1
|
Wang Y, Wu Y, Lu B, Li M, Ji P, Feng S, Li Y, Lin H, Xiao Y, Luo Z, Duan Y. Advances in portable fiber optic-based aptasensors for on-site detection: design, evolution, and application. NANOSCALE 2025; 17:11221-11245. [PMID: 40241631 DOI: 10.1039/d4nr04846f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The emergence of on-site detection using portable devices has transformed traditional analytical methods, which rely on precise but bulky laboratory instruments, into a promising technique for point-of-care testing. In this case, fiber optic (FO)-based aptasensors, featuring miniaturized devices, high sensitivity, and strong specificity, are candidates to meet the requirement of on-site detection. To enhance the interaction between light and the surrounding environment, numerous FO probes with novel micro/nano-structures have been designed, including tilted fiber Bragg grating (TFBG), long-period grating (LPG), bent, microfiber, D-shaped, and photonic bandgap fibers. Aptamers fold into unique tertiary structure to specifically and sensitively bind with their targets through a direct reaction or a binding-induced structural switch. Benefitting from advancements in FO probes and aptamers, multiple FO-based aptasensors have been constructed for sensitive detection, including evanescent wave-based, fluorescent-, localized surface plasmon resonance (LSPR)-based, and interferometer-based sensors. To date, FO-based aptasensors have been widely applied in clinical diagnosis, environmental monitoring, and food safety. This review focuses on design strategies, evolution, and applications of FO-based aptasensors. The opportunities and challenges of FO-based aptasensors for on-site detection are discussed in depth. This review aims to highlight the significance of FO-based aptasensors for on-site detection and promote their development from laboratory research to practical application.
Collapse
Affiliation(s)
- Yue Wang
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuanfeng Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Bowen Lu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Mingyue Li
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Peijun Ji
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yu Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, PR China
| | - Huichun Lin
- Shenzhen Institute of Quality and Safety Inspection Research, Shenzhen 518000, China.
| | - Yuling Xiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Kumar P, Shimali, Chamoli S, Khondakar KR. Advances in optical and electrochemical sensing of bisphenol a (BPA) utilizing microfluidic Technology: A mini perspective. Methods 2023; 220:69-78. [PMID: 37951559 DOI: 10.1016/j.ymeth.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
Continuous exposure to toxic pollutants highlights the need for sensitive detection technologies that can be rapidly applied in the current world for quick screening of real samples. Bisphenol A (BPA) is one of the most common environmental contaminants, and it has the potential to harm both the environment and human health, notably causing reproductive disorders, cancer, heart disease, infertility, mental disorders, etc. Thus, significant attention has been paid to the detection of BPA and microplastics to promote food safety, environmental health, and human health on a sustainable earth. Among the current technologies, microfluidic based systems have garnered a lot of interest as future diagnostic tools for healthcare applications. Microfluidic devices can be deployed for quick screening and real-time monitoring, with inherent advantages like portability, miniaturisation, highly sensing tool and ease of integration with various detection systems. Optical and electrochemical sensors are two major analytical tools found in almost all microfluidic-based devices for ultrasensitive BPA and microplastics determination. In this review, we have evaluated and discussed microfluidic-based detection methods for BPA and microplastics.
Collapse
Affiliation(s)
- Piyush Kumar
- School of Health Sciences and Technology, Bidholi Campus, UPES, Dehradun, Uttarakhand, 248007, India
| | - Shimali
- School of Health Sciences and Technology, Bidholi Campus, UPES, Dehradun, Uttarakhand, 248007, India
| | - Shivangi Chamoli
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | | |
Collapse
|
3
|
Wang H, Wang Y, Zhang C. Novel Electrochemical Sensor for the Determination of Bisphenol A Using a Molybdenum(IV) Sulfide Quantum Dots Polysodium Styrene Sulfonate Functionalized Reduced Graphene Oxide Modified Glassy Carbon Electrode (GCE) by Differential Pulse Voltammetry (DPV). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2066111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Haiyang Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yan Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Cuijie Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Yang Z, Li W, Huang H, Ren S, Men Y, Li F, Yu X, Luo Q. Detection of serum phospholipids by microchannel-integrated black phosphorus-assisted laser desorption/ionization mass spectrometry. Talanta 2022; 237:122978. [PMID: 34736700 DOI: 10.1016/j.talanta.2021.122978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been widely applied in the analysis of phospholipids in biological samples. However, it remains a challenge to improve the sensitivity and reproducibility and to control the background noise of matrices. In this study, black phosphorus nanomaterial was used as the matrix of MALDI-MS, and microchannel technique was combined. This microchannel-integrated black phosphorus-assisted laser desorption/ionization (BPALDI) MS approach can effectively detect a variety of lipids with a small amount of sample, and has high sensitivity for phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) with a detection limit of 0.2 μg/mL. Compared with traditional matrices, BPALDI-MS has the advantages of high sensitivity, good reproducibility, and high salt tolerance. This method was successfully applied in the detection of serum PC/LPC ratios in children patients with asthma or bronchopneumonia. This work provides a novel application of black phosphorus matrix and microchannel technique, and gives new insights into method development of rapid screening and identification of disease indicators in biological fluids.
Collapse
Affiliation(s)
- Zhiyi Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenbo Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Huang
- Shenzhen Engineering Laboratory of Single-molecule Detection and Instrument Development, Shenzhen, 518055, China
| | - Songlei Ren
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yongfan Men
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Shenzhen Engineering Laboratory of Single-molecule Detection and Instrument Development, Shenzhen, 518055, China
| | - Xuefeng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qian Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Shenzhen Engineering Laboratory of Single-molecule Detection and Instrument Development, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Advanced Optical Sensing of Phenolic Compounds for Environmental Applications. SENSORS 2021; 21:s21227563. [PMID: 34833640 PMCID: PMC8619556 DOI: 10.3390/s21227563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
Phenolic compounds are particularly dangerous due to their ability to remain in the environment for a long period of time and their toxic effects. They enter in the environment in different ways, such as waste from paper manufacturing, agriculture (pesticides, insecticides, herbicides), pharmaceuticals, the petrochemical industry, and coal processing. Conventional methods for phenolic compounds detection present some disadvantages, such as cumbersome sample preparation, complex and time-consuming procedures, and need of expensive equipment. Therefore, there is a very large interest in developing sensors and new sensing schemes for fast and easy-to-use methods for detecting and monitoring the phenolic compound concentration in the environment, with special attention to water. Good analytical properties, reliability, and adaptability are required for the developed sensors. The present paper aims at revising the most generally used optical methods for designing and fabricating biosensors and sensors for phenolic compounds. Some selected examples of the most interesting applications of these techniques are also proposed.
Collapse
|
6
|
Xu W, Liu J, Song D, Li C, Zhu A, Long F. Rapid, label-free, and sensitive point-of-care testing of anti-SARS-CoV-2 IgM/IgG using all-fiber Fresnel reflection microfluidic biosensor. Mikrochim Acta 2021; 188:261. [PMID: 34278534 PMCID: PMC8286882 DOI: 10.1007/s00604-021-04911-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/21/2021] [Indexed: 01/28/2023]
Abstract
The ongoing global pandemic of SARS-CoV-2 has promoted to develop novel serological testing technologies since they can be effectively complementary to RT-PCR. Here, a new all-fiber Fresnel reflection microfluidic biosensor (FRMB) was constructed through combining all-fiber optical system, microfluidic chip, and multimode fiber bio-probe. The transmission of the incident light and the collection and transmission of Fresnel reflection light are achieved using a single-multi-mode fiber optic coupler (SMFC) without any other optical separation elements. This compact design greatly simplifies the whole system structure and improves light transmission efficiency, which makes it suitable for the label-free, sensitive, and easy-to-use point-of-care testing (POCT) of targets in nanoliter samples. Based on Fresnel reflection mechanism and immunoassay principle, both the SARS-CoV-2 IgM and IgG antibodies against the SARS-CoV-2 spike protein could be sensitively quantified in 7 min using the secondary antibodies-modified multimode fiber bio-probe. The FRMB performs in one-step, is accurate, label-free, and sensitive in situ/on-site detection of SARS-CoV-2 IgM or IgG in serum with simple dilution only. The limits of detection of SARS-CoV-2 IgM and SARS-CoV-2 IgG were 0.82 ng/mL and 0.45 ng/mL, respectively. Based on our proposed theory, the affinity constants of SARS-CoV-2 IgM or IgG antibody and their respective secondary antibodies were also determined. The FRMB can be readily extended as a universal platform for the label-free, rapid, and sensitive in situ/on-site measurement of other biomarkers and the investigation of biomolecular interaction.
Collapse
Affiliation(s)
- Wenjuan Xu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Jiayao Liu
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Chunsheng Li
- Biology Institute of Hebei Academy of Sciences, Shijiazhuang, China
| | - Anna Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China.
- Department of Chemistry, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
7
|
Trends in the Design of Intensity-Based Optical Fiber Biosensors (2010-2020). BIOSENSORS-BASEL 2021; 11:bios11060197. [PMID: 34203715 PMCID: PMC8232210 DOI: 10.3390/bios11060197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022]
Abstract
There exists an increasing interest in monitoring low concentrations of biochemical species, as they allow the early-stage detection of illnesses or the monitoring of the environment quality. Thus, both companies and research groups are focused on the development of accurate, fast and highly sensitive biosensors. Optical fiber sensors have been widely employed for these purposes because they provide several advantages for their use in point-of-care and real-time applications. In particular, this review is focused on optical fiber biosensors based on luminescence and absorption. Apart from the key parameters that determine the performance of a sensor (limit of detection, sensibility, cross-sensibility, etc.), other features are analyzed, such as the optical fiber dimensions, the sensing set ups and the fiber functionalization. The aim of this review is to have a comprehensive insight of the different aspects that must be taken into account when working with this kind of sensors.
Collapse
|
8
|
Bai L, Guan Z, Li S, Zhang S, Huang Q, Li Z. Nest-like Co3O4 and PdO /Co3O4 synthesized via metal organic framework with cyclodextrin for catalytic removal of Bisphenol A by persulfate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Integration of black phosphorus and hollow-core anti-resonant fiber enables two-order magnitude enhancement of sensitivity for bisphenol A detection. Biosens Bioelectron 2019; 149:111821. [PMID: 31733485 DOI: 10.1016/j.bios.2019.111821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/12/2019] [Accepted: 10/23/2019] [Indexed: 01/11/2023]
Abstract
Hollow core anti-resonant fiber (HARF) has found a handful applications in optical communications, nonlinear optics and high power delivery. The intrinsic property of the fiber also renders it an ideal candidate for biosensing, which has not been explored intensively. Herein, we demonstrate an optical fiber sensing platform, taking advantages of the state-of-the-art HARF technology and superior physicochemical properties of 2D material black phosphorus, for ultra-sensitive detection of bisphenol A (BPA) in blood and environmental samples. The specially designed HARF can not only achieve broadband transmission of light, but also confine light in the low refractive-index liquid core, ensuring maximum overlap of light and liquid core. Modification of the inner surface of HARF with 2D black phosphorus nanoflakes functionalized with fluorescently labeled BPA-specific aptamer provides a smart sensing interface enabling highly selective detection of BPA via measuring the fluorescence. The limit of detection is 1.69pM, which is more than two orders of magnitude enhancement compared to the conventional plate assay. The proposed assay is not interfered with the BPA analogues BPB and BPS. The long optical path with tight optical confinement greatly enhances the analyte-light interaction and improves the sensitivity of the sensing platform. The proposed sensing platform can be further developed for versatile applications.
Collapse
|
10
|
Hanif A, Farooq R, Rehman MU, Khan R, Majid S, Ganaie MA. Aptamer based nanobiosensors: Promising healthcare devices. Saudi Pharm J 2019; 27:312-319. [PMID: 30976173 PMCID: PMC6438676 DOI: 10.1016/j.jsps.2018.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Nanobiosensors based on aptamer are extensively being studied as potent analytical tools in clinical analysis. These biosensors provide high sensitivity, fast response, specificity and desired portability in addition to simplicity and decreased cost compared to conventional methods. The purpose of this manuscript is to provide readers with an overview of current advances about electrochemical, electrochemiluminescent and photoelectrochemical aptasensors from the sea of available literature. These are mainly used for determination of protein-based biomarkers, especially for cancer diagnosis. Here in we have given special emphasis on nanosize-based aptasensors which have been reported to show considerable improvement in the analytical performance.
Collapse
Affiliation(s)
- Aamir Hanif
- City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Rabia Farooq
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Muneeb U. Rehman
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Rehan Khan
- Nanotherapeutics, Institute of Nanoscience & Technology (DST-INST), Habitat Centre Phase 10, Mohali, Punjab, India
| | - Sabhiya Majid
- Department of Biochemistry, Govt Medical College (GMC) Srinagar, J&K 190010, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
11
|
Song D, Yang R, Wang H, Fang S, Liu Y, Long F, Zhu A. Development of dual-color total internal reflection fluorescence biosensor for simultaneous quantitation of two small molecules and their affinity constants with antibodies. Biosens Bioelectron 2018; 126:824-830. [PMID: 30602264 DOI: 10.1016/j.bios.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A novel dual-color total internal reflection fluorescence biosensor (DTB) was successfully developed for the simultaneous detection of two small molecules based on a simple optical structure and the time resolved effect of fiber optic switch. The DTB employed a single-multi mode fiber optic coupler instead of a sophisticated confocal optical system for the transmission of two excitation lights and dual-color fluorescence, and a photodiode detector instead of photomultiplier for the simultaneous detection of dual-color fluorescence. The compact optical design of DTB improved its optical transmission efficiency and detection sensitivity because of no requirement of numerous optical separation elements and rigorous optical alignment. The DTB was applied for the simultaneous detection of 2,4-Bisphenol-A (BPA) and 2,4-Dichlorophenoxyacetic acid (2,4-D) using one bifunctional fiber optic bio-probe modified by two hapten-protein conjugates. When the mixture of Cy5.5 labeled anti-2,4-D antibody and Pacific Blue dye labeled anti-BPA antibody was introduced over the surface of the bio-probe, they bound with their respective hapten-protein conjugate immobilized onto the bio-probe. Based on the time-resolved effect of fiber optic switch, two fluorescence dyes were alternatively excited by 635 nm and 405 nm laser lights and simultaneously detected by one photodiode detector. Taking indirect competitive immunoassay principle, BPA and 2,4-D were simultaneously detected using the DTB with high sensitivity, accuracy, and rapidity. The quantitation of affinity constants between small molecules and their antibodies was also achieved based on the proposed theory. The DTB provides a flexible and powerful platform for simultaneously sensitive quantitation of multiple targets and the affinity constants of biomolecular interactions.
Collapse
Affiliation(s)
- Dan Song
- School of Environment and Natural Resource, Renmin University of China, 100872 Beijing, China
| | - Rong Yang
- School of Environment and Natural Resource, Renmin University of China, 100872 Beijing, China
| | - Hongliang Wang
- School of Environment and Natural Resource, Renmin University of China, 100872 Beijing, China
| | - Sunyan Fang
- School of Environment and Natural Resource, Renmin University of China, 100872 Beijing, China
| | - Yanping Liu
- School of Environment and Natural Resource, Renmin University of China, 100872 Beijing, China
| | - Feng Long
- School of Environment and Natural Resource, Renmin University of China, 100872 Beijing, China.
| | - Anna Zhu
- Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing 102205, China; State Key Laboratory of NBC Protection FOR Civilian, Beijing 102205, China.
| |
Collapse
|
12
|
Development of novel portable and reusable fiber optical chemiluminescent biosensor and its application for sensitive detection of microcystin-LR. Biosens Bioelectron 2018; 121:27-33. [DOI: 10.1016/j.bios.2018.08.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 11/21/2022]
|
13
|
Zhou L, Fang S, Liu Y, Yang R, Song D, Long F, Zhu A. Universal and reusable hapten/antibody-mediated portable optofluidic immunosensing platform for rapid on-site detection of pathogens. CHEMOSPHERE 2018; 210:10-18. [PMID: 29980068 DOI: 10.1016/j.chemosphere.2018.06.159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
A universal and reusable hapten-antibody-mediated portable optofluidic immunosensing platform (OIP) was developed for rapid on-site detection of pathogens. By using Escherichia coli O157:H7 (E. coli O157:H7) and bisphenol A-Bovine serum albumin (BPA-BSA)/anti-BPA antibody as a model pathogen and a mediated hapten-antibody, respectively, a novel immunoassay mechanism was proposed to detect pathogens. The BPA-BSA-modified immunosensor and E. coli O157:H7 were initially saturated with anti-BPA antibodies (mouse IgG) and anti-E. coli O157:H7 antibodies (mouse IgG), respectively. Then, the fluorescence-labeled secondary antibodies (goat anti-mouse IgG antibody) were incubated with E. coli O157:H7 with their antibodies. Next, the mixture was introduced into the immunosensor surface bound to the anti-BPA antibodies. A high concentration of E. coli O157:H7 in the sample reduced the number of fluorescence-labeled secondary antibodies bound to the immunosensor surface, thus resulting in the detection of low fluorescence signals. Under optimized conditions, the hapten-antibody-mediated OIP system exhibited a detection limit of 8 cfu/mL E. coli O157:H7 after concentrating 100 times by using centrifugation, and a test cycle, including prereaction, detection, and regeneration, was less than 1 h. The robustness of the hapten-carrier protein-modified immunosensor surface allowed multiple pathogen immunoassays. The proposed strategy demonstrated good recovery, precision, and accuracy through the evaluation of the spiked water samples. We expect that the new platform can be readily used for the detection of other pathogens in a variety of application fields ranging from environmental monitoring and food safety to medical diagnosis.
Collapse
Affiliation(s)
- Liping Zhou
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Shunyan Fang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yanping Liu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Rong Yang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Dan Song
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Anna Zhu
- Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing 102205, China; State Key Laboratory of NBC Protection FOR Civilian, Beijing 102205, China.
| |
Collapse
|
14
|
An on-line solid-phase extraction disc packed with a phytic acid induced 3D graphene-based foam for the sensitive HPLC-PDA determination of bisphenol A migration in disposable syringes. Talanta 2018; 179:153-158. [DOI: 10.1016/j.talanta.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
|
15
|
TriPleX™ waveguide-based fluorescence biosensor for multichannel environmental contaminants detection. Biosens Bioelectron 2018; 106:117-121. [PMID: 29414077 DOI: 10.1016/j.bios.2018.01.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022]
Abstract
In order to realize the multi-analyte assays for environmental contaminants, an optical biosensor utilizing laser-induced fluorescence-based detection via the binding of biomolecules to the surface of an integrated TriPleX™ waveguide chip on a glass substrate (fused silica, FS) is described. As far as we know, this is the first demonstration of using the TriPleX™ technology to fabricate the waveguide chip on a FS substrate. The sensor consists of 32 individually addressable sensor patches, which were formed on the chip surface by exploiting 3 Y-junction splitters, creating four equal rows of eight evanescently excited windows in parallel. The basic low-loss SiO2/Si3N4 TriPleX™ waveguide configuration in combination with on-chip spotsize convertors allows for both high fiber-to-chip coupling efficiency and enables at the same time individually optimized high chip surface intensity and low patch-to-patch deviation. Moreover, the complementary metal-oxide-semiconductor compatible fabrication of waveguide chip allows for its mass production at low cost. By taking MC-LR, 2,4-D, atrazine and BPA as the model analytes, the as-proposed waveguide based biosensor was proven sensitive with the detection limits of 0.22 μg/L for MC-LR, 1.18 μg/L for 2, 4-D, 0.2 μg/L for atrazine and 0.06 μg/L for BPA. Recoveries of the biosensor towards simultaneous detection of MC-LR, 2, 4-D, atrazine and BPA in spiked real water samples varied from 84% to 120%, indicating the satisfactory accuracy of the established technology.
Collapse
|
16
|
Advances in sensing and biosensing of bisphenols: A review. Anal Chim Acta 2017; 998:1-27. [PMID: 29153082 DOI: 10.1016/j.aca.2017.09.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 12/19/2022]
Abstract
Bisphenols (BPs) are well known endocrine disrupting chemicals (EDCs) that cause adverse effects on the environment, biotic life and human health. BPs have been studied extensively because of an increasing concern for the safety of the environment and for human health. They are major raw materials for manufacturing polycarbonates, thermal papers and epoxy resins and are considered hazardous environmental contaminants. A vast array of sensors and biosensors have been developed for the sensitive screening of BPs based on carbon nanomaterials (carbon nanotubes, fullerenes, graphene and graphene oxide), quantum dots, metal and metal oxide nanocomposites, polymer nanocomposites, metal organic frameworks, ionic liquids and molecularly imprinted polymers. This review is devoted mainly to a variety of sensitive, selective and reliable sensing and biosensing methods for the detection of BPs using electrochemistry, fluorescence, colorimetry, surface plasmon resonance, luminescence, ELISAs, circular dichroism, resonance Rayleigh scattering and adsorption techniques in plastic products, food samples, food packaging, industrial wastes, pharmaceutical products, human body fluids and many other matrices. It summarizes the advances in sensing and biosensing methods for the detection of BPs since 2010. Furthermore, the article discusses challenges and future perspectives in the development of novel sensing methods for the detection of BP analogs.
Collapse
|
17
|
Liu L, Zhou X, Wilkinson JS, Hua P, Song B, Shi H. Integrated optical waveguide-based fluorescent immunosensor for fast and sensitive detection of microcystin-LR in lakes: Optimization and Analysis. Sci Rep 2017. [PMID: 28623299 PMCID: PMC5473886 DOI: 10.1038/s41598-017-03939-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Nowadays, biosensor technologies which can detect various contaminants in water quickly and cost-effectively are in great demand. Herein, we report an integrated channel waveguide-based fluorescent immunosensor with the ability to detect a maximum of 32 contaminants rapidly and simultaneously. In particular, we use waveguide tapers to improve the efficiency of excitation and collection of fluorescent signals in the presence of fluorophore photobleaching in a solid surface bioassay. Under the optimized waveguide geometry, this is the first demonstration of using such a type of waveguide immunosensor for the detection of microcystin-LR (MC-LR) in lake water. The waveguide chip was activated by (3-Mercaptopropyl) trimethoxysilane/N-(4-maleimidobutyryloxy) succinimide (MTS/GMBS) for immobilization of BSA-MC-LR conjugate, which was confirmed to have uniform monolayer distribution by atomic force microscopy. All real lake samples, even those containing MC-LR in the sub-microgram per liter range (e.g. 0.5 μg/L), could be determined by the immunosensor with recovery rates between 84% and 108%, confirming its application potential in the measurement of MC-LR in real water samples.
Collapse
Affiliation(s)
- Lanhua Liu
- Center for Sensor Technology of Environment and Health, State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 10084, China
| | - Xiaohong Zhou
- Center for Sensor Technology of Environment and Health, State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 10084, China.
| | - James S Wilkinson
- Optoelectronics Research Centre, Southampton University, Highfield, Southampton, SO17 1BJ, UK
| | - Ping Hua
- Optoelectronics Research Centre, Southampton University, Highfield, Southampton, SO17 1BJ, UK.
| | - Baodong Song
- Center for Sensor Technology of Environment and Health, State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 10084, China
| | - Hanchang Shi
- Center for Sensor Technology of Environment and Health, State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 10084, China
| |
Collapse
|
18
|
Wang R, Zhou X, Zhu X, Yang C, Liu L, Shi H. Isoelectric Bovine Serum Albumin: Robust Blocking Agent for Enhanced Performance in Optical-Fiber Based DNA Sensing. ACS Sens 2017; 2:257-262. [PMID: 28723134 DOI: 10.1021/acssensors.6b00746] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface blocking is a well-known process for reducing unwanted nonspecific adsorption in sensor fabrication, especially important in the emerging field where DNA/RNA applied. Bovine serum albumin (BSA) is one of the most popular blocking agents with an isoelectric point at pH 4.6. Although it is widely recognized that the adsorption of a blocking agent is strongly affected by its net charge and the maximum adsorption is often observed under its isoelectric form, BSA has long been perfunctorily used for blocking merely in neutral solution, showing poor blocking performances in the optical-fiber evanescent wave (OFEW) based sensing toward DNA target. To meet this challenge, we first put forward the view that isoelectric BSA (iep-BSA) has the best blocking performance and use an OFEW sensor platform to demonstrate this concept. An optical-fiber was covalently modified with amino-DNA, and further coupled with the optical system to detect fluorophore labeled complementary DNA within the evanescent field. A dramatic improvement in the reusability of this DNA modified sensing surface was achieved with 120 stable detection cycles, which ensured accurate quantitative bioassay. As expected, the iep-BSA blocked OFEW system showed enhanced sensing performance toward target DNA with a detection limit of 125 pM. To the best of our knowledge, this is the highest number of regeneration cycles ever reported for a DNA immobilized optical-fiber surface. This study can also serve as a good reference and provide important implications for developing similar DNA-directed surface biosensors.
Collapse
Affiliation(s)
- Ruoyu Wang
- State Key Joint Laboratory
of ESPC; Research Centre of Environmental and Health Sensing Technology,
School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory
of ESPC; Research Centre of Environmental and Health Sensing Technology,
School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiyu Zhu
- State Key Joint Laboratory
of ESPC; Research Centre of Environmental and Health Sensing Technology,
School of Environment, Tsinghua University, Beijing 100084, China
| | - Chao Yang
- State Key Joint Laboratory
of ESPC; Research Centre of Environmental and Health Sensing Technology,
School of Environment, Tsinghua University, Beijing 100084, China
| | - Lanhua Liu
- State Key Joint Laboratory
of ESPC; Research Centre of Environmental and Health Sensing Technology,
School of Environment, Tsinghua University, Beijing 100084, China
| | - Hanchang Shi
- State Key Joint Laboratory
of ESPC; Research Centre of Environmental and Health Sensing Technology,
School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Direct and ultrasensitive optofluidic-based immunosensing assay of aflatoxin M1 in dairy products using organic solvent extraction. Anal Chim Acta 2016; 940:120-7. [DOI: 10.1016/j.aca.2016.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/01/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023]
|
20
|
|
21
|
Lafleur JP, Jönsson A, Senkbeil S, Kutter JP. Recent advances in lab-on-a-chip for biosensing applications. Biosens Bioelectron 2016; 76:213-33. [DOI: 10.1016/j.bios.2015.08.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/15/2022]
|
22
|
Zhou L, Zhu A, Lou X, Song D, Yang R, Shi H, Long F. Universal quantum dot-based sandwich-like immunoassay strategy for rapid and ultrasensitive detection of small molecules using portable and reusable optofluidic nano-biosensing platform. Anal Chim Acta 2016; 905:140-8. [DOI: 10.1016/j.aca.2015.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/28/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
|
23
|
Affiliation(s)
- Xu-dong Wang
- Department
of Chemistry, Fudan University, 200433 Shanghai, P. R. China
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
24
|
Electrochemical detection of Bisphenol A with high sensitivity and selectivity using recombinant protein-immobilized graphene electrodes. Biosens Bioelectron 2015; 71:214-221. [DOI: 10.1016/j.bios.2015.04.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/06/2015] [Accepted: 04/13/2015] [Indexed: 01/03/2023]
|
25
|
Zhang B, Lu L, Huang F, Lin Z. [Ru(bpy) 3 ] 2+ -mediated photoelectrochemical detection of bisphenol A on a molecularly imprinted polypyrrole modified SnO 2 electrode. Anal Chim Acta 2015; 887:59-66. [DOI: 10.1016/j.aca.2015.05.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
26
|
Portable and reusable optofluidics-based biosensing platform for ultrasensitive detection of sulfadimidine in dairy products. SENSORS 2015; 15:8302-13. [PMID: 25860072 PMCID: PMC4431307 DOI: 10.3390/s150408302] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 12/29/2022]
Abstract
Sulfadimidine (SM2) is a highly toxic and ubiquitous pollutant which requires rapid, sensitive and portable detection method for environmental and food monitoring. Herein, the use for the detection of SM2 of a portable optofluidics-based biosensing platform, which was used for the accurate detection of bisphenol A, atrazine and melamine, is reported for the first time. The proposed compact biosensing system combines the advantages of an evanescent wave immunosensor and microfluidic technology. Through the indirect competitive immunoassay, the detection limit of the proposed optofluidics-based biosensing platform for SM2 reaches 0.05 μg·L−1 at the concentration of Cy5.5-labeled antibody of 0.1 μg·mL−1. Linearity is obtained over a dynamic range from 0.17 μg·L−1 to 10.73 μg·L−1. The surface of the fiber probe can be regenerated more than 300 times by means of 0.5% sodium dodecyl sulfate solution (pH = 1.9) washes without losing sensitivity. This method, featuring high sensitivity, portability and acceptable reproducibility shows potential in the detection of SM2 in real milk and other dairy products.
Collapse
|
27
|
Long F, Zhu A, Shi H, Sheng J, Zhao Z. Adsorption kinetics of pesticide in soil assessed by optofluidics-based biosensing platform. CHEMOSPHERE 2015; 120:615-620. [PMID: 25462305 DOI: 10.1016/j.chemosphere.2014.09.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 06/04/2023]
Abstract
The adsorption of pesticides in soil is a key process that affects transport, degradation, mobility, and bioaccumulation of these substances. To obtain extensive knowledge regarding the adsorption processes of pesticides in the environment, the new green assay technologies for the rapid, sensitive, field-deployable, and accurate quantification of pesticides are required. In the present study, an evanescent wave-based optofluidics biosensing platform (EWOB) was developed by combining advanced photonics and microfluidics technology for the rapid sensitive immunodetection and adsorption kinetics assay of pesticides. The robustness, reusability, and accuracy of the EWOB allow an enhanced prediction of pesticide adsorption kinetics in soil. Using atrazine (ATZ) as the target model, we found that the adsorption kinetics in soil followed a pseudo-second-order kinetic model. EWOB was compared with liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method and yielded a good correlation coefficient (r(2)=0.9968). The underestimated results of LC-MS/MS resulted in a higher adsorption constant of ATZ in soil derived from LC-MS/MS than that of a biosensor. The proposed EWOB system provides a simple, green, and powerful tool to investigate the transport mechanism and fate of pesticide residues.
Collapse
Affiliation(s)
- Feng Long
- School of Environment and Natural Resources, Renmin University of China, Beijing, China.
| | - Anna Zhu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, China
| | - Jianwu Sheng
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, China
| | - Zhen Zhao
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
28
|
Wang R, Xiang Y, Zhou X, Liu LH, Shi H. A reusable aptamer-based evanescent wave all-fiber biosensor for highly sensitive detection of Ochratoxin A. Biosens Bioelectron 2014; 66:11-8. [PMID: 25460875 DOI: 10.1016/j.bios.2014.10.079] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 12/24/2022]
Abstract
Although aptamer-based biosensors have attracted ever-increasing attentions and found potential applications in a wide range of areas, they usually adopted the assay protocol of immobilizing DNA probe (e.g., aptamer, aptamer-complementary oligonucleotides) on a solid sensing surface, making it critical and challengeable to keep the integration of nucleic acid surface during the regeneration and the restoration to its original DNA probe form after repeated uses. In order to address the issue, we report a novel aptamer-based biosensing strategy based on an evanescent wave all-fiber (EWA) platform. In a simple target capturing step using aptamer-functionalized magnetic microbeads, signal probes conjugated with streptavidin are released and further detected by a EWA biosensor via a facial dethiobiotin-streptavidin recognition. Apart from the inherent advantages of aptamer-based evanescent wave biosensors (e.g. target versatility, sensitivity, selectivity and portability), the proposed strategy exhibits a high stability and remarkable reusability over other aptasensors. Under the optimized conditions, the typical calibration curve obtained for Ochratoxin A has a detection limit of 3nM with a linear response ranging from 6nM to 500nM. The dethiobiotin-streptavidin sensing surface instead of the traditional nucleic acid one can be reused for over 300 times without losing sensitivity.
Collapse
Affiliation(s)
- Ruoyu Wang
- School of environment, Tsinghua University, Beijing 100084, China
| | - Yu Xiang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- School of environment, Tsinghua University, Beijing 100084, China.
| | - Lan-Hua Liu
- School of environment, Tsinghua University, Beijing 100084, China
| | - Hanchang Shi
- School of environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Ultrasensitive time-resolved microplate fluorescence immunoassay for bisphenol A using a system composed on gold nanoparticles and a europium(III)-labeled streptavidin tracer. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1356-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of Antibodies and Enzymes on 3-Aminopropyltriethoxysilane-Functionalized Bioanalytical Platforms for Biosensors and Diagnostics. Chem Rev 2014; 114:11083-130. [DOI: 10.1021/cr5000943] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sandeep Kumar Vashist
- HSG-IMIT - Institut für Mikro- und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Edmond Lam
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | | | - Keith B. Male
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - John H. T. Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| |
Collapse
|