1
|
Coupland SE, Sonntag SR, Heimann H, Grisanti S. [The concept of the liquid biopsy in the treatment of malignant eye tumours]. DIE OPHTHALMOLOGIE 2024; 121:946-953. [PMID: 39516408 DOI: 10.1007/s00347-024-02132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
The liquid biopsy is a cutting-edge technique that involves analysing non-solid biological tissues, primarily blood but also ocular fluids, for the presence of cancer cells or fragments of tumour DNA. Unlike traditional biopsies, liquid biopsies are usually minimally invasive and can be performed more frequently, enabling continuous monitoring of disease progression and treatment efficacy. This article (and the associated series of articles) outlines the key developments in liquid biopsy, which include the analysis of circulating tumor DNA (ctDNA), circulating tumor cells (CTC) and exosomal RNA and protein biomarkers. Techniques, such as digital droplet PCR and next-generation sequencing (NGS) have made it possible to detect even very low levels of ctDNA, which is crucial for early cancer detection and monitoring minimal residual disease. The detection of rare CTCs is enhanced by techniques, such as microfluidic devices and immunomagnetic separation. Multiomic approaches, whereby exosomal RNA, protein and ctDNA analyses are combined, help to create a more comprehensive picture of tumour biology, including insights into tumour heterogeneity, potentially leading to better diagnostic and prognostic tools and helping to predict treatment response and resistance. The challenges of liquid biopsy application, which will be described in the following article, include (a) standardization, (b) cost and accessibility, (c) validation and clinical utility. However, the liquid biopsy represents a promising frontier in the application of precision ocular oncology, with ongoing research likely to expand its applications and improve its effectiveness in the coming years.
Collapse
Affiliation(s)
- Sarah E Coupland
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, University of Liverpool, 3rd Floor, William Henry Duncan Building, 6 West Derby Street, L7 8TX, Liverpool, Großbritannien.
- Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, Großbritannien.
| | - Svenja R Sonntag
- Department of Ophthalmology, University Medical Center Schleswig-Holstein, Luebeck, Deutschland
| | - Heinrich Heimann
- Liverpool Ocular Oncology Research Group, Department of Eye and Vision Science, University of Liverpool, 3rd Floor, William Henry Duncan Building, 6 West Derby Street, L7 8TX, Liverpool, Großbritannien
- Liverpool Ocular Oncology Centre, Liverpool University Hospitals Foundation Trust, Liverpool, Großbritannien
| | - Salvatore Grisanti
- Department of Ophthalmology, University Medical Center Schleswig-Holstein, Luebeck, Deutschland
| |
Collapse
|
2
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
3
|
Zhao J, Fei C, He J, He D, Wang Y, Chen J, Li Z, Quan Y, Zhao T, Lou L, Qiu Z, Yang Y. Ultra-High Frequency Self-Focusing Ultrasonic Sensors With Half-Concave Geometry for Visualization of Mouse Brain Atrophy. IEEE Trans Biomed Eng 2024; 71:524-530. [PMID: 37656645 DOI: 10.1109/tbme.2023.3308574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Ultra-high frequency (>100 MHz) acoustic waves feature biocompatibility and high sensitivity and allow biomedical imaging and acoustic tweezers. Primarily, excellent spatial resolution and broad bandwidth at ultra-high frequency is the goal for pathological research and cell selection at the cellular level. Here, we propose an efficient approach to visualize mouse brain atrophy by self-focused ultrasonic sensors at ultra-high frequency with ultra-broad bandwidth. The numerical models of geometry and theoretically predicted acoustic parameters for half-concave piezoelectric elements are calculated by the differential method, which agrees with measured results (lateral resolution: 24 μm, and bandwidth: 115% at -6 dB). Compared with the brain slices of 2-month-old mouse, the atrophy visualization of the 6-month-old mouse brain was realized by C-mode imaging with an acoustic microscopy system, which is a potential prospect for diagnosis and treatment of Alzheimer's disease (AD) combined with neuroscience. Meanwhile, the acoustic properties of the brain slices were quantitatively measured by the acoustic microscopy. These encouraging results demonstrate the promising application for high-resolution imaging in vitro biological tissue with ultra-high frequency self-focusing ultrasonic sensors.
Collapse
|
4
|
He S, Pang W, Wu X, Yang Y, Li W, Qi H, Sun C, Duan X, Wang Y. A targeted hydrodynamic gold nanorod delivery system based on gigahertz acoustic streaming. NANOSCALE 2022; 14:15281-15290. [PMID: 36112106 DOI: 10.1039/d2nr03222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The hydrodynamic method mimics the in vivo environment of the mechanical effect on cell stimulation, which not only modulates cell physiology but also shows excellent intracellular delivery ability. Herein, a hydrodynamic intracellular delivery system based on the gigahertz acoustic streaming (AS) effect is proposed, which presents powerful targeted delivery capabilities with high efficiency and universality. Results indicate that the range of cells with AuNR introduction is related to that of AS, enabling a tunable delivery range due to the adjustability of the AS radius. Moreover, with the assistance of AS, the organelle localization delivery of AuNRs with different modifications is enhanced. AuNRs@RGD is inclined to accumulate in the nucleus, while AuNRs@BSA tend to enter the mitochondria and AuNRs@PEGnK tend to accumulate in the lysosome. Finally, the photothermal effect is proved based on the large quantities of AuNRs introduced via AS. The abundant introduction of AuNRs under the action of AS can achieve rapid cell heating with the irradiation of a 785 nm laser, which has great potential in shortening the treatment cycle of photothermal therapy (PTT). Thereby, an efficient hydrodynamic technology in AuNR introduction based on AS has been demonstrated. The outstanding location delivery and organelle targeting of this method provides a new idea for precise medical treatment.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yang Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Wenjun Li
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Hang Qi
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Rich J, Tian Z, Huang TJ. Sonoporation: Past, Present, and Future. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100885. [PMID: 35399914 PMCID: PMC8992730 DOI: 10.1002/admt.202100885] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/09/2023]
Abstract
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell-based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high-throughput delivery that is critical for providing the desired cell quantity for cell-based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and has been demonstrated for delivering a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble-based sonoporation methods usually require special contrast agents. Bubble-based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non-bubble-based sonoporation mechanisms are under development. This review will cover both the bubble-based and non-bubble-based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
6
|
Ultrasound-Triggered Liposomes Encapsulating Quantum Dots as Safe Fluorescent Markers for Colorectal Cancer. Pharmaceutics 2021; 13:pharmaceutics13122073. [PMID: 34959354 PMCID: PMC8705306 DOI: 10.3390/pharmaceutics13122073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/21/2022] Open
Abstract
Quantum dots (QDs) are a promising tool to detect and monitor tumors. However, their small size allows them to accumulate in large quantities inside the healthy cells (in addition to the tumor cells), which increases their toxicity. In this study, we synthesized stealth liposomes encapsulating hydrophilic graphene quantum dots and triggered their release with ultrasound with the goal of developing a safer and well-controlled modality to deliver fluorescent markers to tumors. Our results confirmed the successful encapsulation of the QDs inside the core of the liposomes and showed no effect on the size or stability of the prepared liposomes. Our results also showed that low-frequency ultrasound is an effective method to release QDs encapsulated inside the liposomes in a spatially and temporally controlled manner to ensure the effective delivery of QDs to tumors while reducing their systemic toxicity.
Collapse
|
7
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part II: Nanoacoustics for biomedical imaging and therapy. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112925. [PMID: 34937992 PMCID: PMC8691754 DOI: 10.1016/j.sna.2021.112925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part II of this two-part review, this paper concentrates on nanoacoustics in biomedical imaging and therapy applications, including molecular ultrasound imaging, photoacoustic imaging, ultrasound-mediated drug delivery and therapy, and photoacoustic drug delivery and therapy. Firstly, the recent developments of nanosized ultrasound and photoacoustic contrast agents as well as their various imaging applications are examined. Secondly, different types of nanomaterials/nanostructures as nanocarriers for ultrasound and photoacoustic therapies are discussed. Finally, a discussion of challenges and future research directions are provided for nanoacoustics in medical imaging and therapy.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
9
|
Yazaki Y, Oyane A, Sogo Y, Ito A, Yamazaki A, Tsurushima H. Area-specific cell stimulation via surface-mediated gene transfer using apatite-based composite layers. Int J Mol Sci 2015; 16:8294-309. [PMID: 25874757 PMCID: PMC4425081 DOI: 10.3390/ijms16048294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 11/16/2022] Open
Abstract
Surface-mediated gene transfer systems using biocompatible calcium phosphate (CaP)-based composite layers have attracted attention as a tool for controlling cell behaviors. In the present study we aimed to demonstrate the potential of CaP-based composite layers to mediate area-specific dual gene transfer and to stimulate cells on an area-by-area basis in the same well. For this purpose we prepared two pairs of DNA–fibronectin–apatite composite (DF-Ap) layers using a pair of reporter genes and pair of differentiation factor genes. The results of the area-specific dual gene transfer successfully demonstrated that the cells cultured on a pair of DF-Ap layers that were adjacently placed in the same well showed specific gene expression patterns depending on the gene that was immobilized in theunderlying layer. Moreover, preliminary real-time PCR results indicated that multipotential C3H10T1/2 cells may have a potential to change into different types of cells depending on the differentiation factor gene that was immobilized in the underlying layer, even in the same well. Because DF-Ap layers have a potential to mediate area-specific cell stimulation on their surfaces, they could be useful in tissue engineering applications.
Collapse
Affiliation(s)
- Yushin Yazaki
- Department of Resources and Environmental Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
| | - Yu Sogo
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsuo Ito
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsushi Yamazaki
- Department of Resources and Environmental Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.
| | - Hideo Tsurushima
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
10
|
Zhang W, Miao Y, Lin K, Chen L, Dong Q, Huang C. Toxic effects of copper ion in zebrafish in the joint presence of CdTe QDs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 176:158-164. [PMID: 23421984 DOI: 10.1016/j.envpol.2013.01.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 06/01/2023]
Abstract
Quantum dots (QDs) have strong adsorption capacity; therefore, their potential toxicity of the facilitated transport of other trace toxic pollutants when they co-exist to aquatic organisms has become a hot research topic. The lab study was performed to determine the developmental toxicities to the zebrafish after exposed to the combined pollution of Cadmium-telluride (CdTe) QDs and copper ion (Cu(2+)) compared to the single exposure. Our findings for the first time revealed that: 1) CdTe QDs facilitated the accumulation of Cu(2+) in zebrafish, 2) the higher mortality, lower hatch rate, and more malformations can be clearly observed, 3) the diverse vascular hyperplasia, turbulence, and bifurcation of the exposed FLI-1 transgenic zebrafish larvae appeared together, 4) the synergistic effects played more important role during joint exposure. These observations provide a basic understanding of CdTe QDs and Cu(2+) joint toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, PR China.
| | | | | | | | | | | |
Collapse
|
11
|
Zhang W, Sun X, Chen L, Lin KF, Dong QX, Huang CJ, Fu RB, Zhu J. Toxicological effect of joint cadmium selenium quantum dots and copper ion exposure on zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2117-2123. [PMID: 22714141 DOI: 10.1002/etc.1918] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 04/18/2012] [Accepted: 05/19/2012] [Indexed: 06/01/2023]
Abstract
Quantum dots (QDs) have strong adsorption capacity; therefore, their potential toxicity to aquatic organisms from the facilitated transport of other trace toxic pollutants when they coexist has received increasing interest. However, the impact of cadmium selenium (CdSe) QDs and copper ion (Cu(2+)) joint exposure on zebrafish (Danio rerio) embryo and larvae remains almost unknown. Therefore, the present study was performed to determine the developmental toxicities to zebrafish exposed to combined pollution with CdSe QDs (500 µg/L) and Cu(2+) (0, 0.1, 1, 10, and 100 µg/L CuC1(2)) compared with single exposure. Our findings for the first time revealed that: (1) QDs facilitated the accumulation of Cu(2+) in zebrafish; (2) QDs caused higher mortality, lower hatch rate, and more malformations of the exposed zebrafish; (3) junction, bifurcation, crossing, particles, and aggregation of the exposed FLI-1 transgenic zebrafish larvae can be observed; (4) embryo cell apoptosis appeared in the head and tail region; and (5) synergistic effects played an important role during joint exposure. These observations provide a basic understanding of CdSe QDs and Cu(2+) joint toxicity to aquatic organisms and suggest the need for additional research to identify the toxicological mechanism.
Collapse
Affiliation(s)
- Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process/Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Shao L, Gao Y, Yan F. Semiconductor quantum dots for biomedicial applications. SENSORS (BASEL, SWITZERLAND) 2011; 11:11736-51. [PMID: 22247690 PMCID: PMC3252007 DOI: 10.3390/s111211736] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/06/2011] [Accepted: 12/13/2011] [Indexed: 12/12/2022]
Abstract
Semiconductor quantum dots (QDs) are nanometre-scale crystals, which have unique photophysical properties, such as size-dependent optical properties, high fluorescence quantum yields, and excellent stability against photobleaching. These properties enable QDs as the promising optical labels for the biological applications, such as multiplexed analysis of immunocomplexes or DNA hybridization processes, cell sorting and tracing, in vivo imaging and diagnostics in biomedicine. Meanwhile, QDs can be used as labels for the electrochemical detection of DNA or proteins. This article reviews the synthesis and toxicity of QDs and their optical and electrochemical bioanalytical applications. Especially the application of QDs in biomedicine such as delivering, cell targeting and imaging for cancer research, and in vivo photodynamic therapy (PDT) of cancer are briefly discussed.
Collapse
Affiliation(s)
- Lijia Shao
- Jiangsu Affiliated Cancer Hospital with Nanjing Medical University, Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009, China; E-Mails: (L.S.); (Y.G.)
| | - Yanfang Gao
- Jiangsu Affiliated Cancer Hospital with Nanjing Medical University, Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009, China; E-Mails: (L.S.); (Y.G.)
| | - Feng Yan
- Jiangsu Affiliated Cancer Hospital with Nanjing Medical University, Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009, China; E-Mails: (L.S.); (Y.G.)
| |
Collapse
|