1
|
Saha K, Jana SR, Saha J, Bhunia S, Raksha K, Naskar S, Saha G, Ray PP, Saha I, Sinha C. Luminescent Cd(II) Fumarate Bridging 1D Coordination Polymer: Ultra-Trace Level Detection of Cu 2+ in Aqueous Medium and Fabrication of Semiconducting Device. Chem Asian J 2025; 20:e202401464. [PMID: 39976216 DOI: 10.1002/asia.202401464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/21/2025]
Abstract
In addressing the Sustainable Development Goals (SDGs) the UNDP has fixed 17 issues out of them clean water (SDG-6) and affordable energy (SDG-7) serve as decisive points towards sustenance of the society. Material chemistry plays a vital role to design new chemical compounds and exploring versatile activities towards the solution of pressing challenges. Copper, third abundant metal in human body following iron and zinc, is useful to monitor many metabolic processes. Exposure to high level Copper or its deficiency can cause various health issues. It is essential to determine quantity of Cu2+ in a wide range of consumables. A luminescent coordination polymer (LCP) of Cd2+(d10) as a metal node, fumaric acid (fuma2 -) as a linker and tripod N-coordinated 4'-Chloro-2,2',6',2"-terpyridine (4-Cltpy) as end-capping ligand, {[Cd(fuma)₂(4-Cltpy)].(H2O)}n (CP1), has been used in this research for trace quantity detection of Cu2+ in aqueous solution (LOD: 0.0307 μM (Cu(II)) (WHO recommended toxicity limit of Cu(II) is 3.15 μM). The band gap of CP1 (experimental value by Tauc's plot, 3.56 eV and theoretically calculated band gap, 3.54 eV) directs to fabricate Schottky semiconducting device (ITO/CP1/Al) which determines electrical conductivity, 4.52×10-4 Sm-1 at room temperature. Therefore, CP1 is a promising candidate as a conductive material and a sensor. Because of its dual purpose, CP1 may be very beneficial for device applications and a breakthrough in material science in near future.
Collapse
Affiliation(s)
- Koushik Saha
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Sudeep Ranjan Jana
- Department of Chemistry, Vivekananda Centre for Research, Ramakrishna Mission Residential College, Narendrapur, Kolkata, 700103, India
| | - Jitendra Saha
- Department of Physics, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Suprava Bhunia
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Kumari Raksha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Sudip Naskar
- Quantum Materials & Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, 140306, India
| | - Gunomoni Saha
- Department of Chemistry, Barrackpore R S College, Kolkata, 700120, India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Indrajit Saha
- Department of Chemistry, Vivekananda Centre for Research, Ramakrishna Mission Residential College, Narendrapur, Kolkata, 700103, India
| | - Chittaranjan Sinha
- Department of Chemistry, Jadavpur University, Kolkata, 700032, West Bengal, India
| |
Collapse
|
2
|
Su X, Wu L, Chen G, Zheng C, Shan B, Tian Y, Ma J, Gu C. Organic conjugated polymer nanoparticles enhanced tyrosinase electrochemical biosensor for selective, sensitive and rapid detection of bisphenol A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175765. [PMID: 39209166 DOI: 10.1016/j.scitotenv.2024.175765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Bisphenol A (BPA) has been widely used in the production of polycarbonate (PC) plastics, flame retardants and epoxy resins, which is one of the most important endocrine disrupting chemicals and can cause damage to the estrogen system of human. In this work, organic conjugated polymer nanoparticles (CPNPs) were synthesized through nanoprecipitation method using liposome 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-mPEG2000) coated poly[(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-4,7-di(4-hexyl-2-thienyl)-5,6-difluoro-2,1,3-benzothiadiazole] (PDTS-hDTBT) and poly[(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-4,7-di(4-(2-ethylhexyl)-2-thienyl)-5,6-difluoro-2,1,3-benzothiadiazole] (PDTS-ehDTBT). These two polymers have different side chains, which can affect the configuration of the polymers, thereby affecting the π-π interaction between BPA and CPNPs. The resultant two CPNPs were explored as extremely attractive matrix for tyrosinase immobilization to construct electrochemical biosensing platforms for sensitive and rapid detection of BPA in water environments. The electrochemical performance of these two biosensors was significantly enhanced, benefiting from the large specific surface area and excellent biocompatibility of CPNPs, as well as the strong π-π interaction between CPNPs and BPA. The current response of PDTS-ehDTBT-Tyr-Chi/GCE exhibited a good linear relationship with BPA concentration ranging from 0.02 to 3.0 μM with a low detection limit of 11.83 nM and a high sensitivity of 0.9724 μA μM-1 cm-2. The fabricated biosensor was further used for BPA detection in actual samples with a recovery rate of 92.0 %-99.4 %. With the remarkable advantages, CPNPs-based biosensor provides a highly sensitive detection tool for rapid detection of BPA in actual samples, which has broad application prospects.
Collapse
Affiliation(s)
- Xinze Su
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Lingxia Wu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Guangshuai Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Chunying Zheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Bin Shan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yong Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jiping Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Chuantao Gu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao 266071, China.
| |
Collapse
|
3
|
Awal A, Islam S, Islam T, Hasan MM, Nayem SMA, James MMH, Hossain MD, Ahammad AJS. Facile Chemical Synthesis of Co-Ru-Based Heterometallic Supramolecular Polymer for Electrochemical Oxidation of Bisphenol A: Kinetics Study at the Electrode/Electrolyte Interface. ACS OMEGA 2023; 8:28355-28366. [PMID: 37576688 PMCID: PMC10413823 DOI: 10.1021/acsomega.3c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Regardless of the adverse effects of Bisphenol A (BPA), its use in industry and in day-to-day life is increasing at a higher rate every year. In the present study, a simple and reliable chemical approach was used to develop an efficient BPA sensor based on a Co-Ru-based heterometallic supramolecular polymer (polyCoRu). Surface morphology and elemental analysis were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, functional group analysis was accomplished by Fourier transform infrared spectroscopy (FT-IR). UV-vis spectroscopy was used to confirm the complexation in the ratio of 0.5:0.5:1 (metal 1/metal 2/ligand). Electrochemical characterization of the synthesized polyCoRu was conducted using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses. The study identified two distinct linear dynamic ranges for the detection of BPA, 0.197-2.94 and 3.5-17.72 μM. The regression equation was utilized to determine the sensitivity and limit of detection (LOD), resulting in values of 0.6 μA cm-2 μM-1 and 0.02 μM (S/N = 3), respectively. The kinetics of BPA oxidation at the polyCoRu/GCE were investigated to evaluate the heterogeneous rate constant (k), charge transfer coefficient (α), and the number of electrons transferred during the oxidation and rate-determining step. A probable electrochemical reaction mechanism has been presented for further comprehending the phenomena occurring at the electrode surface. The practical applicability of the fabricated electrode was analyzed using tap water, resulting in a high percentage of recovery ranging from 96 to 105%. Furthermore, the reproducibility and stability data demonstrated the excellent performance of polyCoRu/GCE.
Collapse
Affiliation(s)
- Abdul Awal
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Santa Islam
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Tamanna Islam
- Environmental
Science & Engineering Program, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - Md. Mahedi Hasan
- Environmental
Science & Engineering Program, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - S. M. Abu Nayem
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | | | | | | |
Collapse
|
4
|
Wang Y, Aoki S, Nara K, Kikuchi Y, Jiao Z, Hasebe Y. Shield, Anchor, and Adhesive Roles of Methylene Blue in Tyrosinase Adsorbed on Carbon Felt for a Flow Injection Amperometric Enzyme Biosensor for Phenolic Substrates and Inhibitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4676-4691. [PMID: 36961887 DOI: 10.1021/acs.langmuir.2c03483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Methylene blue (MB) acted as a stabilizer for preventing surface-induced denaturation of tyrosinase (TYR) adsorbed on a carbon felt (CF) surface, which is based on shield and anchor roles preventing the unfavorable conformational change of TYR on the hydrophobic CF surface. Furthermore, MB acted as an effective adhesive for TYR immobilization on CF. The resulting TYR and MB coadsorbed CF (TYR/MB-CF) worked as an excellent working electrode unit in an electrochemical detector in a flow injection amperometric biosensor, which allowed highly sensitive consecutive determination of not only TYR substrates but also competitive inhibitors. Simultaneous adsorption of TYR and MB from their mixed solution was much useful as compared with step-wise separated adsorption of TYR on the MB-adsorbed CF, which suggests that the binding interaction of MB with TYR in the solution phase is important for this phenomenon. Fluorescence and UV-vis spectroscopy revealed that not only electrostatic forces between the cationic MB and anionic amino acid residues of TYR but also hydrophobic interactions via the phenothiazine ring of MB play a principal binding driving force of MB with TYR at the surface of the TYR molecules. Synchronous fluorescence, three-dimensional fluorescence, and circular dichroism (CD) spectroscopy clarified that the conformation and the secondary structure of TYR slightly changed upon the MB binding, implying that MB binding leads to the modification of the original intramolecular bonding in part.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemical Engineering, University of Science and Technology LiaoNing, Anshan, LiaoNing 114501, China
| | - Shiori Aoki
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Kazuyuki Nara
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Yugo Kikuchi
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Zeting Jiao
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| | - Yasushi Hasebe
- Department of Life Science and Green Chemistry, Graduate School of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
- Department of Life Science and Green Chemistry, Faculty of Engineering, Saitama Institute of Technology, 1690, Fusaiji, Fukaya, Saitama 369-0293, Japan
| |
Collapse
|
5
|
Electrochemical (bio)sensors based on carbon quantum dots, ionic liquid and gold nanoparticles for bisphenol A. Anal Biochem 2023; 662:115002. [PMID: 36473678 DOI: 10.1016/j.ab.2022.115002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022]
Abstract
Electrochemical (bio)sensors were developed for bisphenol A (BPA) determination. Screen printed carbon electrode (SPCE) was modified with ionic liquid 1- butyl-3-methylimidazolium tetrafluoroborate (IL), carbon quantum dots (CQD) and gold nanoparticles (AuNP) for the fabrication of the BPA sensor. Electrode surface composition was optimized for the deposition time of AuNP, amount of CQD and percentage of IL using the central composite design (CCD) method. The results of the CCD study indicated that maximum amperometric response was recorded when 9.8 μg CQD, 3% IL and 284 s AuNP deposition time were used in modification. Tyrosinase (Ty) was further modified on the AuNP/CQD-IL/SPCE to fabricate the biosensor. Analytical performance characteristics of the BPA sensor were investigated by differential pulse anodic adsorptive stripping voltammetry and the AuNP/CQD-IL/SPCE sensor exhibited a linear response to BPA in the range of 2.0 × 10-8 - 3.6 × 10-6 M with a detection limit of 1.1 × 10-8 M. Amperometric measurements showed that the linear dynamic range and detection limit of the Ty/AuNP/CQD-IL/SPCE were 2.0 × 10-8 - 4.0 × 10-6 M and 6.2 × 10-9 M, respectively. Analytical performance characteristics such as sensitivity, reproducibility and selectivity were investigated for the presented (bio)sensors. The analytical applicability of the (bio)sensors to the analysis of BPA in mineral water samples was also tested.
Collapse
|
6
|
Emambakhsh F, Asadollahzadeh H, Rastakhiz N, Mohammadi SZ. Highly sensitive determination of Bisphenol A in water and milk samples by using magnetic activated carbon – Cobalt nanocomposite-screen printed electrode. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Anand U, Chandel AKS, Oleksak P, Mishra A, Krejcar O, Raval IH, Dey A, Kuca K. Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors. Appl Microbiol Biotechnol 2022; 106:2827-2853. [PMID: 35384450 PMCID: PMC8984675 DOI: 10.1007/s00253-022-11901-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022]
Abstract
Abstract The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. Key points • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Ishan H Raval
- Council of Scientific and Industrial Research - Central Salt and Marine Chemicals Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
8
|
Camargo JR, Silva TA, Rivas GA, Janegitz BC. Novel eco-friendly water-based conductive ink for the preparation of disposable screen-printed electrodes for sensing and biosensing applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Chen Y, Li W, Li J, Zhuo S, Jiao S, Wang S, Sun J, Li Q, Zheng T. Stable three-dimensional porous silicon-carbon-gold composite film for enrichment and directly electrochemical detection of bisphenol A. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Liu C, Sun ZC, Pei WY, Yang J, Xu HL, Zhang JP, Ma JF. A Porous Metal-Organic Framework as an Electrochemical Sensing Platform for Highly Selective Adsorption and Detection of Bisphenols. Inorg Chem 2021; 60:12049-12058. [PMID: 34313129 DOI: 10.1021/acs.inorgchem.1c01253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The design of artificial receptors with a specific recognition function and enhanced selectivity is highly desirable in the electrochemical sensing field, which can be used for detection of environmental pollutants. In this facet, metal-organic frameworks (MOFs) featured adjustable porosities and specific host-guest recognition properties. Especially, the large hydrophobic cavity formed in the porous MOFs may become a potential artificial receptor. We herein designed a new porous MOF [Zn2(L)(IPA)(H2O)]·2DMF·2MeOH·3H2O (Zn-L-IPA) by using a functionalized sulfonylcalix[4]arene (L1) and isophthalic acid (H2IPA) (DMF = N,N'-dimethylformamide). The specific pore size and pore shape of Zn-L-IPA made it efficiently selective for absorption of bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS). Therefore, a rapid, highly selective, and ultrasensitive electrochemical sensing platform Zn-L-IPA@GP/GCE was fabricated by using Zn-L-IPA as a host to recognize and absorb bisphenol guests (GP = graphite powder, GCE = glassy carbon electrode). Most strikingly, the extremely low detection limits were up to 3.46 and 0.17 nM for BPA and BPF, respectively, using the Zn-L-IPA@GP/GCE electrode. Furthermore, the "recognition and adsorption" mechanism was uncovered by density functional theory with the B3LYP function. This work offered a prospective strategy for selective absorption and detection of harmful bisphenols with the MOF-based porous material.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Ze-Chen Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jin Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jing-Ping Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| |
Collapse
|
11
|
Xie Y, Wang N, Sun X, Chu H, Wang Y, Hu X. Triple-signaling amplification strategy based electrochemical sensor design: boosting synergistic catalysis in metal-metalloporphyrin-covalent organic frameworks for sensitive bisphenol A detection. Analyst 2021; 146:4585-4594. [PMID: 34159957 DOI: 10.1039/d1an00665g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A covalent organic framework (COF) is a promising type of porous material with customizable surface characteristics. Confining multiple catalytic units within a mesoporous COF can generate abundant active sites and improve the catalytic performance. In this work, a COF with both metalloporphyrin and a metal nanoparticle complex denoted as hemin/TAPB-DMTP-COF/AuNPs (TAPB: 1,3,5-tris(4-amino-phenyl)benzene, DMTP: 2,5-dimethoxyterephaldehyde, AuNPs: Au nanoparticles) has been successfully fabricated through a hierarchical encapsulation method. The as-synthesized composite was then employed to construct an electrochemical sensing platform for the efficient detection of bisphenol A (BPA). Under the optimal conditions, the hemin/TAPB-DMTP-COF/AuNP sensor presented a linear range of 0.01-3 μmol L-1 and a low detection limit of 3.5 nmol L-1. The satisfactory signal amplification is based on a triple-signaling amplification strategy due to the abundant Fe3+ sites of Fe-porphyrin, high conductivity of AuNPs and a large specific surface area of the TAPB-DMTP-COF. The proposed method was used to measure the content of BPA in different water samples with a satisfactory recovery from 95.5 to 104.0%, suggesting the great potential of the sensor in practical applications.
Collapse
Affiliation(s)
- Yao Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Na Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, 200240, China
| | - Xin Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Huacong Chu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
12
|
Khan R, Radoi A, Rashid S, Hayat A, Vasilescu A, Andreescu S. Two-Dimensional Nanostructures for Electrochemical Biosensor. SENSORS (BASEL, SWITZERLAND) 2021; 21:3369. [PMID: 34066272 PMCID: PMC8152006 DOI: 10.3390/s21103369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Current advancements in the development of functional nanomaterials and precisely designed nanostructures have created new opportunities for the fabrication of practical biosensors for field analysis. Two-dimensional (2D) and three-dimensional (3D) nanomaterials provide unique hierarchical structures, high surface area, and layered configurations with multiple length scales and porosity, and the possibility to create functionalities for targeted recognition at their surface. Such hierarchical structures offer prospects to tune the characteristics of materials-e.g., the electronic properties, performance, and mechanical flexibility-and they provide additional functions such as structural color, organized morphological features, and the ability to recognize and respond to external stimuli. Combining these unique features of the different types of nanostructures and using them as support for bimolecular assemblies can provide biosensing platforms with targeted recognition and transduction properties, and increased robustness, sensitivity, and selectivity for detection of a variety of analytes that can positively impact many fields. Herein, we first provide an overview of the recently developed 2D nanostructures focusing on the characteristics that are most relevant for the design of practical biosensors. Then, we discuss the integration of these materials with bio-elements such as bacteriophages, antibodies, nucleic acids, enzymes, and proteins, and we provide examples of applications in the environmental, food, and clinical fields. We conclude with a discussion of the manufacturing challenges of these devices and opportunities for the future development and exploration of these nanomaterials to design field-deployable biosensors.
Collapse
Affiliation(s)
- Reem Khan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA;
| | - Antonio Radoi
- National Institute for Research and Development in Microtechnology—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Sidra Rashid
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (S.R.); (A.H.)
| | - Akhtar Hayat
- IRCBM, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (S.R.); (A.H.)
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699, USA;
| |
Collapse
|
13
|
Xu W, Sakran M, Fei J, Li X, Weng C, Yang W, Zhu G, Zhu W, Zhou X. Electrochemical Biosensor Based on HRP/Ti 3C 2/Nafion Film for Determination of Hydrogen Peroxide in Serum Samples of Patients with Acute Myocardial Infarction. ACS Biomater Sci Eng 2021; 7:2767-2773. [PMID: 33940791 DOI: 10.1021/acsbiomaterials.1c00242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydrogen peroxide (H2O2) has been reported to mediate a variety of physiological and pathological processes in living systems. In this work, a biosensor for determination of H2O2 was prepared by using an HRP/Ti3C2/Nafion film-modified glassy carbon electrode (GCE). Ti3C2 nanosheets with remarkable conductivity and high specific surface area were chosen as carriers for HRP. Moreover, this biosensor modified with HRP has a specific catalytic effect on H2O2. The difference in peak current could reflect the quantitative change of H2O2. The linear range of the biosensor is 5-8000 μM, and the detection limit is 1 μM (S/N = 3). This biosensor was used to detect H2O2 in clinical serum samples of normal controls and patients with acute myocardial infarction (AMI) before and after percutaneous coronary intervention (PCI). The results showed that the difference between normal controls and patients is significant (P < 0.05), as well as the difference for patients before and after PCI (P < 0.01), but no significant difference existed between postoperative patients and normal controls. This biosensor has the advantages of simple preparation, high sensitivity, and quick detection, showing potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Wei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Marwan Sakran
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jianwen Fei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyun Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenyuan Weng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guomin Zhu
- Nanjing Yimin Hospital, Nanjing, Jiangsu 211100, China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
14
|
Pereira MS, Maximino MD, Martin CS, Aoki PHB, Oliveira ON, Alessio P. Lipid-matrix effects on tyrosinase immobilization in Langmuir and Langmuir-Blodgett films. AN ACAD BRAS CIENC 2021; 93:e20200019. [PMID: 33787687 DOI: 10.1590/0001-3765202120200019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022] Open
Abstract
The immobilization of the enzyme tyrosinase (Tyr) in lipid matrices can be explored to produce biosensors for detecting polyphenols, which is relevant for the food industry. Herein, we shall demonstrate the importance of the lipid composition to immobilize the enzyme tyrosinase in Langmuir-Blodgett (LB) films. Tyr could be incorporated into Langmuir monolayers of arachidic acid (AA), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG), having as the main effect an expansion in the monolayers. Results from polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) pointed to electrostatic interactions between the charged residues of Try and the lipid headgroups, in addition to changes in the order of lipid chains. The interaction between Tyr and DPPC in Langmuir monolayers can be correlated with the superior performance of DPPC/Tyr LB films used as biosensors to detect catechol by cyclic voltammetry. The molecular-level interactions assessed via PM-IRRAS are therefore believed to drive an immobilization process for Tyr in the lipid LB matrix and may serve as a general criterion to identify matrices that preserve enzyme activity.
Collapse
Affiliation(s)
- Matheus S Pereira
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| | - Mateus D Maximino
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| | - Cibely S Martin
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| | - Pedro H B Aoki
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Letras, Departamento de Biotecnologia, Av. Dom Antônio, 2100, Parque Universitário, Caixa Postal 65, 19806-900 Assis, SP, Brazil
| | - Osvaldo N Oliveira
- Universidade de São Paulo/USP, Instituto de Física de São Carlos, Av. Trabalhador São Carlense, 400, Parque Arnold Schimidt, Caixa Postal 369, 13566-590 São Carlos, SP, Brazil
| | - Priscila Alessio
- Universidade Estadual Paulista/UNESP, Faculdade de Ciências e Tecnologia, Departamento de Física, Rua Roberto Símonsen, 305, Centro Educacional, Caixa Postal 467, 19060-900 Presidente Prudente, SP, Brazil
| |
Collapse
|
15
|
Electrochemical Detection of Bisphenol A by Tyrosinase Immobilized on Electrospun Nanofibers Decorated with Gold Nanoparticles. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) employed in industrial processes that causes adverse effects on the environment and human health. Sensitive and inexpensive methods to detect BPA are therefore needed. In this paper, we describe an electrochemical biosensor for detecting low levels of BPA using polymeric electrospun nanofibers of polyamide 6 (PA6) and poly(allylamine hydrochloride) (PAH) decorated with gold nanoparticles (AuNPs), namely, PA6/PAH@AuNPs, which were deposited onto a fluorine-doped tin oxide (FTO) substrate. The hybrid layer was excellent for the immobilization of tyrosinase (Tyr), which allowed an amperometric detection of BPA with a limit of detection of 0.011 μM in the concentration range from 0.05 to 20 μM. Detection was also possible in real water samples with recoveries in the range of 92–105%. The improved sensing performance is attributed to the combined effect of the large surface area and porosity of PA6/PAH nanofibers, the catalytic activity of AuNPs, and oxidoreductase ability of Tyr. These results provide a route for novel biosensing architectures to monitor BPA and other EDCs in water resources.
Collapse
|
16
|
Agaricus bisporus Crude Extract: Characterization and Analytical Application. Molecules 2020; 25:molecules25245996. [PMID: 33352884 PMCID: PMC7765987 DOI: 10.3390/molecules25245996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
In the present work crude Agaricus bisporus extract (ABE) has been prepared and characterized by its tyrosinase activity, protein composition and substrate specificity. The presence of mushroom tyrosinase (PPO3) in ABE has been confirmed using two-dimensional electrophoresis, followed by MALDI TOF/TOF MS-based analysis. GH27 alpha-glucosidases, GH47 alpha-mannosidases, GH20 hexosaminidases, and alkaline phosphatases have been also detected in ABE. ABE substrate specificity has been studied using 19 phenolic compounds: polyphenols (catechol, gallic, caffeic, chlorogenic, and ferulic acids, quercetin, rutin, dihydroquercetin, l-dihydroxyphenylalanine, resorcinol, propyl gallate) and monophenols (l-tyrosine, phenol, p-nitrophenol, o-nitrophenol, guaiacol, o-cresol, m-cresol, p-cresol). The comparison of ABE substrate specificity and affinity to the corresponding parameters of purified A. bisporus tyrosinase has revealed no major differences. The conditions for spectrophotometric determination have been chosen and the analytical procedures for determination of 1.4 × 10-4-1.0 × 10-3 M l-tyrosine, 3.1 × 10-6-1.0 × 10-4 M phenol, 5.4 × 10-5-1.0 × 10-3 M catechol, 8.5 × 10-5-1.0 × 10-3 M caffeic acid, 1.5 × 10-4-7.5 × 10-4 M chlorogenic acid, 6.8 × 10-5-1.0 × 10-3 M l-DOPA have been proposed. The procedures have been applied for the determination of l-tyrosine in food supplements, l-DOPA in synthetic serum, and phenol in waste water from the food manufacturing plant. Thus, we have demonstrated the possibility of using ABE as a substitute for tyrosinase in such analytical applications, as food supplements, medical and environmental analysis.
Collapse
|
17
|
Bensana A, Achi F. Analytical performance of functional nanostructured biointerfaces for sensing phenolic compounds. Colloids Surf B Biointerfaces 2020; 196:111344. [PMID: 32877829 DOI: 10.1016/j.colsurfb.2020.111344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/09/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
Electrochemical biointerfaces are constructed with a wide range of nanomaterials and conducting polymers that strongly affect the analytical performance of biosensors. The analysis of progress toward electrochemical sensing platforms offers opportunities to provide devices for commercial use. The investigation of different methods for the synthesis of phenol biointerfaces leads to design challenges in the field of monitoring phenolic compounds. This paper review the innovative strategies and feature techniques in the construction of phenolic compound biosensors. The focus was made on the preparation methods of nanostructures and nanomaterials design for catalytic improvements of sensing interfaces. The paper also provides a comprehensive overview in the field of enzyme immobilization approaches at solid supports and technical formation of polymer nanocomposites, as well as applications of hybrid organic-inorganic nanocomposites in phenolic biosensors. This review also highlights the recent progress in the electrochemical detection of phenolic compounds and summarizes analytical performance parameters including sensitivity, storage stability, limit of detection, linear range, and Michaelis-Menten kinetic analysis. It also emphasizes advances from the past decade including technical challenges for the construction of suitable biointerfaces for monitoring phenolic compounds.
Collapse
Affiliation(s)
- Amira Bensana
- Departement of Process Engineering, Laboratoire de Génie des Procédés Chimiques (LGPC), Faculty of Technology, Ferhat Abbas University Sétif-1-, Setif, 19000, Algeria
| | - Fethi Achi
- Laboratory of Valorisation and Promotion of Saharian Ressources (VPSR), Kasdi Merbah University, Ouargla, 30000, Algeria.
| |
Collapse
|
18
|
Qu Y, Zhan Q, Du S, Ding Y, Fang B, Du W, Wu Q, Yu H, Li L, Huang W. Catalysis-based specific detection and inhibition of tyrosinase and their application. J Pharm Anal 2020; 10:414-425. [PMID: 33133725 PMCID: PMC7591782 DOI: 10.1016/j.jpha.2020.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Tyrosinase is an important enzyme in controlling the formation of melanin in melanosome, and plays a key role in the pigmentation of hair and skin. The abnormal expression or activation of tyrosinase is associated with several diseases such as albinism, vitiligo, melanoma and Parkinson disease. Excessive deposition of melanin could cause diseases such as freckles and brown spots in the human body, and it is also closely related to browning of fruits and vegetables and insect molting. Detecting and inhibiting the activity of tyrosinase is of extraordinary value in the progress of diagnosis and treatment of these diseases. Therefore, many selective optical detection probes and small molecular inhibitors have been developed, and have made significant contributions to the basic and clinical research on these diseases. In this paper, the detection and inhibition of tyrosinase and their application in whitening products are reviewed, with special emphasis on development of fluorescent probes and inhibitors. Hopefully, this review will help design more efficient and sensitive tyrosinase probes and inhibitors, as well as shed light on novel treatment of diseases such as melanoma. The abnormal expression or activation of tyrosinase is the pathogenesis of several diseases such as albinism, vitiligo, and melanoma. Detecting and inhibiting tyrosinase activity is of great value in the diagnosis and treatment of these diseases. The detection/inhibition of tyrosinase and its application in whitening products are reviewed, with special emphasis on probes/inhibitors.
Collapse
Affiliation(s)
- Yunwei Qu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, PR China
| | - Qing Zhan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, PR China
| | - Shubo Du
- Department of Chemistry, National University of Singapore, Singapore
| | - Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, PR China
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Du
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, PR China
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, PR China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, PR China.,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
19
|
Analysis of Phenolic Content in Grape Seeds and Skins by Means of a Bio-Electronic Tongue. SENSORS 2020; 20:s20154176. [PMID: 32727151 PMCID: PMC7435477 DOI: 10.3390/s20154176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
A bio-electronic tongue has been developed to evaluate the phenolic content of grape residues (seeds and skins) in a fast and easy way with industrial use in mind. A voltammetric electronic tongue has been designed based on carbon resin electrodes modified with tyrosinase combined with electron mediators. The presence of the phenoloxydase promotes the selectivity and specificity towards phenols. The results of multivariate analysis allowed discriminating seeds and skins according to their polyphenolic content. Partial least squares (PLS) has been used to establish regression models with parameters related to phenolic content measured by spectroscopic methods i.e., total poliphenol content (TPC) and Folin–Ciocalteu (FC) indexes. It has been shown that electronic tongue can be successfully used to predict parameters of interest with high correlation coefficients (higher than 0.99 in both calibration and prediction) and low residual errors. These values can even be improved using genetic algorithms for multivalent analysis. In this way, a fast and simple tool is available for the evaluation of these values. This advantage may be due to the fact that the electrochemical signals are directly related to the phenolic content.
Collapse
|
20
|
Wen Y, Li R, Liu J, Zhang X, Wang P, Zhang X, Zhou B, Li H, Wang J, Li Z, Sun B. Promotion effect of Zn on 2D bimetallic NiZn metal organic framework nanosheets for tyrosinase immobilization and ultrasensitive detection of phenol. Anal Chim Acta 2020; 1127:131-139. [PMID: 32800116 DOI: 10.1016/j.aca.2020.06.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
Environmental monitoring of pollutants is essential to guarantee the human health and maintain the ecosystem. The exploration of both simple and sensitive detection method has aroused widespread attentions. Herein, 2D bimetallic metal organic framework nanosheets (NiZn-MOF NSs) with tunable Ni/Zn ratios were synthesized, and for the first time employed to construct a tyrosinase biosensor. It is revealed that Zn element not only tuned the porosity structure and electronic structure of MOF NSs, but also modified their electrochemical activity. As a result, enzyme immobilization and electrochemical sensing performance of the NiZn-MOF NSs based biosensor were significantly enhanced by a suitable Zn addition. The fabricated tyrosinase biosensor exhibited excellent analytical detections, with a wide linear range from 0.08 μM to 58.2 μM, a high sensitivity of 159.3 mA M-1, and an ultralow detection limit of 6.5 nM. In addition, the proposed biosensing approach also demonstrated good repeatability, superior selectivity, long-term stability, and high recovery for phenol detection in the real tap water samples.
Collapse
Affiliation(s)
- Yangyang Wen
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Rui Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Jiahao Liu
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Xin Zhang
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Ping Wang
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Xiang Zhang
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Bin Zhou
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Hongyan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China.
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China.
| | - Zhenxing Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
21
|
Fartas FM, Abdullah J, Yusof NA, Sulaiman Y, Saiman MI, Zaid MH. Laccase Electrochemical Biosensor Based on Graphene-Gold/Chitosan Nanocomposite Film for Bisphenol A Detection. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666190117114804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background:
Bisphenol A (BPA) is considered one of the most common chemicals that
could cause environmental endocrine disrupting. Therefore, there is an increasing demand for simple,
rapid and sensitive methods for BPA detection that result from BPA leaching into foods and beverages
from storage containers. Herein, a simple laccase electrochemical biosensor was developed for
the determination of BPA based on Screen-Printed Carbon Electrode (SPCE) modified graphenegold/
chitosan. The synergic effect of graphene-gold/chitosan nanocomposite as electrode modifier
greatly facilitates electron-transfer processes between the electrolyte and laccase enzyme, thus leads
to a remarkably improved sensitivity for bisphenol A detection.
Methods:
In this study, laccase enzyme is immobilized onto the Screen-Printed Carbon Electrode
(SPCE) modified Graphene-Decorated Gold Nanoparticles (Gr-AuNPs) with Chitosan (Chit). The
surface structure of nanocomposite was studied using different techniques including Field Emission
Scanning Microscopy (FESEM), TRANSMISSION Electron Microscopy (TEM), Raman spectroscopy
and Energy Dispersive X-ray (EDX). Meanwhile, the electrochemical performances of the modified
electrodes were studied using Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV).
Results:
The developed laccase biosensor offered excellent analytical performance for the detection of
BPA with a sensitivity of 0.271 μA/μM and Limit of Detection (LOD) of 0.023 μM, respectively.
Moreover, the constructed biosensor showed good reproducibility, selectivity and stability towards
BPA. The sensor has been used to detect BPA in a different type of commercial plastic products as a
real sample and satisfactory result was obtained when compared with the HPLC method.
Conclusion:
The proposed electrochemical laccase biosensor exhibits good result which is
considered as a promising candidate for a simple, rapid and sensitive method especially in the resource-
limited condition.
Collapse
Affiliation(s)
- Fuzi M. Fartas
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Nor A. Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Yusran Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Mohd I. Saiman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| | - Mohd H.M. Zaid
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor D.E., Malaysia
| |
Collapse
|
22
|
VanArsdale E, Hörnström D, Sjöberg G, Järbur I, Pitzer J, Payne GF, van Maris AJA, Bentley WE. A Coculture Based Tyrosine-Tyrosinase Electrochemical Gene Circuit for Connecting Cellular Communication with Electronic Networks. ACS Synth Biol 2020; 9:1117-1128. [PMID: 32208720 DOI: 10.1021/acssynbio.9b00469] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a growing interest in mediating information transfer between biology and electronics. By the addition of redox mediators to various samples and cells, one can both electronically obtain a redox "portrait" of a biological system and, conversely, program gene expression. Here, we have created a cell-based synthetic biology-electrochemical axis in which engineered cells process molecular cues, producing an output that can be directly recorded via electronics-but without the need for added redox mediators. The process is robust; two key components must act together to provide a valid signal. The system builds on the tyrosinase-mediated conversion of tyrosine to L-DOPA and L-DOPAquinone, which are both redox active. "Catalytic" transducer cells provide for signal-mediated surface expression of tyrosinase. Additionally, "reagent" transducer cells synthesize and export tyrosine, a substrate for tyrosinase. In cocultures, this system enables real-time electrochemical transduction of cell activating molecular cues. To demonstrate, we eavesdrop on quorum sensing signaling molecules that are secreted by Pseudomonas aeruginosa, N-(3-oxododecanoyl)-l-homoserine lactone and pyocyanin.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - David Hörnström
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - Gustav Sjöberg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - Ida Järbur
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| | - Antonius J. A. van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE 10691 Stockholm, Sweden
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, 8278 Paint Branch Drive, College Park, Maryland 20742, United States
| |
Collapse
|
23
|
A layered nanocomposite of laccase, chitosan, and Fe3O4 nanoparticles-reduced graphene oxide for the nanomolar electrochemical detection of bisphenol A. Mikrochim Acta 2020; 187:262. [DOI: 10.1007/s00604-020-4223-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/07/2020] [Indexed: 12/20/2022]
|
24
|
Hashim HS, Fen YW, Sheh Omar NA, Abdullah J, Daniyal WMEMM, Saleviter S. Detection of phenol by incorporation of gold modified-enzyme based graphene oxide thin film with surface plasmon resonance technique. OPTICS EXPRESS 2020; 28:9738-9752. [PMID: 32225575 DOI: 10.1364/oe.387027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
In this study, the incorporation between gold modified-tyrosinase (Tyr) enzyme based graphene oxide (GO) thin film with surface plasmon resonance (SPR) technique has been developed for the detection of phenol. SPR signal for the thin film contacted with phenol solution was monitored using SPR technique. From the SPR curve, sensitivity, full width at half maximum (FWHM), detection accuracy (DA) and signal-to-noise ratio (SNR) have been analyzed. The sensor produces a linear response for phenol up to 100 µM with sensitivity of 0.00193° µM-1. Next, it can be observed that deionized water has the lowest FWHM, with a value of 1.87° and also the highest value of DA. Besides, the SNR of the SPR signal was proportional to the phenol concentrations. Furthermore, the surface morphology of the modified thin film after exposed with phenol solution observed using atomic force microscopy showed a lot of sharp peaks compared to the image before in contact with phenol proved the interaction between the thin film and phenol.
Collapse
|
25
|
Passivation of black phosphorus as organic-phase enzyme platform for bisphenol A determination. Anal Chim Acta 2020; 1095:197-203. [DOI: 10.1016/j.aca.2019.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
|
26
|
Shahdeo D, Roberts A, Abbineni N, Gandhi S. Graphene based sensors. ANALYTICAL APPLICATIONS OF GRAPHENE FOR COMPREHENSIVE ANALYTICAL CHEMISTRY 2020. [PMCID: PMC7518956 DOI: 10.1016/bs.coac.2020.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The two dimensional, honeycomb structured, single carbon layered graphene has extensively been used in the field of sensor detection due to its unique physicochemical properties. These properties such as excellent electrical conductivity, high electron mobility, tunable optical properties, room temperature quantum Hall effect, large surface to volume ratio, high mechanical strength, and ease of functionalization, make it an ideal nanomaterial for sensor development. This has enabled the fabrication of a large variety of highly sensitive sensors which include colorimetric, electrochemical, potentiometric, fluorescence, etc. based sensors. These sensors in conjugation with graphene or its derivatives such as graphene quantum dots, graphene oxide, reduced graphene oxide, etc. show highly desirable properties such as high sensitivity (detecting minute amounts of target analyte), specificity (no cross reactivity while detecting the target analyte), rapid results, low cost, extended storage shelf life and robustness (stability), and easy-to-use capabilities (user-friendly). This book chapter gives a detailed overview of all the advances made in the development and fabrication of novel graphene based sensors and their application in point of care (PoC) detection of various diseases as well as health monitoring devices. The different sensors, their methods of fabrication, their sensitivity and the analytes and biomolecules used have been discussed in detail and compared.
Collapse
|
27
|
Xu Z, Meng Q, Cao Q, Xiao Y, Liu H, Han G, Wei S, Yan J, Wu L. Selective Sensing of Copper Ions by Mesoporous Porphyrinic Metal–Organic Framework Nanoovals. Anal Chem 2019; 92:2201-2206. [DOI: 10.1021/acs.analchem.9b04900] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhiyuan Xu
- School of Information Science and Technology, North China University of Technology, No. 5 Jinyuanzhuang Street, Shijingshan District, Beijing 100144, China
| | - QingYi Meng
- School of Information Science and Technology, North China University of Technology, No. 5 Jinyuanzhuang Street, Shijingshan District, Beijing 100144, China
| | - Qiang Cao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing 100141, China
- Shanghai Ocean University, Shanghai 201306, China
| | - Yushi Xiao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing 100141, China
- Shanghai Ocean University, Shanghai 201306, China
| | - Huan Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Gang Han
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Shuhua Wei
- School of Information Science and Technology, North China University of Technology, No. 5 Jinyuanzhuang Street, Shijingshan District, Beijing 100144, China
| | - Jiang Yan
- School of Information Science and Technology, North China University of Technology, No. 5 Jinyuanzhuang Street, Shijingshan District, Beijing 100144, China
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing 100141, China
| |
Collapse
|
28
|
Ultrasensitive and ultrawide range electrochemical determination of bisphenol A based on PtPd bimetallic nanoparticles and cationic pillar[5]arene decorated graphene. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113487] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Zhang C, Miao P, Sun M, Yan M, Liu H. Progress in miRNA Detection Using Graphene Material-Based Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901867. [PMID: 31379135 DOI: 10.1002/smll.201901867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/20/2019] [Indexed: 05/16/2023]
Abstract
MicroRNAs (miRNAs) are short, endogenous, noncoding RNAs that play critical roles in physiologic and pathologic processes and are vital biomarkers for several disease diagnostics and therapeutics. Therefore, rapid, low-cost, sensitive, and selective detection of miRNAs is of paramount importance and has aroused increasing attention in the field of medical research. Among the various reported miRNA sensors, devices based on graphene and its derivatives, which form functional supramolecular nanoassemblies of π-conjugated molecules, have been revealed to have great potential due to their extraordinary electrical, chemical, optical, mechanical, and structural properties. This Review critically and comprehensively summarizes the recent progress in miRNA detection based on graphene and its derivative materials, with an emphasis on i) the underlying working principles of these types of sensors, and the unique roles and advantages of graphene materials; ii) state-of-the-art protocols recently developed for high-performance miRNA sensing, including representative examples; and iii) perspectives and current challenges for graphene sensors. This Review intends to provide readers with a deep understanding of the design and future of miRNA detection devices.
Collapse
Affiliation(s)
- Congcong Zhang
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
| | - Pei Miao
- Department of Chemistry, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250011, China
| | - Mingyuan Sun
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
| | - Mei Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250011, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan, 250011, China
- Center of Bio & Micro/Nano Functional Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
30
|
Tayebi M, Hosseini Abari A, Emtiazi G, Kim BG, Kim J. Novel Bacillus subtilis Spore-Displayed Tyrosinase Kit for Rapid Detection of Tyrosine in Urine: Pharmaceutical Applications for the Early Diagnosis of Kidney-Related Diseases. Adv Pharm Bull 2019; 9:331-334. [PMID: 31380262 PMCID: PMC6664106 DOI: 10.15171/apb.2019.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/14/2019] [Accepted: 04/14/2019] [Indexed: 12/04/2022] Open
Abstract
Purpose: Simple and cheap diagnostic kit development is one of the important aims of pharmaceutical developers and companies focused on public health improvement. The Bacillus subtilis spore surface-display technique is a genetic engineering method that is used to develop new-generation diagnostic kits applicable for the early detection of various types of diseases. In this study, we developed a novel simple, rapid, and inexpensive diagnostic paper-based kit to detect tyrosine in urine samples of humans and animals that is applicable for home or laboratory use.
Methods: The B. subtilis spore-displayed tyrosinase system developed by genetic engineering methods was used to prepare a paper-based kit to detect tyrosine in urine samples of different groups of patients (i.e., patients with diabetes, diabetes with chronic kidney disease (CKD), and chronic kidney disease) for the detection of tyrosine during the acute disease phase. To confirm the sensitivity and specificity of the kit, tyrosine was also detected in urine samples using conventional liquid chromatography/mass spectroscopy.
Results: Different concentrations of tyrosine (0.1–1 mM) were detected in urine samples based on visible changes of color from bright brownish-gray to dark brownish-gray within 1 hour. The kit could screen samples to distinguish the three groups of patients based on formation of a broad spectrum of colors reflecting the concentration of tyrosine.
Conclusion: To the best of our knowledge, this is the first diagnostic kit with potential to rapidly diagnose various diseases related to the production of tyrosine in biological samples. This kit is not only widely applicable, including for personal use in the home, but is also appropriate as a part of standard screening tests and health protection programs in countries with limited resources.
Collapse
Affiliation(s)
- Maziyar Tayebi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | | | - Giti Emtiazi
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran.,Department of Biotechnology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Byung Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junehyung Kim
- Department of Chemical Engineering, College of Engineering, Dong-A University, Busan, Korea
| |
Collapse
|
31
|
Liu Y, Yao L, He L, Liu N, Piao Y. Electrochemical Enzyme Biosensor Bearing Biochar Nanoparticle as Signal Enhancer for Bisphenol A Detection in Water. SENSORS 2019; 19:s19071619. [PMID: 30987318 PMCID: PMC6479578 DOI: 10.3390/s19071619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022]
Abstract
An electrochemical tyrosinase enzyme (Tyr) biosensor using a highly conductive sugarcane derived biochar nanoparticle (BCNP) as a transducer and signal enhancer (BCNPs/Tyr/Nafion/GCE) was developed for the sensitive detection of bisphenol A (BPA). The BCNPs/Tyr/Nafion/GCE biosensor exhibited improved amperometric current responses such as higher sensing signal, decreased impedance and lowered reduction potential compared with the Tyr/Nafion/GCE due to high conductivity property of the biochar nanoparticle. Under the optimized conditions, it could detect BPA in good sensitivity with linear range from 0.02 to 10 μM, and a lowest detection limit of 3.18 nM. Moreover, it showed a low Km value, high reproducibility and good selectivity over other reagents, and the BCNPs/Tyr complex solution also showed good stability with 86.9% of sensing signal maintained after one month storage. The biosensor was also successfully utilized for real water detection with high accuracy as validated by high performance liquid chromatography. Therefore, the biochar nanoparticle based enzyme biosensor proved to be a potential and reliable method for high performance detection of pollutants in the environment.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Lan Yao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Lingzhi He
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Yunxian Piao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
32
|
Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds. Biosens Bioelectron 2019; 132:279-285. [PMID: 30884314 DOI: 10.1016/j.bios.2019.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 11/20/2022]
Abstract
Highly sensitive phenol biosensor was developed by using well-dispersed carbon nanotubes (CNTs) in enzyme solution and adding CNTs in enzyme electrodes. First, the intact CNTs were dispersed in aqueous tyrosinase (TYR) solution, and TYR molecules were precipitated and crosslinked to prepare the sample of enzyme adsorption, precipitation and crosslinking (EAPC). EAPC exhibited 10.5- and 5.4-fold higher TYR activity per mg of CNTs as compared to enzyme adsorption (EA) and enzyme adsorption/crosslinking (EAC), respectively. EAPC retained 29% of its initial activity after incubation at 40 °C for 128 h, while EA and EAC showed no residual activities, respectively. In biosensing a model phenolic compound of catechol, the sensitivities of EA, EAC and EAPC electrodes on glassy carbon electrode (GCE) were 34, 281 and 675 µA/mM/cm2, respectively. When 90 w/w% CNTs were added to the enzyme electrodes, the sensitivities of EA, EAC, and EAPC electrodes were 146, 427, and 1160 µA/mM/cm2, respectively, and the EAPC electrode showed a 2.3-fold increase in sensitivity upon CNT addition. Catechol and phenol could also be detected by EAPC on the screen-printed electrode (SPE), with sensitivities of 1340 and 1170 µA/mM/cm2, respectively. The sensitivity of EAPC-SPE for phenol detection in the effluent from real municipal wastewater treatment plant was 1100 µA/mM/cm2. The sensitivity of EAPC-SPE retained 74% of its initial sensitivity after incubation at 40 °C for 12 h. The combination of EAPC immobilization and CNT addition has great potential for application in the development of sensitive enzyme biosensors for various analytes and phenols in water environments.
Collapse
|
33
|
Zainul R, Abd Azis N, Md Isa I, Hashim N, Ahmad MS, Saidin MI, Mukdasai S. Zinc/Aluminium⁻Quinclorac Layered Nanocomposite Modified Multi-Walled Carbon Nanotube Paste Electrode for Electrochemical Determination of Bisphenol A. SENSORS 2019; 19:s19040941. [PMID: 30813385 PMCID: PMC6413131 DOI: 10.3390/s19040941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/25/2023]
Abstract
This paper presents the application of zinc/aluminium-layered double hydroxide-quinclorac (Zn/Al-LDH-QC) as a modifier of multiwalled carbon nanotubes (MWCNT) paste electrode for the determination of bisphenol A (BPA). The Zn/Al-LDH-QC/MWCNT morphology was examined by a transmission electron microscope and a scanning electron microscope. Electrochemical impedance spectroscopy was utilized to investigate the electrode interfacial properties. The electrochemical responses of the modified electrode towards BPA were thoroughly evaluated by using square-wave voltammetry technique. The electrode demonstrated three linear plots of BPA concentrations from 3.0 × 10−8–7.0 × 10−7 M (R2 = 0.9876), 1.0 × 10−6–1.0 × 10−5 M (R2 = 0.9836) and 3.0 × 10−5–3.0 × 10−4 M (R2 = 0.9827) with a limit of detection of 4.4 × 10−9 M. The electrode also demonstrated good reproducibility and stability up to one month. The presence of several metal ions and organic did not affect the electrochemical response of BPA. The electrode is also applicable for BPA determination in baby bottle and mineral water samples with a range of recovery between 98.22% and 101.02%.
Collapse
Affiliation(s)
- Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Padang, West Sumatera 25171, Indonesia.
| | - Nurashikin Abd Azis
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Illyas Md Isa
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
- Nanotechnology Research Centre, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Norhayati Hashim
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
- Nanotechnology Research Centre, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Mohamad Syahrizal Ahmad
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
- Nanotechnology Research Centre, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Mohamad Idris Saidin
- Department of Chemistry, Faculty of Science and Mathemathics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Perak, Malaysia.
| | - Siriboon Mukdasai
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
34
|
Tyrosinase/Chitosan/Reduced Graphene Oxide Modified Screen-Printed Carbon Electrode for Sensitive and Interference-Free Detection of Dopamine. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tyrosinase, chitosan, and reduced graphene oxide (rGO) are sequentially used to modify a screen-printed carbon electrode (SPCE) for the detection of dopamine (DA), without interference from uric acid (UA) or ascorbic acid (AA). The use of tyrosinase significantly improves the detection’s specificity. Cyclic voltammetry (CV) measurements demonstrate the high sensitivity and selectivity of the proposed electrochemical sensors, with detection limits of 22 nM and broad linear ranges of 0.4–8 μM and 40–500 μM. The fabricated tyrosinase/chitosan/rGO/SPCE electrodes achieve satisfactory results when applied to human urine samples, thereby demonstrating their feasibility for analyzing DA in physiological samples.
Collapse
|
35
|
Butmee P, Tumcharern G, Saejueng P, Stankovic D, Ortner A, Jitcharoen J, Kalcher K, Samphao A. A direct and sensitive electrochemical sensing platform based on ionic liquid functionalized graphene nanoplatelets for the detection of bisphenol A. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Canevari TC, Rossi MV, Alexiou AD. Development of an electrochemical sensor of endocrine disruptor bisphenol A by reduced graphene oxide for incorporation of spherical carbon nanoparticles. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.10.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Feng S, Yan P, Xu L, Xia J, Li H. Exploitation of a photoelectrochemical sensing platform for bisphenol A quantitative determination using Cu/graphitic carbon nitride nanocomposites. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Hu Y, Wang S, Guo Z, Hu Y, Xie H. One-Step Constructed Electrochemiluminescence Sensor Coupled with Magnetic Enhanced Solid Phase Microextraction to Sensitively Detect Bisphenol-A. ChemElectroChem 2018. [DOI: 10.1002/celc.201800475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yunxia Hu
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Sui Wang
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Zhiyong Guo
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Yufang Hu
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| | - Hongzhen Xie
- Faculty of Materials Science and Chemical Engineering; State Key Laboratory Base of Novel Functional Materials and Preparation Science; Ningbo University; Ningbo 315211 People's Republic of China
| |
Collapse
|
39
|
A novel amperometric enzyme inhibition biosensor based on xanthine oxidase immobilised onto glassy carbon electrodes for bisphenol A determination. Talanta 2018; 184:388-393. [DOI: 10.1016/j.talanta.2018.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 01/01/2023]
|
40
|
Wu L, Lu X, Dhanjai, Wu ZS, Dong Y, Wang X, Zheng S, Chen J. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens Bioelectron 2018; 107:69-75. [DOI: 10.1016/j.bios.2018.02.021] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
|
41
|
A sensitive biosensor for mercury ions detection based on hairpin hindrance by thymine-Hg(II)-thymine structure. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
L-tyrosine polymerization-based ultrasensitive multi-analyte enzymatic biosensor. Talanta 2018; 179:803-809. [DOI: 10.1016/j.talanta.2017.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022]
|
43
|
Zhang J, Lin Y, Peng H, Hong N, Cheng L, Wei G, Fan H. Dual Signal Amplification Electrochemical Biosensor for Lead Cation. ELECTROANAL 2018. [DOI: 10.1002/elan.201700818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing Zhang
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| | - Yan Lin
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| | - Hong Peng
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| | - Nian Hong
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| | - Lin Cheng
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| | - Guobing Wei
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| | - Hao Fan
- Department of Pharmacy; JiangXi University of Traditional Chinese Medicine; JiangXi 330004 China)
| |
Collapse
|
44
|
Ru(bpy)32+/β-cyclodextrin-Au nanoparticles/nanographene functionalized nanocomposites-based thrombin electrochemiluminescence aptasensor. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3910-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Kanagavalli P, Senthil Kumar S. Stable and Sensitive Amperometric Determination of Endocrine Disruptor Bisphenol A at Residual Metal Impurities Within SWCNT. ELECTROANAL 2018. [DOI: 10.1002/elan.201700596] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pandiyaraj Kanagavalli
- Electrodics and Electrocatalysis Division; CSIR-Central Electrochemical Research Institute; Karaikudi India
| | - Shanmugam Senthil Kumar
- Electrodics and Electrocatalysis Division; CSIR-Central Electrochemical Research Institute; Karaikudi India
| |
Collapse
|
46
|
Kun Q, Lin Y, Peng H, Cheng L, Cui H, Hong N, Xiong J, Fan H. A “signal-on” switch electrochemiluminescence biosensor for the detection of tumor cells. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
Jasni MJF, Arulkumar M, Sathishkumar P, Mohd Yusoff AR, Buang NA, Gu FL. Electrospun nylon 6,6 membrane as a reusable nano-adsorbent for bisphenol A removal: Adsorption performance and mechanism. J Colloid Interface Sci 2017; 508:591-602. [DOI: 10.1016/j.jcis.2017.08.075] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 12/07/2022]
|
48
|
Li Y, Wang H, Yan B, Zhang H. An electrochemical sensor for the determination of bisphenol A using glassy carbon electrode modified with reduced graphene oxide-silver/poly-l-lysine nanocomposites. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.10.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
49
|
Advances in sensing and biosensing of bisphenols: A review. Anal Chim Acta 2017; 998:1-27. [PMID: 29153082 DOI: 10.1016/j.aca.2017.09.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 12/19/2022]
Abstract
Bisphenols (BPs) are well known endocrine disrupting chemicals (EDCs) that cause adverse effects on the environment, biotic life and human health. BPs have been studied extensively because of an increasing concern for the safety of the environment and for human health. They are major raw materials for manufacturing polycarbonates, thermal papers and epoxy resins and are considered hazardous environmental contaminants. A vast array of sensors and biosensors have been developed for the sensitive screening of BPs based on carbon nanomaterials (carbon nanotubes, fullerenes, graphene and graphene oxide), quantum dots, metal and metal oxide nanocomposites, polymer nanocomposites, metal organic frameworks, ionic liquids and molecularly imprinted polymers. This review is devoted mainly to a variety of sensitive, selective and reliable sensing and biosensing methods for the detection of BPs using electrochemistry, fluorescence, colorimetry, surface plasmon resonance, luminescence, ELISAs, circular dichroism, resonance Rayleigh scattering and adsorption techniques in plastic products, food samples, food packaging, industrial wastes, pharmaceutical products, human body fluids and many other matrices. It summarizes the advances in sensing and biosensing methods for the detection of BPs since 2010. Furthermore, the article discusses challenges and future perspectives in the development of novel sensing methods for the detection of BP analogs.
Collapse
|
50
|
Varmira K, Saed-Mocheshi M, Jalalvand AR. Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA: A comprehensive review. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|