1
|
Pitakrut S, Sanchayanukun P, Karuwan C, Muncharoen S. Application of Chitosan@Fe 3O 4 Nanoparticle-Modified Screen-Printed Graphene-Based Electrode for Simultaneous Analysis of Nitrite and Ascorbic Acid in Hydroponics and Fruit Juice. SENSORS (BASEL, SWITZERLAND) 2025; 25:1431. [PMID: 40096249 PMCID: PMC11902332 DOI: 10.3390/s25051431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
In this work, the development of screen-printed electrodes modified with chitosan-coated magnetite nanoparticles (CTS@Fe3O4/SPGNE) for the simultaneous determination of nitrite (NO2-) and ascorbic acid (AA-) is presented. The study investigated various ratios of graphene to chitosan-coated magnetite nanoparticles (CTS@Fe3O4), as well as the optimal pH. These factors were examined due to their impact on the selectivity and sensitivity of the analysis. The results indicated that a graphene paste to CTS@Fe3O4 ratio of 16:1.0 g and a pH of 4 were optimal for the analysis of both NO2- and AA-. Additionally, the behavior of the proposed electrode, its analytical performance, and interference studies were thoroughly examined. Furthermore, the CTS@Fe3O4/SPGNE electrode shows potential for the simultaneous determination of NO2- and AA- in hydroponics and fruit juice samples.
Collapse
Affiliation(s)
- Sudarut Pitakrut
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20130, Thailand; (S.P.); (P.S.)
| | - Phetlada Sanchayanukun
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20130, Thailand; (S.P.); (P.S.)
| | - Chanpen Karuwan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Sasithorn Muncharoen
- Department of Chemistry, Faculty of Science, Burapha University, Chonburi 20130, Thailand; (S.P.); (P.S.)
| |
Collapse
|
2
|
Balsamo J, Zhou K, Kammarchedu V, Ebrahimi A, Bess EN. Mechanistic Insight into Intestinal α-Synuclein Aggregation in Parkinson's Disease Using a Laser-Printed Electrochemical Sensor. ACS Chem Neurosci 2024; 15:2623-2632. [PMID: 38959406 PMCID: PMC11258680 DOI: 10.1021/acschemneuro.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Aggregated deposits of the protein α-synuclein and depleting levels of dopamine in the brain correlate with Parkinson's disease development. Treatments often focus on replenishing dopamine in the brain; however, the brain might not be the only site requiring attention. Aggregates of α-synuclein appear to accumulate in the gut years prior to the onset of any motor symptoms. Enteroendocrine cells (specialized gut epithelial cells) may be the source of intestinal α-synuclein, as they natively express this protein. Enteroendocrine cells are constantly exposed to gut bacteria and their metabolites because they border the gut lumen. These cells also express the dopamine metabolic pathway and form synapses with vagal neurons, which innervate the gut and brain. Through this connection, Parkinson's disease pathology may originate in the gut and spread to the brain over time. Effective therapeutics to prevent this disease progression are lacking due to a limited understanding of the mechanisms by which α-synuclein aggregation occurs in the gut. We previously proposed a gut bacterial metabolic pathway responsible for the initiation of α-synuclein aggregation that is dependent on the oxidation of dopamine. Here, we develop a new tool, a laser-induced graphene-based electrochemical sensor chip, to track α-synuclein aggregation and dopamine level over time. Using these sensor chips, we evaluated diet-derived catechols dihydrocaffeic acid and caffeic acid as potential inhibitors of α-synuclein aggregation. Our results suggest that these molecules inhibit dopamine oxidation. We also found that these dietary catechols inhibit α-synuclein aggregation in STC-1 enteroendocrine cells. These findings are critical next steps to reveal new avenues for targeted therapeutics to treat Parkinson's disease, specifically in the context of functional foods that may be used to reshape the gut environment.
Collapse
Affiliation(s)
- Julia
M. Balsamo
- Department
of Chemistry, University of California, Irvine, California 92617, United States
| | - Keren Zhou
- School
of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16802, United States
| | - Vinay Kammarchedu
- School
of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16802, United States
| | - Aida Ebrahimi
- School
of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials
Research Institute, The Pennsylvania State
University, University Park, Pennsylvania 16802, United States
- Department
of Biomedical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Elizabeth N. Bess
- Department
of Chemistry, University of California, Irvine, California 92617, United States
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92617, United States
| |
Collapse
|
3
|
Nalepa MA, Panáček D, Dědek I, Jakubec P, Kupka V, Hrubý V, Petr M, Otyepka M. Graphene derivative-based ink advances inkjet printing technology for fabrication of electrochemical sensors and biosensors. Biosens Bioelectron 2024; 256:116277. [PMID: 38613934 DOI: 10.1016/j.bios.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/16/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
The field of biosensing would significantly benefit from a disruptive technology enabling flexible manufacturing of uniform electrodes. Inkjet printing holds promise for this, although realizing full electrode manufacturing with this technology remains challenging. We introduce a nitrogen-doped carboxylated graphene ink (NGA-ink) compatible with commercially available printing technologies. The water-based and additive-free NGA-ink was utilized to produce fully inkjet-printed electrodes (IPEs), which demonstrated successful electrochemical detection of the important neurotransmitter dopamine. The cost-effectiveness of NGA-ink combined with a total cost per electrode of $0.10 renders it a practical solution for customized electrode manufacturing. Furthermore, the high carboxyl group content of NGA-ink (13 wt%) presents opportunities for biomolecule immobilization, paving the way for the development of advanced state-of-the-art biosensors. This study highlights the potential of NGA inkjet-printed electrodes in revolutionizing sensor technology, offering an affordable, scalable alternative to conventional electrochemical systems.
Collapse
Affiliation(s)
- Martin-Alex Nalepa
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - David Panáček
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic; Nanotechnology Centre, Centre of Energy and Environmental Technologies, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Ivan Dědek
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Petr Jakubec
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Vojtěch Kupka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Vítězslav Hrubý
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Martin Petr
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic; IT4Innovations, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic.
| |
Collapse
|
4
|
Jia D, Yang T, Wang K, Wang H, Wang E, Chou KC, Hou X. Ti 3C 2T x Coated with TiO 2 Nanosheets for the Simultaneous Detection of Ascorbic Acid, Dopamine and Uric Acid. Molecules 2024; 29:2915. [PMID: 38930980 PMCID: PMC11206739 DOI: 10.3390/molecules29122915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Two-dimensional MXenes have become an important material for electrochemical sensing of biomolecules due to their excellent electric properties, large surface area and hydrophilicity. However, the simultaneous detection of multiple biomolecules using MXene-based electrodes is still a challenge. Here, a simple solvothermal process was used to synthesis the Ti3C2Tx coated with TiO2 nanosheets (Ti3C2Tx@TiO2 NSs). The surface modification of TiO2 NSs on Ti3C2Tx can effectively reduce the self-accumulation of Ti3C2Tx and improve stability. Glassy carbon electrode was modified by Ti3C2Tx@TiO2 NSs (Ti3C2Tx@TiO2 NSs/GCE) and was able simultaneously to detect dopamine (DA), ascorbic acid (AA) and uric acid (UA). Under concentrations ranging from 200 to 1000 μM, 40 to 300 μM and 50 to 400 μM, the limit of detection (LOD) is 2.91 μM, 0.19 μM and 0.25 μM for AA, DA and UA, respectively. Furthermore, Ti3C2Tx@TiO2 NSs/GCE demonstrated remarkable stability and reliable reproducibility for the detection of AA/DA/UA.
Collapse
Affiliation(s)
- Dengzhou Jia
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
| | - Tao Yang
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
- Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110167, China
| | - Kang Wang
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Enhui Wang
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
- Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110167, China
| | - Kuo-Chih Chou
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinmei Hou
- Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, China
- Institute of Steel Sustainable Technology, Liaoning Academy of Materials, Shenyang 110167, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Mota FAR, Passos MLC, Santos JLM, Saraiva MLMFS. Comparative analysis of electrochemical and optical sensors for detection of chronic wounds biomarkers: A review. Biosens Bioelectron 2024; 251:116095. [PMID: 38382268 DOI: 10.1016/j.bios.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Chronic wounds (CW) present a significant healthcare challenge due to their prolonged healing time and associated complications. To effectively treat these wounds and prevent further deterioration, monitoring their healing progress is crucial. Traditional wound assessment methods relying on visual inspection and subjective evaluation are prone to inter-observer variability. Biomarkers play a critical role in objectively evaluating wound status and predicting healing outcomes, providing quantitative measures of wound healing progress, inflammation, infection, and tissue regeneration. Recent attention has been devoted to identifying and validating CW biomarkers. Various studies have investigated potential biomarkers, including growth factors, cytokines, proteases, and extracellular matrix components, shedding light on the complex molecular and cellular processes within CW. This knowledge enables a more targeted and personalized approach to wound management. Accurate and sensitive techniques are necessary for detecting CW biomarkers. Thus, this review compares and discusses the use of electrochemical and optical sensors for biomarker determination. The advantages and disadvantages of these sensors are highlighted. Differences in detection capabilities and characteristics such as non-invasiveness, portability, high sensitivity, specificity, simplicity, cost-effectiveness, compatibility with point-of-care applications, and real-time monitoring of wound biomarkers will be pointed out and compared. In summary, this work provides an overview of CW, explores the emerging field of CW biomarkers, and discusses methods for detecting these biomarkers, with a specific focus on optical and electrochemical sensors. The potential of further research and development in this field for advancing wound care and improving patient outcomes will also be noted.
Collapse
Affiliation(s)
- Fátima A R Mota
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - Marieta L C Passos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - João L M Santos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| |
Collapse
|
6
|
Dong XX, Chen TL, Kong XJ, Wu S, Kong FF, Xiao Q. A facile fluorescence Eu MOF sensor for ascorbic acid and ascorbate oxidase detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:704-708. [PMID: 38214197 DOI: 10.1039/d3ay01978k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
In this work, a facile fluorescence Eu3+-based metal-organic framework (Eu MOF) sensor for ascorbic acid (AA) and ascorbate oxidase (AAO) detection was developed. The fluorescence of the Eu MOF could be effectively quenched by Ce3+ but not by Ce4+ at an appropriate concentration, and thus, when the reductant AA was added into the solution containing Ce4+, Ce4+ was chemically reduced to Ce3+, which induced the decreased fluorescence signal of the Eu MOF. However, when AAO was introduced, AA was effectively oxidized to dehydroascorbic acid (DHAA) under the catalysis of AAO, and thus, Ce4+ could not be reduced, resulting in the fluorescence restoration of the Eu MOF. Hence, the concentration of AA and AAO could be determined by the fluorescence decrease and restoration of the Eu MOF. The fluorescent platform showed high sensitivity with a limit of detection of 0.32 μM for AA and 1.18 U L-1 for AAO, respectively. Moreover, the proposed method was successfully applied for AA and AAO determination in real samples, indicating great potential for biomedical application in complex matrices.
Collapse
Affiliation(s)
- Xin-Xin Dong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Tao-Li Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Xiang-Juan Kong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Shuang Wu
- A Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China.
| | - Fang-Fang Kong
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| |
Collapse
|
7
|
Li G, Yuan B, Zhao L, Gao W, Xu C, Liu G. Fouling-resistant electrode for electrochemical sensing based on covalent-organic frameworks TpPA-1 dispersed cabon nanotubes. Talanta 2024; 267:125162. [PMID: 37688894 DOI: 10.1016/j.talanta.2023.125162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
The key problem that limits the practical applications of nonenzymatic electrochemical sensors in biological media, is the biofouling and chemical fouling of electrodes due to the adsorption of biological molecules and oxidation (reduction) products. Electrode fouling will cause low accuracy, poor stability, and low sensitivity. Here, a simple and efficient antifouling electrode was demonstrated for electrochemical sensing based on covalent-organic framework (COF) TpPA-1 and carboxylic multi-walled carbon nanotubes (CNT) composites. COF TpPA-1 possesses abundant hydrophilic groups, which assisted the dispersion of CNT in water and formed uniform composites by π-π interaction. In addition, the introduction of CNT into the composites improved the electron transfer rate of COF TpPA-1. The antifouling interface was characterized by electrochemistry, contact angle measurement, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The electrode showed good chemical and bio-fouling resistant performance for the electrochemical detection of β-nicotinamide adenine dinucleotide (NADH) and uric acid (UA) in real serum samples.
Collapse
Affiliation(s)
- Gang Li
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, Shandong, China
| | - Baiqing Yuan
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, Shandong, China.
| | - Lijun Zhao
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (Au-SDARC), School of Chemistry & Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wenhan Gao
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, Shandong, China
| | - Chunying Xu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, Shandong, China
| | - Gang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, Shandong, China.
| |
Collapse
|
8
|
Gautam N, Verma R, Ram R, Singh J, Sarkar A. Development of a biodegradable microfluidic paper-based device for blood-plasma separation integrated with non-enzymatic electrochemical detection of ascorbic acid. Talanta 2024; 266:125019. [PMID: 37544255 DOI: 10.1016/j.talanta.2023.125019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
In the present article, we developed an electrochemical microfluidic paper-based device (EμPAD) for the non-enzymatic detection of Ascorbic Acid (AA) concentration in plasma using whole human blood. We combined LF1 blood plasma separation membrane and Whatman grade 1 filter paper to separate plasma from whole blood through wax printing. A screen-printed electrode (SPE) was modified with spherical-shaped MgFe2O4 nanomaterial (n-MgF) to improve the catalytic properties of SPE. The n-MgF was prepared via hydrothermal method, and its material phase and morphology were confirmed via XRD, FTIR, TEM, SEM, and AFM analysis. The fabricated n-MgF/SPE/EμPAD exhibited detection of AA ranging from 0 to 80 μM. The obtained value of the detection limit, limit of quantification, sensitivity, and response time are 2.44 μM, 8.135 μM, 5.71 × 10-3 mA μM-1 cm-2, and 10 s, respectively. Our developed n-MgF/SPE/EμPAD shows marginal interference with the common analytes present in plasma, such as uric acid, glutamic acid, glucose, urea, lactic acid, and their mixtures. Overall, our low-cost, portable device with its user-friendly design and efficient plasma separation capability offers a practical and effective solution for estimating AA concentration from whole human blood in a single step.
Collapse
Affiliation(s)
- Neha Gautam
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Rahul Verma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rishi Ram
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arnab Sarkar
- Department of Mechanical Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
9
|
Kong W, Xu Z, Liu T, Lei J, Ju H. Photocurrent Polarity Reversal Induced by Electron-Donor Release for the Highly Sensitive Photoelectrochemical Detection of Vascular Endothelial Growth Factor 165. Anal Chem 2023; 95:16392-16397. [PMID: 37885198 DOI: 10.1021/acs.analchem.3c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Photocurrent polarity reversal is a switching process between the anodic and cathodic pathways and is critical for eliminating false positivity and improving detection sensitivity in photoelectrochemical (PEC) sensing. In this study, we construct a PEC sensor with excellent photocurrent polarity reversal induced by ascorbic acid (AA) as an electron donor with the energy level matching the photoactive material zirconium metal-organic framework (ZrMOF). The ZrMOF-modified electrode demonstrates cathodic photocurrent in the presence of O2 as an electron acceptor, while the anodic photocurrent is generated in the presence of AA, achieving photocurrent polarity reversal. By the in situ release of AA from AA-encapsulated apoferritin modified with DNA 2 (AA@APO-S2) as a detection tag in the presence of trypsin after the recognition of hairpin DNA-modified indium tin oxide to the reaction product of aptamer/DNA 1 with the target protein and the following rolling cycle amplification for introducing the detection tag to the sensing interface, the reversed photocurrent shows an enhanced photocurrent response to the target protein, leading to a highly sensitive PEC sensing strategy. This strategy realizes the detection of vascular endothelial growth factor 165 with good specificity, a wide linear range, and a low detection limit down to 5.3 fM. The actual sample analysis offers the detection results of the proposed PEC sensor comparable to those of commercial enzyme-linked immunosorbent assay tests, indicating the promising application of the photocurrent polarity reversal-based PEC sensing strategy in biomolecule detection and clinical diagnosis.
Collapse
Affiliation(s)
- Weisu Kong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
10
|
Feng Z, Lim HN, Ibrahim I, Gowthaman NSK. A review of zeolitic imidazolate frameworks (ZIFs) as electrochemical sensors for important small biomolecules in human body fluids. J Mater Chem B 2023; 11:9099-9127. [PMID: 37650588 DOI: 10.1039/d3tb01221b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Small biomolecules play a critical role in the fundamental processes that sustain life and are essential for the proper functioning of the human body. The detection of small biomolecules has garnered significant interest in various fields, including disease diagnosis and medicine. Electrochemical techniques are commonly employed in the detection of critical biomolecules through the principle of redox reactions. It is also a very convenient, cheap, simple, fast, and accurate measurement method in analytical chemistry. Zeolitic imidazolate frameworks (ZIFs) are a unique type of metal-organic framework (MOF) composed of porous crystals with extended three-dimensional structures. These frameworks are made up of metal ions and imidazolate linkers, which form a highly porous and stable structure. In addition to their many advantages in other applications, ZIFs have emerged as promising candidates for electrochemical sensors. Their large surface area, pore diameter, and stability make them ideal for use in sensing applications, particularly in the detection of small molecules and ions. This review summarizes the critical role of small biomolecules in the human body, the standard features of electrochemical analysis, and the utilization of various types of ZIF materials (including carbon composites, metal-based composites, ZIF polymer materials, and ZIF-derived materials) for the detection of important small biomolecules in human body fluids. Lastly, we provide an overview of the current status, challenges, and future outlook for research on ZIF materials.
Collapse
Affiliation(s)
- Zhou Feng
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - H N Lim
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Foundry of Reticular Materials for Sustainability (FORMS) Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - I Ibrahim
- Foundry of Reticular Materials for Sustainability (FORMS) Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Functional Nanotechnology Devices Laboratory (FNDL), Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - N S K Gowthaman
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
11
|
Pishbin E, Sadri F, Dehghan A, Kiani MJ, Hashemi N, Zare I, Mousavi P, Rahi A. Recent advances in isolation and detection of exosomal microRNAs related to Alzheimer's disease. ENVIRONMENTAL RESEARCH 2023; 227:115705. [PMID: 36958383 DOI: 10.1016/j.envres.2023.115705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 05/08/2023]
Abstract
Alzheimer's disease, a progressive neurological condition, is associated with various internal and external risk factors in the disease's early stages. Early diagnosis of Alzheimer's disease is essential for treatment management. Circulating exosomal microRNAs could be a new class of valuable biomarkers for early Alzheimer's disease diagnosis. Different kinds of biosensors have been introduced in recent years for the detection of these valuable biomarkers. Isolation of the exosomes is a crucial step in the detection process which is traditionally carried out by multi-step ultrafiltration. Microfluidics has improved the efficiency and costs of exosome isolation by implementing various effects and forces on the nano and microparticles in the microchannels. This paper reviews recent advancements in detecting Alzheimer's disease related exosomal microRNAs based on methods such as electrochemical, fluorescent, and SPR. The presented devices' pros and cons and their efficiencies compared with the gold standard methods are reported. Moreover, the application of microfluidic devices to detect Alzheimer's disease related biomarkers is summarized and presented. Finally, some challenges with the performance of novel technologies for isolating and detecting exosomal microRNAs are addressed.
Collapse
Affiliation(s)
- Esmail Pishbin
- Bio-microfluidics Laboratory, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Fatemeh Sadri
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Dehghan
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Javad Kiani
- School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Amid Rahi
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Al-Jaf SH, Omer KM. Accuracy improvement via novel ratiometry design in distance-based microfluidic paper based analytical device: instrument-free point of care testing. RSC Adv 2023; 13:15704-15713. [PMID: 37228680 PMCID: PMC10204734 DOI: 10.1039/d3ra01601c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Developing accurate, precise, instrument-free, and point-of-need microfluidic paper-based devices is highly significant in clinical diagnosis and biomedical analysis. In the present work, a ratiometric distance-based microfluidic paper-based analytical device (R-DB-μPAD), along with a three-dimensional (3D) multifunctional connector (spacer), was designed to improve the accuracy and detection resolution analyses. Specifically, the novel R-DB-μPAD was used for the accurate and precise detection of ascorbic acid (AA) as a model analyte. In this design, two channels were fabricated as detection zones, with a 3D spacer located between the sampling and detection zones to improve the detection resolution by preventing the reagents mixing from overspreading between these zones. Two probes for AA were used: Fe3+ and 1,10-phenanthroline were deposited in the first channel, and oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) was added to the second channel. Accuracy improvement of this ratiometry-based design was achieved by enhancing the linearity range and reducing the volume dependency of the output signal. Moreover, the 3D connector improved the detection resolution by eliminating the systematic errors. Under the optimal conditions, the ratio of the distances of the color bands in the two channels was used to construct an analytical calibration curve in the range from 0.05 to 1.2 mM, with a limit of detection of 16 μM. The proposed R-DB-μPAD combined with the connector was successfully used for the detection of AA in orange juice and vitamin C tablets with satisfactory accuracy and precision. This work opens the door for multiplex analysis of various analytes in different matrices.
Collapse
Affiliation(s)
- Sabah H Al-Jaf
- Department of Chemistry, College of Science, University of Sulaimani 46002 Sulaimani City Kurdistan Region Iraq
- Department of Chemistry, College of Science, University of Garmian Darbandikhan Road 46021 Kalar City Sulaimaniyah Province Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani 46002 Sulaimani City Kurdistan Region Iraq
- Center of Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani 46002 Sulaimani City Kurdistan Region Iraq
| |
Collapse
|
13
|
Tian Q, She Y, Zhu Y, Dai D, Shi M, Chu W, Cai T, Tsai HS, Li H, Jiang N, Fu L, Xia H, Lin CT, Ye C. Highly Sensitive and Selective Dopamine Determination in Real Samples Using Au Nanoparticles Decorated Marimo-like Graphene Microbead-Based Electrochemical Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052870. [PMID: 36905070 PMCID: PMC10007331 DOI: 10.3390/s23052870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 05/05/2023]
Abstract
A sensitive and selective electrochemical dopamine (DA) sensor has been developed using gold nanoparticles decorated marimo-like graphene (Au NP/MG) as a modifier of the glassy carbon electrode (GCE). Marimo-like graphene (MG) was prepared by partial exfoliation on the mesocarbon microbeads (MCMB) through molten KOH intercalation. Characterization via transmission electron microscopy confirmed that the surface of MG is composed of multi-layer graphene nanowalls. The graphene nanowalls structure of MG provided abundant surface area and electroactive sites. Electrochemical properties of Au NP/MG/GCE electrode were investigated by cyclic voltammetry and differential pulse voltammetry techniques. The electrode exhibited high electrochemical activity towards DA oxidation. The oxidation peak current increased linearly in proportion to the DA concentration in a range from 0.02 to 10 μM with a detection limit of 0.016 μM. The detection selectivity was carried out with the presence of 20 μM uric acid in goat serum real samples. This study demonstrated a promising method to fabricate DA sensor-based on MCMB derivatives as electrochemical modifiers.
Collapse
Affiliation(s)
- Qichen Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yangguang Zhu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Dan Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Mingjiao Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Wubo Chu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Cai
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Hsu-Sheng Tsai
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - He Li
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Nan Jiang
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hongyan Xia
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (H.X.); (C.-T.L.); (C.Y.)
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Correspondence: (H.X.); (C.-T.L.); (C.Y.)
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Correspondence: (H.X.); (C.-T.L.); (C.Y.)
| |
Collapse
|
14
|
Dourandish Z, Beitollahi H, Sheikhshoaie I. Simultaneous Voltammetric Determination of Epinine and Venlafaxine Using Disposable Screen-Printed Graphite Electrode Modified by Bimetallic Ni-Co-Metal-Organic-Framework Nanosheets. Molecules 2023; 28:molecules28052128. [PMID: 36903373 PMCID: PMC10004146 DOI: 10.3390/molecules28052128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
We constructed two-dimensional NiCo-metal-organic-framework (NiCo-MOF) nanosheets based on a facile protocol and then characterized them using multiple approaches (X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field emission-scanning electron microscopy (FE-SEM), and N2 adsorption/desorption isotherms techniques). As a sensitive electroactive material, the as-fabricated bimetallic NiCo-MOF nanosheets were employed to modify a screen-printed graphite electrode surface (NiCo-MOF/SPGE) for epinine electro-oxidation. According to the findings, there was a great improvement in the current responses of the epinine because of the appreciable electron transfer reaction and catalytic performance of the as-produced NiCo-MOF nanosheets. Differential pulse voltammetry (DPV), cyclic voltammetry (CV) and chronoamperometry were utilized to analyze the electrochemical activity of the epinine on the NiCo-MOF/SPGE. A linear calibration plot was obtained in the broad concentration range (0.07-335.0 µM) with a high sensitivity (0.1173 µA/µM) and a commendable correlation coefficient (0.9997). The limit of detection (S/N = 3) was estimated at 0.02 µM for the epinine. According to findings from DPV, the electrochemical sensor of the NiCo-MOF/SPGE could co-detect epinine and venlafaxine. The repeatability, reproducibility and stability of the NiCo-metal-organic-framework-nanosheets-modified electrode were investigated, and the relative standard deviations obtained indicated that the NiCo-MOF/SPGE had superior repeatability, reproducibility and stability. The as-constructed sensor was successfully applicable in sensing the study analytes in real specimens.
Collapse
Affiliation(s)
- Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
- Correspondence:
| | - Iran Sheikhshoaie
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| |
Collapse
|
15
|
Zhang R, Jiang J, Wu W. Wearable chemical sensors based on 2D materials for healthcare applications. NANOSCALE 2023; 15:3079-3105. [PMID: 36723394 DOI: 10.1039/d2nr05447g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemical sensors worn on the body could make possible the continuous, noninvasive, and accurate monitoring of vital human signals, which is necessary for remote health monitoring and telemedicine. Attractive for creating high-performance, wearable chemical sensors are atomically thin materials with intriguing physical features, abundant chemistry, and high surface-to-volume ratios. These advantages allow for appropriate material-analyte interactions, resulting in a high level of sensitivity even at trace analyte concentrations. Previous review articles covered the material and device elements of 2D material-based wearable devices extensively. In contrast, little research has addressed the existing state, future outlook, and promise of 2D materials for wearable chemical sensors. We provide an overview of recent advances in 2D-material-based wearable chemical sensors to overcome this deficiency. The structure design, manufacturing techniques, and mechanisms of 2D material-based wearable chemical sensors will be evaluated, as well as their applicability in human health monitoring. Importantly, we present a thorough review of the current state of the art and the technological gaps that would enable the future design and nanomanufacturing of 2D materials and wearable chemical sensors. Finally, we explore the challenges and opportunities associated with designing and implementing 2D wearable chemical sensors.
Collapse
Affiliation(s)
- Ruifang Zhang
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
- Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jing Jiang
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
- Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
| | - Wenzhuo Wu
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
- Flex Laboratory, Purdue University, West Lafayette, Indiana 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- The Center for Education and Research in Information Assurance and Security (CERIAS), Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Liu Y, Xu L. Layer-by-Layer Assembly of Two-Dimensional Monolayer Films of Gold Nanoparticles for Electrochemical Determination of Melamine. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2174132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yijing Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Lan Xu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Vaneev AN, Timoshenko RV, Gorelkin PV, Klyachko NL, Korchev YE, Erofeev AS. Nano- and Microsensors for In Vivo Real-Time Electrochemical Analysis: Present and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3736. [PMID: 36364512 PMCID: PMC9656311 DOI: 10.3390/nano12213736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 05/14/2023]
Abstract
Electrochemical nano- and microsensors have been a useful tool for measuring different analytes because of their small size, sensitivity, and favorable electrochemical properties. Using such sensors, it is possible to study physiological mechanisms at the cellular, tissue, and organ levels and determine the state of health and diseases. In this review, we highlight recent advances in the application of electrochemical sensors for measuring neurotransmitters, oxygen, ascorbate, drugs, pH values, and other analytes in vivo. The evolution of electrochemical sensors is discussed, with a particular focus on the development of significant fabrication schemes. Finally, we highlight the extensive applications of electrochemical sensors in medicine and biological science.
Collapse
Affiliation(s)
- Alexander N. Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman V. Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Natalia L. Klyachko
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yuri E. Korchev
- Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander S. Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
18
|
Ma C, Xu P, Chen H, Cui J, Guo M, Zhao J. An electrochemical sensor based on reduced graphene oxide/β-cyclodextrin/multiwall carbon nanotubes/ polyoxometalate tetracomponent hybrid: Simultaneous determination of ascorbic acid, dopamine and uric acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Magerusan L, Pogacean F, Pruneanu S. Eco-friendly synthesis of sulphur-doped graphenes with applicability in caffeic acid electrochemical assay. Bioelectrochemistry 2022; 148:108228. [PMID: 35970121 DOI: 10.1016/j.bioelechem.2022.108228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
A new electrode based on glassy carbon modified with a sulphur-doped graphene material was successfully developed and applied for caffeic acid (CA) voltammetric detection and quantification. The structural features of sulphur-doped graphene (exfGR-S) characterized by different physicochemical and analytical techniques are presented. Cyclic voltammetry (CV) technique was employed to evaluate the electrochemical behavior of both bare glassy carbon (GCE) and modified GCE/exfGr-S electrodes towards CA oxidation. The study revealed that the modified electrode exhibits superior electrochemical performances compared to the bare electrode, with a broad CA detecting range (from 0.1 to 100.0 µM), a low detection limit 3.03 × 10-8 M), excellent anti-interference capabilities, as well as good stability and repeatability. The developed electrochemical sensor appears to be a promising candidate for real sample quality control analysis since it successfully displayed its ability to directly detect CA in commercially available coffee product without any pretreatment.
Collapse
Affiliation(s)
- Lidia Magerusan
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, RO, 400293 Cluj-Napoca, Romania.
| | - Florina Pogacean
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, RO, 400293 Cluj-Napoca, Romania
| | - Stela Pruneanu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, RO, 400293 Cluj-Napoca, Romania
| |
Collapse
|
20
|
Graphene Oxide Decorated Tin Sulphide Quantum Dots for Electrochemical Detection of Dopamine and Tyrosine. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Xu X, Zhang H, Li CH, Guo XM. Multimode determination of uric acid based on porphyrinic MOFs thin films by electrochemical and photoelectrochemical methods. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Cecilia Rossi Fernández A, Alejandra Meier L, Jorge Castellani N. Theoretical insight on dopamine, ascorbic acid and uric acid adsorption on graphene as material for biosensors. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Voltammetric Determination of Active Pharmaceutical Ingredients Using Screen-Printed Electrodes. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
A simple, fast, sensitive and low-cost voltammetric method using a screen-printed carbon electrode (SPCE) is presented in this work for the simultaneous determination of ascorbic acid (AA), paracetamol (PA), dextromethorphan (DX) and caffeine (CF) in both pharmaceutical formulations and samples of environmental interest. The oxidative peak current displayed linear dependence on concentration within the range 1.7–60.5, 0.6–40.0, 0.9–8.4 (1st linear part) and 1.8–22.0 mg L−1 for AA, PA, DX and CF, respectively; and detection limits of 0.5, 0.2, 0.3 and 0.5 mg L−1, respectively. The developed differential pulse voltammetric (DPV) method was validated using both a pharmaceutical product and a spiked well water sample. A very good agreement between the determined and the theoretical label drug content and recoveries in the range of 99.5–100.8% were obtained for pharmaceutical product and well water samples, respectively.
Collapse
|
24
|
Chen T, Huang C, Wang Y, Wu J. Microfluidic methods for cell separation and subsequent analysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Wang M, Guo H, Wu N, Zhang J, Zhang T, Liu B, Pan Z, Peng L, Yang W. A novel triazine-based covalent organic framework combined with AuNPs and reduced graphene oxide as an electrochemical sensing platform for the simultaneous detection of uric acid, dopamine and ascorbic acid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Khan N, Han G, Mazari SA. Carbon nanotubes-based anode materials for potassium ion batteries: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Construction of Electrochemical and Photoelectrochemical Sensing Platform Based on Porphyrinic Metal-Organic Frameworks for Determination of Ascorbic Acid. NANOMATERIALS 2022; 12:nano12030482. [PMID: 35159826 PMCID: PMC8839235 DOI: 10.3390/nano12030482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023]
Abstract
Highly sensitive and specific detection of biomolecular markers is of great importance to the diagnosis and treatment of related diseases. Herein, Cu-TCPP@MOFs thin films were synthesized with tetrakis(4-carboxyphenyl) porphyrin (H2TCPP) as organic ligands and copper ions as metal nodes. The as-synthesized Cu-TCPP@MOFs thin films as electrode modifiers were used to modify the pre-treated glassy carbon electrode (GCE) and the electrochemical performances of Cu-TCPP@MOFs/GCE were evaluated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Furthermore, as the working electrode, the constructed Cu-TCPP@MOFs/GCE was used for the investigation of ascorbic acid (AA) due to its outstanding electrocatalytic activities towards AA by several electrochemical methods, including cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA). The well-linear relationship was established based on different AA concentration ranges and the ideal detection limits (LOD) were obtained in the above-mentioned electrochemical methods, respectively. Furthermore, a Cu-TCPP MOFs@GCE sensing platform was used as a photoelectrochemical (PEC) sensor to quantitatively detect AA based on the strong absorption properties of Cu-TCPP ingredients in Cu-TCPP MOFs in a visible light band of 400~700 nm. PEC sensing platform based on Cu-TCPP@MOFs exhibited a more extensive linear concentration range, more ideal detection limit, and better sensitivity relative than the other electrochemical methods for AA. The well linear regression equations were established between the peak current intensity and AA concentrations in different electrochemical technologies, including CV, DPV, and CA, and PEC technology. AA concentration ranges applicable to various electrochemical equations were as follows: 0.45~2.10 mM of CV, 0.75~2.025 mM of DPV, 0.3~2.4 mM of CA, 7.5~480 μM of PEC, and the corresponding detection limits for AA were 1.08 μM (S/N = 3), 0.14 μM (S/N = 3), 0.049 μM (S/N = 3), and 0.084 nA/μM. Moreover, the proposed Cu-TCPP MOFs@GCE electrochemical and photoelectrochemical sensing platform was applied to determine the AA concentration of a real human serum sample; the results reveal that Cu-TCPP MOFs@GCE sensing platform could accurately determine the concentration of AA of the human serum under other potential interferences contained in the human serum samples.
Collapse
|
28
|
McCord CP, Summers B, Henry C. Simultaneous Analysis of Ascorbic Acid, Uric Acid, and Dopamine at Bare Polystyrene Thermoplastic Electrodes. ChemElectroChem 2022. [DOI: 10.1002/celc.202101600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Bali Summers
- Colorado State University Department of Chemistry UNITED STATES
| | - Charles Henry
- Colorado State University Chemistry 200 W. Lake St 80523 Fort Collins UNITED STATES
| |
Collapse
|
29
|
Kang M, Lee S. Graphene for Nanobiosensors and Nanobiochips. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:203-232. [DOI: 10.1007/978-981-16-4923-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Functionalization of Screen-Printed Sensors with a High Reactivity Carbonaceous Material for Ascorbic Acid Detection in Fresh-Cut Fruit with Low Vitamin C Content. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, carbon screen-printed sensors (C-SPEs) were functionalized with a high reactivity carbonaceous material (HRCM) to measure the ascorbic acid (AA) concentration in fresh-cut fruit (i.e., watermelon and apple) with a low content of vitamin C. HRCM and the functionalized working electrodes (WEs) were characterized by SEM and TEM. The increases in the electroactive area and in the diffusion of AA molecules towards the WE surface were evaluated by cyclic voltammetry (CV) and chronoamperometry. The performance of HRCM-SPEs were evaluated by CV and constant potential amperometry compared with the non-functionalized C-SPEs and MW-SPEs nanostructured with multi-walled carbon nanotubes. The results indicated that SPEs functionalized with 5 mg/mL of HRCM and 10 mg/mL of MWCNTs had the best performances. HRCM and MWCNTs increased the electroactive area by 1.2 and 1.4 times, respectively, whereas, after functionalization, the AA diffusion rate towards the electrode surface increased by an order of 10. The calibration slopes of HRCM and MWCNTs improved from 1.9 to 3.7 times, thus reducing the LOD of C-SPE from 0.55 to 0.15 and 0.28 μM, respectively. Finally, the functionalization of the SPEs proved to be indispensable for determining the AA concentration in the watermelon and apple samples.
Collapse
|
31
|
Zhu Y, Tian Q, Li X, Wu L, Yu A, Lai G, Fu L, Wei Q, Dai D, Jiang N, Li H, Ye C, Lin CT. A Double-Deck Structure of Reduced Graphene Oxide Modified Porous Ti 3C 2T x Electrode towards Ultrasensitive and Simultaneous Detection of Dopamine and Uric Acid. BIOSENSORS 2021; 11:bios11110462. [PMID: 34821678 PMCID: PMC8615994 DOI: 10.3390/bios11110462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 05/08/2023]
Abstract
Considering the vital physiological functions of dopamine (DA) and uric acid (UA) and their coexistence in the biological matrix, the development of biosensing techniques for their simultaneous and sensitive detection is highly desirable for diagnostic and analytical applications. Therefore, Ti3C2Tx/rGO heterostructure with a double-deck layer was fabricated through electrochemical reduction. The rGO was modified on a porous Ti3C2Tx electrode as the biosensor for the detection of DA and UA simultaneously. Debye length was regulated by the alteration of rGO mass on the surface of the Ti3C2Tx electrode. Debye length decreased with respect to the rGO electrode modified with further rGO mass, indicating that fewer DA molecules were capable of surpassing the equilibrium double layer and reaching the surface of rGO to achieve the voltammetric response of DA. Thus, the proposed Ti3C2Tx/rGO sensor presented an excellent performance in detecting DA and UA with a wide linear range of 0.1-100 μM and 1-1000 μM and a low detection limit of 9.5 nM and 0.3 μM, respectively. Additionally, the proposed Ti3C2Tx/rGO electrode displayed good repeatability, selectivity, and proved to be available for real sample analysis.
Collapse
Affiliation(s)
- Yangguang Zhu
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
| | - Qichen Tian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China;
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China;
- Correspondence: (X.L.); (C.Y.); (C.-T.L.)
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing 100141, China;
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | - Guosong Lai
- Department of Chemistry, Hubei Normal University, Huangshi 435002, China;
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Qiuping Wei
- School of Materials Science and Engineering, Central South University, Changsha 410083, China;
| | - Dan Dai
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Jiang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Ye
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (X.L.); (C.Y.); (C.-T.L.)
| | - Cheng-Te Lin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China; (D.D.); (N.J.); (H.L.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (X.L.); (C.Y.); (C.-T.L.)
| |
Collapse
|
32
|
He Y, Lin X, Tang Y, Ye L. A selective sensing platform for the simultaneous detection of ascorbic acid, dopamine, and uric acid based on AuNPs/carboxylated COFs/Poly(fuchsin basic) film. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4503-4514. [PMID: 34514476 DOI: 10.1039/d1ay00849h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, an electrochemical sensing strategy was developed based on the synergies of gold nanoparticles (AuNPs) doped carboxylated covalent organic frameworks (ACOFs) and poly(fuchsin basic) film for the simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA). This strategy not only took advantage of the adopted materials but also made use of the H-bonding and electrostatic interaction between the three compounds and materials. For this sensing, a poly-BFu film was formed on the surface of bare glass carbon electrode (GCE) under a constant potential. AuNPs was highly dispersed and immobilized on the constructed ACOF-TaTp to obtain AuNPs@ACOF. The constructed sensor AuNPs@ACOF/p-BFu/GCE combined the merits of high surface area, hydrophilicity, conductivity, and selective affinity, consequently exhibiting high sensitivity and selectivity toward the simultaneous detection of AA, DA, and UA with wide linear response ranges of 25-1500 μM, 0.75-40 μM, and 1-200 μM, respectively. The corresponding detection limits were 12.0 μM, 0.15 μM, and 0.22 μM. The simultaneous determination of UA in real human urine sample further confirmed the practicability of the designed electrode.
Collapse
Affiliation(s)
- Yasan He
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P. R. China.
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, P. R. China
| | - Xiaogeng Lin
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P. R. China.
| | - Yuan Tang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P. R. China.
| | - Ling Ye
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, P. R. China.
| |
Collapse
|
33
|
Mahbubur Rahman M, Liu D, Siraj Lopa N, Baek JB, Nam CH, Lee JJ. Effect of the carboxyl functional group at the edges of graphene on the signal sensitivity of dopamine detection. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Ranjan P, Thomas V, Kumar P. 2D materials as a diagnostic platform for the detection and sensing of the SARS-CoV-2 virus: a bird's-eye view. J Mater Chem B 2021; 9:4608-4619. [PMID: 34013310 PMCID: PMC8559401 DOI: 10.1039/d1tb00071c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Worldwide infections and fatalities caused by the SARS-CoV-2 virus and its variants responsible for COVID-19 have significantly impeded the economic growth of many nations. People in many nations have lost their livelihoods, it has severely impacted international relations and, most importantly, health infrastructures across the world have been tormented. This pandemic has already left footprints on human psychology, traits, and priorities and is certainly going to lead towards a new world order in the future. As always, science and technology have come to the rescue of the human race. The prevention of infection by instant and repeated cleaning of surfaces that are most likely to be touched in daily life and sanitization drives using medically prescribed sanitizers and UV irradiation of textiles are the first steps to breaking the chain of transmission. However, the real challenge is to develop and uplift medical infrastructure, such as diagnostic tools capable of prompt diagnosis and instant and economic medical treatment that is available to the masses. Two-dimensional (2D) materials, such as graphene, are atomic sheets that have been in the news for quite some time due to their unprecedented electronic mobilities, high thermal conductivity, appreciable thermal stability, excellent anchoring capabilities, optical transparency, mechanical flexibility, and a unique capability to integrate with arbitrary surfaces. These attributes of 2D materials make them lucrative for use as an active material platform for authentic and prompt (within minutes) disease diagnosis via electrical or optical diagnostic tools or via electrochemical diagnosis. We present the opportunities provided by 2D materials as a platform for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Pranay Ranjan
- Department of Physics, UAE University, Al-Ain, Abu Dhabi 15551, United Arab Emirates
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, USA.
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, India.
| |
Collapse
|
35
|
Ali SA, Mittal D, Kaur G. In-situ monitoring of xenobiotics using genetically engineered whole-cell-based microbial biosensors: recent advances and outlook. World J Microbiol Biotechnol 2021; 37:81. [PMID: 33843020 DOI: 10.1007/s11274-021-03024-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Industrialisation, directly or indirectly, exposes humans to various xenobiotics. The increased magnitude of chemical pesticides and toxic heavy metals in the environment, as well as their intrusion into the food chain, seriously threatens human health. Therefore, the surveillance of xenobiotics is crucial for social safety and security. Online investigation by traditional methods is not sufficient for the detection and identification of such compounds because of the high costs and their complexity. Advancement in the field of genetic engineering provides a potential opportunity to use genetically modified microorganisms. In this regard, whole-cell-based microbial biosensors (WCBMB) represent an essential tool that couples genetically engineered organisms with an operator/promoter derived from a heavy metal-resistant operon combined with a regulatory protein in the gene circuit. The plasmid controls the expression of the reporter gene, such as gfp, luc, lux and lacZ, to an inducible gene promoter and has been widely applied to assay toxicity and bioavailability. This review summarises the recent trends in the development and application of microbial biosensors and the use of mobile genes for biomedical and environmental safety concerns.
Collapse
Affiliation(s)
- Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India. .,Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, 132001, Karnal, Haryana, India.
| | - Deepti Mittal
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052, Sydney, NSW, Australia
| |
Collapse
|
36
|
Simultaneous determination of ascorbic acid, dopamine, and uric acid with polyaniline/hemin/reduced graphite oxide composite. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Kongkaew S, Kanatharana P, Thavarungkul P, Limbut W. Studying the preparation, electrochemical performance testing, comparison and application of a cost-effective flexible graphene working electrode. J Colloid Interface Sci 2021; 583:487-498. [PMID: 33017693 DOI: 10.1016/j.jcis.2020.08.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
-A cost-effective flexible graphene working electrode (FGWE) was fabricated using overhead projector transparent film (OPTF) and a screen-printing technique. The surface morphology and electrochemical behavior of the electrode were characterized by scanning electron microscopy and cyclic voltammetry. The electrode presented a very thin layer of conductive ink (16.0 ± 0.7 µm) on a large effective surface area (0.301 ± 0.001 cm-2). The anodic peak current density (jpa) of acetaminophen (ACT) in FGWE was 5.2, 3.7, 3.5 and 6.0 times greater than the jpa of glassy carbon electrode (GCE), flexible carbon working electrode (FCWE), SPE1, and SPE2, respectively. The electrochemical performance of FGWE toward ACT was evaluated by differential pulse voltammetry. Under optimized condition, ACT was quantified in a range of 4-100 µM, with good sensitivity, good accuracy (recovery = 82.3 ± 0.4 to 106 ± 3%), and excellent precision. FGWE was applied to determine ACT in commercial pharmaceutical formulations. The results of the study are in good agreement with those obtained by the standard spectrophotometric method. These results indicate that disposable FGWE is particularly useful for the detection of ACT, and its performance may serve as a platform for cost-effective flexible electrochemical sensors.
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
38
|
Kerr E, Alexander R, Francis PS, Guijt RM, Barbante GJ, Doeven EH. A Comparison of Commercially Available Screen-Printed Electrodes for Electrogenerated Chemiluminescence Applications. Front Chem 2021; 8:628483. [PMID: 33585404 PMCID: PMC7875866 DOI: 10.3389/fchem.2020.628483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022] Open
Abstract
We examined a series of commercially available screen-printed electrodes (SPEs) for their suitability for electrochemical and electrogenerated chemiluminescence (ECL) detection systems. Using cyclic voltammetry with both a homogeneous solution-based and a heterogeneous bead-based ECL assay format, the most intense ECL signals were observed from unmodified carbon-based SPEs. Three commercially available varieties were tested, with Zensor outperforming DropSens and Kanichi in terms of sensitivity. The incorporation of nanomaterials in the electrode did not significantly enhance the ECL intensity under the conditions used in this evaluation (such as gold nanoparticles 19%, carbon nanotubes 45%, carbon nanofibers 21%, graphene 48%, and ordered mesoporous carbon 21% compared to the ECL intensity of unmodified Zensor carbon electrode). Platinum and gold SPEs exhibited poor relative ECL intensities (16% and 10%) when compared to carbonaceous materials, due to their high rates of surface oxide formation and inefficient oxidation of tri-n-propylamine (TPrA). However, the ECL signal at platinum electrodes can be increased ∼3-fold with the addition of a surfactant, which enhanced TPrA oxidation due to increasing the hydrophobicity of the electrode surface. Our results also demonstrate that each SPE should only be used once, as we observed a significant change in ECL intensity over repeated CV scans and SPEs cannot be mechanically polished to refresh the electrode surface.
Collapse
Affiliation(s)
- Emily Kerr
- Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| | - Richard Alexander
- Centre for Regional and Rural Futures, Deakin University, Geelong, VIC, Australia
| | - Paul S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Rosanne M Guijt
- Centre for Regional and Rural Futures, Deakin University, Geelong, VIC, Australia
| | - Gregory J Barbante
- ARC Training Centre for Portable Analytical Separation Technologies (ASTech), Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - Egan H Doeven
- Centre for Regional and Rural Futures, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
39
|
Zhang X, Zhao M, Qu H, Shang J, Ma Y, Li H. Fabrication of 3D Ni/NiO/MoS 2/rGO foam for enhancing sensing performance. NEW J CHEM 2021. [DOI: 10.1039/d0nj05962e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The accurate electrochemical detection of dopamine (DA) is hard to achieve due to the serious interference of a substance with similar redox properties.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Materials Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| | - Minggang Zhao
- Department of Materials Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| | - Huiyan Qu
- Department of Materials Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| | - Jinghua Shang
- Department of Materials Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| | - Ye Ma
- Department of Materials Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| | - Hui Li
- Optoelectronic Materials and Technologies Engineering Laboratory of Shandong
- Physics Department
- Qingdao University of Science and Technology
- Qingdao
- People's Republic of China
| |
Collapse
|
40
|
Su J, Liu W, Chen S, Deng W, Dou Y, Zhao Z, Li J, Li Z, Yin H, Ding X, Song S. A Carbon-Based DNA Framework Nano-Bio Interface for Biosensing with High Sensitivity and a High Signal-to-Noise Ratio. ACS Sens 2020; 5:3979-3987. [PMID: 33225707 DOI: 10.1021/acssensors.0c01745] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biosensing interface based on screen-printed carbon electrodes (SPCE) has been widely used for electrochemical biosensors in the field of medical diagnostics, food safety, and environmental monitoring. Nevertheless, SPCE always has a rough surface, which is easy to result in the disorder of nucleic acid capture probes, the nonspecific adsorption of signaling probes, the steric hindrance of target binding, and decrease in the signal-to-noise ratio and sensitivity of biosensors. So far, it still remains extremely challenging to develop high-efficiency carbon-based biosensing interfaces, especially for DNA probe-based assembly and functionalization. In this paper, we first used a specific DNA framework, DNA tetrahedron to solve the defects of the carbon interface, improving the biosensing ability of SPCE. With covalent coupling, the DNA tetrahedron could be immobilized on the carbon surface. Biosensing probe sequences extending from the DNA tetrahedron can be changed for different target molecules. We demonstrated that the improved SPCE could be applied for the detection of a variety of bioactive molecules. Typically, we designed gap hybridization, aptamer "sandwich" and aptamer competition reduction strategy for the detection of miRNA-141, thrombin, and ATP, respectively. High signal-to-noise ratio, sensitivity, and specificity were obtained for all of these kinds. Especially, the DNA tetrahedron-modified SPCE can work well with serum samples. The carbon-based DNA framework nano-bio interface would expand the use of SPCE and make electrochemical biosensors more available and valuable in clinical diagnosis.
Collapse
Affiliation(s)
- Jing Su
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenhan Liu
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixing Chen
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
| | - Wangping Deng
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
| | - Yanzhi Dou
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihan Zhao
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
| | - Jianyong Li
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Li
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Yin
- Department of Spine, TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shiping Song
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Institute of Applied Physics, Chinse Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
41
|
Santos JS, Pontes MS, Santiago EF, Fiorucci AR, Arruda GJ. An efficient and simple method using a graphite oxide electrochemical sensor for the determination of glyphosate in environmental samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142385. [PMID: 33370922 DOI: 10.1016/j.scitotenv.2020.142385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Excessive and indiscriminate use of the herbicide glyphosate (GLY) leaves the environment susceptible to its contamination. This work describes the development of a simple, inexpensive, and efficient electroanalytical method using graphite oxide paste electrode (GrO-PE) for the direct determination of GLY traces in groundwater samples, soybean extracts, and lettuce extracts. Under optimal experimental conditions, the developed sensor exhibited a linear response of the peak current intensity vs. the concentration, in the range of 1.8 × 10-5 to 1.2 × 10-3 mol L-1 for GLY. The limits of detection and quantification are 1.7 × 10-8 mol L-1 and 5.6 × 10-8 mol L-1, respectively. The methodology developed here demonstrated a strong analytical performance, with high reproducibility, repeatability, and precision. Moreover, it successfully avoided interference from other substances, showing high selectivity. The GrO-PE sensor was effectively applied to determine GLY traces in real samples with recovery rates ranging from 98% to 102%. Results showed that the GrO-PE is effective and useful for GLY detection, with the advantage of not involving laborious modifications and complicated handling, making it a promising tool for environmental analysis.
Collapse
Affiliation(s)
- Jaqueline S Santos
- Department of Plant Resources, Natural Resources Program (PGRN), Mato Grosso do Sul State University (UEMS), P.O. Box 351, Dourados, MS 7984-970, Brazil; Department of Analytical Chemistry, Natural Resources Program (PGRN), Mato Grosso do Sul State University (UEMS), P.O. Box 351, Dourados, MS 7984-970, Brazil
| | - Montcharles S Pontes
- Department of Plant Resources, Natural Resources Program (PGRN), Mato Grosso do Sul State University (UEMS), P.O. Box 351, Dourados, MS 7984-970, Brazil
| | - Etenaldo F Santiago
- Department of Plant Resources, Natural Resources Program (PGRN), Mato Grosso do Sul State University (UEMS), P.O. Box 351, Dourados, MS 7984-970, Brazil
| | - Antonio R Fiorucci
- Department of Analytical Chemistry, Natural Resources Program (PGRN), Mato Grosso do Sul State University (UEMS), P.O. Box 351, Dourados, MS 7984-970, Brazil
| | - Gilberto J Arruda
- Department of Analytical Chemistry, Natural Resources Program (PGRN), Mato Grosso do Sul State University (UEMS), P.O. Box 351, Dourados, MS 7984-970, Brazil.
| |
Collapse
|
42
|
Nickel decorated graphite oxide and carbon nanofiber surface for electrochemical detection of dopamine. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Montes C, Soriano ML, Villaseñor MJ, Ríos Á. Carbon-based nanodots as effective electrochemical sensing tools toward the simultaneous detection of bioactive compounds in complex matrices. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Wang Z, Li F, Zhang L, Qian J, Cao S. Phase-transfer-assisted synthesis of cysteine-Ag nanoparticles/graphene oxide nanocomposite and its enhanced performance in antibiosis and biosensing. NANOTECHNOLOGY 2020; 31:455603. [PMID: 32590361 DOI: 10.1088/1361-6528/aba05c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a facile, rapid, phase-transfer-assisted process to prepare Ag nanoparticles (AgNP) loaded graphene oxide (GO) nanocomposite, by using cysteine as a highly-effective phase transfer agent for AgNP movement from organic phase to water and subsequently as a covalent linkage for immobilizing AgNP on GO. The obtained c-Ag/GO nanocomposite possesses high nanoparticle loading efficiency, small particle size and monodispersity, strong binding force and good water dispersibility, which endow it with great potential in a variety of bio-applications. To illustrate potentail application, c-Ag/GO and its derivatives c-Ag/rGO were used for antibiosis and biosensing, respectively. The c-Ag/GO composite demonstrates high antibacterial activity against E. coli with a minimal bactericidal concentration of 10 μg ml-1. The biosensor based on c-Ag/rGO exhibits rapid and sensitive response for uric acid detection with a detection limit of 0.025 μM, a sensitivity of 5.76 μA mM-1 and a wide linear range of 0.025 ∼ 2250 μM. The comparative analysis with relevant nanocomposites also reveals the precedence of c-Ag/GO in these applications, thus highlighting the advantages of the developed preparation method for c-Ag/GO.
Collapse
Affiliation(s)
- ZhiZhan Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Alam MM, Asiri AM, Rahman MM, Islam MA. Selective detection of ascorbic acid with wet-chemically prepared CdO/SnO2/V2O5 micro-sheets by electrochemical approach. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03689-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
46
|
Pandhi T, Cornwell C, Fujimoto K, Barnes P, Cox J, Xiong H, Davis PH, Subbaraman H, Koehne JE, Estrada D. Fully inkjet-printed multilayered graphene-based flexible electrodes for repeatable electrochemical response. RSC Adv 2020; 10:38205-38219. [PMID: 35517530 PMCID: PMC9057201 DOI: 10.1039/d0ra04786d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022] Open
Abstract
Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects (e.g., edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer (k = 1.125 × 10−2 cm s−1) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN)6]−3/−4, which is comparable or superior to modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications. A fully inkjet printed and flexible multilayer graphene based three electrode device showed electrochemical reversibility.![]()
Collapse
Affiliation(s)
- Twinkle Pandhi
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Casey Cornwell
- Department of Chemistry, Northwest Nazarene University Nampa ID 83686 USA
| | - Kiyo Fujimoto
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Pete Barnes
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Jasmine Cox
- Department of Electrical and Computer Engineering, Boise State University Boise ID 83725-2075 USA
| | - Hui Xiong
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Paul H Davis
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA
| | - Harish Subbaraman
- Department of Electrical and Computer Engineering, Boise State University Boise ID 83725-2075 USA
| | | | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University Boise ID 83725-2090 USA .,Center for Advanced Energy Studies, Boise State University Boise ID 83725-1012 USA
| |
Collapse
|
47
|
Castillo RM, Ramos E, Martínez A. Interaction of graphene with antipsychotic drugs: Is there any charge transfer process? J Comput Chem 2020; 42:60-65. [DOI: 10.1002/jcc.26433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Roxana M. Castillo
- Departamento de Física, Facultad de Ciencias Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria CDMX Mexico
| | - Estrella Ramos
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria CDMX Mexico
| | - Ana Martínez
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria CDMX Mexico
| |
Collapse
|
48
|
Prasad Aryal K, Kyung Jeong H. Electrochemical detection of ascorbic acid with chemically functionalized carbon nanofiber/β-cyclodextrin composite. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Silva RR, Raymundo-Pereira PA, Campos AM, Wilson D, Otoni CG, Barud HS, Costa CA, Domeneguetti RR, Balogh DT, Ribeiro SJ, Oliveira Jr. ON. Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat. Talanta 2020; 218:121153. [DOI: 10.1016/j.talanta.2020.121153] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/04/2023]
|
50
|
Zhang L, Hou Y, Lv C, Liu W, Zhang Z, Peng X. Copper-based metal-organic xerogels on paper for chemiluminescence detection of dopamine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4191-4198. [PMID: 32780054 DOI: 10.1039/d0ay01191f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, copper(ii)-containing metal-organic xerogels (Cu-MOXs), which were composed of copper as the central ion and 2,2'-bipyridine-6,6'-dicarboxylic acid as the ligand, were quickly synthesized by a mild facile strategy. The Cu-MOXs exhibited superior catalytic performance for the luminol-H2O2 chemiluminescence (CL) system. The possible mechanism was studied via CL spectra, UV-Vis absorption and electron paramagnetic resonance (ESR). Since dopamine (DA) can inhibit the reaction of this system, a sensitive paper-based CL device for the detection of DA was established. Under the optimal experimental conditions, the linear range of this method was 40-200 nM with a detection limit of 10 nM. The proposed method was used for the determination of DA in urine samples.
Collapse
Affiliation(s)
- Liu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| | | | | | | | | | | |
Collapse
|