cross-linking (PEI-Glu) method or the physical adsorption method. The coated crystal with the PEI-Glu method to immobilized HBV nucleic acid probe showed the better results than the physical adsorption method with respect to sensitivity reproducibility and stability. The frequency shifts of hybridization have better linear relationship with the amount of HBV DNA, when the amount was in range 0.02-0.14 microg/ml. The crystal could be regenerated nearly five times without perceptible decrease of sensitivity.
Collapse
Affiliation(s)
- Xiaodong Zhou
- Department of Analysis-Measurement Science, Wuhan University, 430072, Wuhan, PR China
| | | | | | | | | |
Collapse
|