1
|
Luo W, Homma C, Hayamizu Y. Rational Design and Self-Assembly of Histidine-Rich Peptides on a Graphite Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7057-7062. [PMID: 37171391 DOI: 10.1021/acs.langmuir.3c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Histidine-rich peptides (HRPs) have been investigated to create functional biomolecules based on the nature of histidine, such as ion binding and catalytic activity. The organization of these HRPs on a solid surface can lead to surface functionalization with the well-known properties of HRPs. However, immobilization of HRPs on the surface has not been realized. Here, we design a series of octapeptides with histidine repeat units, aiming to establish their self-assembly on a graphite surface to produce a highly robust and active nanoscaffold. The new design has (XH)4, and we incorporated various types of hydrophobic amino acids at X in the sequence to facilitate their interaction with the surface. The effect of the pair of amino acids on their self-assembly was investigated by atomic force microscopy. Contact angle measurement revealed that these assemblies functionalized graphite surfaces with different wetting chemistry. Moreover, the secondary structure of peptides was characterized by Fourier transform infrared spectroscopy (FTIR), which gives us further insights into the conformation of histidine repeat peptides on the surface. Our results showed a new approach to applying histidine-rich peptides on the surface and tuning the self-assembly behavior by introducing different counter amino acids that could be integrated with a wide range of biosensing and biotechnology applications.
Collapse
Affiliation(s)
- Wei Luo
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Chishu Homma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguroku, Tokyo 152-8550, Japan
| |
Collapse
|
2
|
Winton AJ, Allen MA. Rational Design of a Bifunctional Peptide Exhibiting Lithium Titanate Oxide and Carbon Nanotube Affinities for Lithium-Ion Battery Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8579-8589. [PMID: 36729082 DOI: 10.1021/acsami.2c18018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phage display is employed as a method for identifying polypeptides that bind to lithium-ion battery materials, specifically lithium titanate oxide (LTO) and multiwalled carbon nanotubes (MWCNTs). Output/input assays are used as a quantitative measure to narrow down the strongest binding polypeptides from several peptides selected through biopanning. Negatively stained transmission electron microscopy is used to verify that a phage presenting a particular LTO or MWCNT binding peptide sequence colocalizes with the respective material. Heterologous expression allows for ample polypeptides to be grown and purified using a peptide expression vector. Isothermal titration calorimetry in conjunction with alanine scanning enables determination of the pertinent residues involved in LTO binding and yields a dissociation constant of 3.41 μM. A rationally designed bifunctional peptide exhibiting LTO and MWCNT binding domains is subsequently validated to exhibit both LTO and MWCNT affinities and is incorporated as a binding agent in LTO coin-type electrochemical cells where the bifunctional peptide demonstrates stability at high cycle rates and potential as an alternative to non-specific binding agents for aqueous slurry processing of lithium-ion battery electrodes.
Collapse
Affiliation(s)
- Alexander J Winton
- Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Mark A Allen
- Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
3
|
Luo W, Noguchi H, Chen C, Nakamura Y, Homma C, Zozulia O, Korendovych IV, Hayamizu Y. De novo designed peptides form a highly catalytic ordered nanoarchitecture on a graphite surface. NANOSCALE 2022; 14:8326-8331. [PMID: 35661853 PMCID: PMC9202597 DOI: 10.1039/d2nr01507b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/09/2022] [Indexed: 05/26/2023]
Abstract
Here we demonstrate that short peptides, de novo designed from first principles, self-assemble on the surface of graphite to produce a highly robust and catalytic nanoarchitecture, which promotes peroxidation reactions with activities that rival those of natural enzymes in both single and multi-substrate reactions. These designable peptides recapitulate the symmetry of the underlying graphite surface and act as molecular scaffolds to immobilize hemin molecules on the electrode in a hierarchical self-assembly manner. The highly ordered and uniform hybrid graphite-peptide-hemin nanoarchitecture shows the highest faradaic efficiency of any hybrid electrode reported. Given the explosive growth of the types of chemical reactions promoted by self-assembled peptide materials, this new approach to creating complex electrocatalytic assemblies will yield highly efficient and practically applicable electrocatalysts.
Collapse
Affiliation(s)
- Wei Luo
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Hironaga Noguchi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Chen Chen
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Yoshiki Nakamura
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Chishu Homma
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Oleksii Zozulia
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA
| | - Ivan V Korendovych
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| |
Collapse
|
4
|
Ccorahua R, Noguchi H, Hayamizu Y. Cosolvents Restrain Self-Assembly of a Fibroin-Like Peptide on Graphite. J Phys Chem B 2021; 125:10893-10899. [PMID: 34559528 DOI: 10.1021/acs.jpcb.1c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controllable self-assembly of peptides on solid surfaces has been investigated for establishing functional bio/solid interfaces. In this work, we study the influence of organic solvents on the self-assembly of a fibroin-like peptide on a graphite surface. The peptide has been designed by mimicking fibroin proteins to have strong hydrogen bonds among peptides enabling their self-assembly. We have employed cosolvents of water and organic solvents with a wide range of dielectric constants to control peptide self-assembly on the surface. Atomic force microscopy has revealed that the peptides self-assemble into highly ordered monolayer-thick linear structures on graphite after incubation in pure water, where the coverage of peptides on the surface is more than 85%. When methanol is mixed, the peptide coverage becomes zero at a threshold concentration of 30% methanol on graphite and 25% methanol on MoS2. The threshold concentration in ethanol, isopropanol, dimethyl sulfoxide, and acetone varies depending on the dielectric constant with restraining self-assembly of the peptides, and particularly low dielectric-constant protic solvents prevent the peptide self-assembly significantly. The observed phenomena are explained by competitive surface adsorption of the organic solvents and peptides and the solvation effect of the peptide assembly.
Collapse
Affiliation(s)
- Robert Ccorahua
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Hironaga Noguchi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
5
|
Yucesoy DT, Khatayevich D, Tamerler C, Sarikaya M. Rationally designed chimeric solid‐binding peptides for tailoring solid interfaces. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/mds3.10065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Deniz T. Yucesoy
- GEMSEC Genetically Engineered Materials Science and Engineering Center University of Washington Seattle WA USA
- Department of Materials Science and Engineering University of Washington Seattle WA USA
| | - Dimitry Khatayevich
- GEMSEC Genetically Engineered Materials Science and Engineering Center University of Washington Seattle WA USA
- Department of Materials Science and Engineering University of Washington Seattle WA USA
| | - Candan Tamerler
- GEMSEC Genetically Engineered Materials Science and Engineering Center University of Washington Seattle WA USA
- Department of Materials Science and Engineering University of Washington Seattle WA USA
- Department of Mechanical Engineering Bioengineering Program Institute for Bioengineering Research University of Kansas Lawrence Lawrence KS USA
| | - Mehmet Sarikaya
- GEMSEC Genetically Engineered Materials Science and Engineering Center University of Washington Seattle WA USA
- Department of Materials Science and Engineering University of Washington Seattle WA USA
- Department of Chemical Engineering University of Washington Seattle WA USA
- Department of Oral Health Sciences University of Washington Seattle WA USA
| |
Collapse
|
6
|
Seki T, So CR, Page TR, Starkebaum D, Hayamizu Y, Sarikaya M. Electrochemical Control of Peptide Self-Organization on Atomically Flat Solid Surfaces: A Case Study with Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1819-1826. [PMID: 28968112 DOI: 10.1021/acs.langmuir.7b02231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The nanoscale self-organization of biomolecules, such as proteins and peptides, on solid surfaces under controlled conditions is an important issue in establishing functional bio/solid soft interfaces for bioassays, biosensors, and biofuel cells. Electrostatic interaction between proteins and surfaces is one of the most essential parameters in the adsorption and self-assembly of proteins on solid surfaces. Although the adsorption of proteins has been studied with respect to the electrochemical surface potential, the self-assembly of proteins or peptides forming well-organized nanostructures templated by lattice structure of the solid surfaces has not been studied in the relation to the surface potential. In this work, we utilize graphite-binding peptides (GrBPs) selected by the phage display method to investigate the relationship between the electrochemical potential of the highly ordered pyrolytic graphite (HOPG) and peptide self-organization forming long-range-ordered structures. Under modulated electrical bias, graphite-binding peptides form various ordered structures, such as well-ordered nanowires, dendritic structures, wavy wires, amorphous (disordered) structures, and islands. A systematic investigation of the correlation between peptide sequence and self-organizational characteristics reveals that the presence of the bias-sensitive amino acid modules in the peptide sequence has a significant effect on not only surface coverage but also on the morphological features of self-assembled structures. Our results show a new method to control peptide self-assembly by means of applied electrochemical bias as well as peptide design-rules for the construction of functional soft bio/solid interfaces that could be integrated in a wide range of practical implementations.
Collapse
Affiliation(s)
- Takakazu Seki
- Department of Materials Science and Engineering, Tokyo Institute of Technology , Tokyo 152-8550, Japan
| | - Christopher R So
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Tamon R Page
- Department of Materials Science and Engineering, Tokyo Institute of Technology , Tokyo 152-8550, Japan
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - David Starkebaum
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, Tokyo Institute of Technology , Tokyo 152-8550, Japan
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Mehmet Sarikaya
- Genetically Engineered Materials Science and Engineering Center, Departments of Materials Science and Engineering and Chemical Engineering, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
7
|
Tyagi A, Chu KL, Abidi IH, Cagang AA, Zhang Q, Leung NLC, Zhao E, Tang BZ, Luo Z. Single-probe multistate detection of DNA via aggregation-induced emission on a graphene oxide platform. Acta Biomater 2017; 50:334-343. [PMID: 27940196 DOI: 10.1016/j.actbio.2016.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/23/2016] [Accepted: 12/05/2016] [Indexed: 01/27/2023]
Abstract
Graphene and graphene oxides (GO), or their reduced forms, have been introduced in a variety of biosensing platforms and have exhibited enhanced performance levels in these forms. We herein report a DNA sensing platform consisting of aggregation-induced emission (AIE) molecules and complementary DNA (comDNA) adsorbed on GO. We experimentally turned the AIE molecule on and off by adjusting its distance, which correlates with DNA structures as shown in our computational results, from the GO sheet, which quenches depending on its distance from the graphene plane. The changes in florescence are reproducible, which demonstrates the probe's ability to identify the binding state of the DNA. Our molecular dynamics simulation results reveal strong π-π interactions between single-strand DNA (ssDNA) and GO, which enable the ssDNA molecule to move closer to the graphene oxide. This reduces the center of mass and binding free energies in the simulation. When hybridized with comDNA, the increased distance, evidenced by the reduced interaction, eliminates the quenching effect and turns on the AIE molecule. Our protocol use of the AIE molecule as a probe thus avoids the complicated steps involved in covalent functionalization and allows the rapid and label-free detection of DNA molecules. STATEMENT OF SIGNIFICANCE A simple, rapid method of fluorescent measurement of DNA hybridization in the presence of graphene (oxide) is presented. Conventional fluorescent dyes offer high performance in biosensors. However, labeling procedures are synthetically demanding in time and resources making it less cost-effective. Molecules with aggregation-induced-emission (AIE) property have advantages over traditional fluorescent molecules because of their intrinsic preference for detection as a turn-on probe and their single-molecule detection ability. Previous work has shown AIE dyes act as excellent "label-free" bioprobes with high sensitivity but with limited selectivity. Graphene oxide (GO) with its unique optical properties and affinity to different kinds of biomolecules can be used as an auxiliary to enhance selectivity of AIE dyes. In this work, we report a label-free strategy to detect DNA of particular sequence by water-soluble AIE probes with the aid of GO, supported by the computational explanations for this phenomenon.
Collapse
Affiliation(s)
- Abhishek Tyagi
- Department of Chemical and Biomolecular Engineering and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Kin Leung Chu
- Department of Chemical and Biomolecular Engineering and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Irfan Haider Abidi
- Department of Chemical and Biomolecular Engineering and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Aldrine Abenoja Cagang
- Department of Chemical and Biomolecular Engineering and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Qicheng Zhang
- Department of Chemical and Biomolecular Engineering and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Nelson L C Leung
- Department of Chemistry and Division of Biomedical Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Engui Zhao
- Department of Chemistry and Division of Biomedical Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ben Zhong Tang
- Department of Chemistry and Division of Biomedical Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhengtang Luo
- Department of Chemical and Biomolecular Engineering and The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
8
|
Tran TT, Mulchandani A. Carbon nanotubes and graphene nano field-effect transistor-based biosensors. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.12.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Sawada T, Matsumiya K, Serizawa T. Polymer-binding Peptides as Dispersants for the Preparation of Polymer Nanoparticles: Application of Peptides to Structurally Similar Non-target Polymers. CHEM LETT 2015. [DOI: 10.1246/cl.150215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshiki Sawada
- Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology
| | - Kisei Matsumiya
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo
| | - Takeshi Serizawa
- Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology
| |
Collapse
|
10
|
Khatayevich D, Page T, Gresswell C, Hayamizu Y, Grady W, Sarikaya M. Selective detection of target proteins by peptide-enabled graphene biosensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1505-13, 1504. [PMID: 24677773 DOI: 10.1002/smll.201302188] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 11/16/2013] [Indexed: 05/24/2023]
Abstract
Direct molecular detection of biomarkers is a promising approach for diagnosis and monitoring of numerous diseases, as well as a cornerstone of modern molecular medicine and drug discovery. Currently, clinical applications of biomarkers are limited by the sensitivity, complexity and low selectivity of available indirect detection methods. Electronic 1D and 2D nano-materials such as carbon nanotubes and graphene, respectively, offer unique advantages as sensing substrates for simple, fast and ultrasensitive detection of biomolecular binding. Versatile methods, however, have yet to be developed for simultaneous functionalization and passivation of the sensor surface to allow for enhanced detection and selectivity of the device. Herein, we demonstrate selective detection of a model protein against a background of serum protein using a graphene sensor functionalized via self-assembling multifunctional short peptides. The two peptides are engineered to bind to graphene and undergo co-assembly in the form of an ordered monomolecular film on the substrate. While the probe peptide displays the bioactive molecule, the passivating peptide prevents non-specific protein adsorption onto the device surface, ensuring target selectivity. In particular, we demonstrate a graphene field effect transistor (gFET) biosensor which can detect streptavidin against a background of serum bovine albumin at less than 50 ng/ml. Our nano-sensor design, allows us to restore the graphene surface and utilize each sensor in multiple experiments. The peptide-enabled gFET device has great potential to address a variety of bio-sensing problems, such as studying ligand-receptor interactions, or detection of biomarkers in a clinical setting.
Collapse
Affiliation(s)
- Dmitriy Khatayevich
- GEMSEC, Genetically Engineered Materials Science and Engineering Center, Materials Science and Engineering, University of Washington, 302 Roberts Hall, Seattle, WA, 98195, USA
| | | | | | | | | | | |
Collapse
|