1
|
Yin W, Hu K, Yu B, Zhang T, Mei H, Zhang B, Zou Z, Xia L, Gui Y, Yin J, Jin W, Mu Y. Fast and sensitive detection of viable Escherichia coli O157:H7 using a microwell-confined and propidium monoazide-assisted digital CRISPR microfluidic platform. LAB ON A CHIP 2024; 24:4659-4668. [PMID: 39228336 DOI: 10.1039/d4lc00672k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Escherichia coli O157:H7 is a major foodborne pathogen that poses a significant threat to food safety and human health. Rapid and sensitive detection of viable Escherichia coli O157:H7 can effectively prevent food poisoning. Here, we developed a microwell-confined and propidium monoazide-assisted digital CRISPR microfluidic platform for rapid and sensitive detection of viable Escherichia coli O157:H7 in food samples. The reaction time is significantly reduced by minimizing the microwell volume, yielding qualitative results in 5 min and absolute quantitative results in 15 min. With the assistance of propidium monoazide, this platform can eliminate the interference from 99% of dead Escherichia coli O157:H7. The direct lysis method obviates the need for a complex nucleic acid extraction process, offering a limit of detection of 3.6 × 101 CFU mL-1 within 30 min. Our results demonstrated that the platform provides a powerful tool for rapid detection of Escherichia coli O157:H7 and provides reliable guidance for food safety testing.
Collapse
Affiliation(s)
- Weihong Yin
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Kai Hu
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Bingwen Yu
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
- Huzhou Institute of Zhejiang University, Huzhou 313002, P. R. China
| | - Tao Zhang
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Haohua Mei
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bowen Zhang
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Zheyu Zou
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Liping Xia
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Yehong Gui
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Juxing Yin
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
| | - Wei Jin
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
- Huzhou Institute of Zhejiang University, Huzhou 313002, P. R. China
| | - Ying Mu
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
2
|
Zhou H, Yang Y, Zhang Y, Li F, Shen Y, Qin L, Huang W. Current Status and Perspectives of Diagnosis and Treatment of Periprosthetic Joint Infection. Infect Drug Resist 2024; 17:2417-2429. [PMID: 38912221 PMCID: PMC11192293 DOI: 10.2147/idr.s457644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
Periprosthetic joint infection (PJI) is a catastrophic complication following joint replacement surgery, posing significant challenges to orthopedic surgeons. Due to the lack of a definitive diagnostic gold standard, timely treatment initiation is problematic, resulting in substantial economic burdens on patients and society. In this review, we thoroughly analyze the complexities of PJI and emphasize the importance of accurate diagnosis and effective treatment. The article specifically focuses on the advancements in diagnostic techniques, ranging from traditional pathogen culture to advanced molecular diagnostics, and discusses their role in enhancing diagnostic accuracy. Additionally, we review the latest surgical management strategies, including everything from debridement to revision surgeries. Our summary aims to provide practical information for the diagnosis and treatment of PJI and encourages further research to improve diagnostic accuracy and treatment outcomes.
Collapse
Affiliation(s)
- Haotian Zhou
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yaji Yang
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yanhao Zhang
- College of Pharmacy, Army Military Medical University, Chongqing, 400038, People’s Republic of China
| | - Feilong Li
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yidong Shen
- Department of Orthopaedics, The First People’s Hospital of Yancheng, Yancheng, 224000, People’s Republic of China
| | - Leilei Qin
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Wei Huang
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
3
|
Trinh KTL, Lee NY. Recent Methods for the Viability Assessment of Bacterial Pathogens: Advances, Challenges, and Future Perspectives. Pathogens 2022; 11:1057. [PMID: 36145489 PMCID: PMC9500772 DOI: 10.3390/pathogens11091057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Viability assessment is a critical step in evaluating bacterial pathogens to determine infectious risks to public health. Based on three accepted viable criteria (culturability, metabolic activity, and membrane integrity), current viability assessments are categorized into three main strategies. The first strategy relies on the culturability of bacteria. The major limitation of this strategy is that it cannot detect viable but nonculturable (VBNC) bacteria. As the second strategy, based on the metabolic activity of bacteria, VBNC bacteria can be detected. However, VBNC bacteria sometimes can enter a dormant state that allows them to silence reproduction and metabolism; therefore, they cannot be detected based on culturability and metabolic activity. In order to overcome this drawback, viability assessments based on membrane integrity (third strategy) have been developed. However, these techniques generally require multiple steps, bulky machines, and laboratory technicians to conduct the tests, making them less attractive and popular applications. With significant advances in microfluidic technology, these limitations of current technologies for viability assessment can be improved. This review summarized and discussed the advances, challenges, and future perspectives of current methods for the viability assessment of bacterial pathogens.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| |
Collapse
|
4
|
Kumar A, Parihar A, Panda U, Parihar DS. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution. ACS APPLIED BIO MATERIALS 2022; 5:2046-2068. [PMID: 35473316 PMCID: PMC9063993 DOI: 10.1021/acsabm.1c01320] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/11/2022] [Indexed: 02/08/2023]
Abstract
Recent advances in microfluidics-based point-of-care testing (POCT) technology such as paper, array, and beads have shown promising results for diagnosing various infectious diseases. The fast and timely detection of viral infection has proven to be a critical step for deciding the therapeutic outcome in the current COVID-19 pandemic, which in turn not only enhances the patient survival rate but also reduces the disease-associated comorbidities. In the present scenario, rapid, noninvasive detection of the virus using low cost and high throughput microfluidics-based POCT devices embraces the advantages over existing diagnostic technologies, for which a centralized lab facility, expensive instruments, sample pretreatment, and skilled personnel are required. Microfluidic-based multiplexed POCT devices can be a boon for clinical diagnosis in developing countries that lacks a centralized health care system and resources. The microfluidic devices can be used for disease diagnosis and exploited for the development and testing of drug efficacy for disease treatment in model systems. The havoc created by the second wave of COVID-19 led several countries' governments to the back front. The lack of diagnostic kits, medical devices, and human resources created a huge demand for a technology that can be remotely operated with single touch and data that can be analyzed on a phone. Recent advancements in information technology and the use of smartphones led to a paradigm shift in the development of diagnostic devices, which can be explored to deal with the current pandemic situation. This review sheds light on various approaches for the development of cost-effective microfluidics POCT devices. The successfully used microfluidic devices for COVID-19 detection under clinical settings along with their pros and cons have been discussed here. Further, the integration of microfluidic devices with smartphones and wireless network systems using the Internet-of-things will enable readers for manufacturing advanced POCT devices for remote disease management in low resource settings.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Mechanical Engineering, Indian Institute of Information Technology Design & Manufacturing Kancheepuram, Chennai 600127, India
| | - Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh 462026, India
| | - Udwesh Panda
- Department of Mechanical Engineering, Indian Institute of Information Technology Design & Manufacturing Kancheepuram, Chennai 600127, India
| | | |
Collapse
|
5
|
Ren Q, Wei F, Yuan C, Zhu C, Zhang Q, Quan J, Sun X, Zheng S. The effects of removing dead bacteria by propidium monoazide on the profile of salivary microbiome. BMC Oral Health 2021; 21:460. [PMID: 34551743 PMCID: PMC8456568 DOI: 10.1186/s12903-021-01832-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Background Oral microbiome played an important role in maintaining healthy state and might exhibit certain changes under circumstances of diseases. However, current microbiological research using sequencing techniques did not regard dead bacteria as a separate part, causing findings based on subsequent analyses on dynamic equilibrium and functional pathways of microbes somewhat questionable. Since treatment by propidium monoazide (PMA) was able to remove dead bacteria effectively, it would be worth studying how the sequencing results after PMA treatment differed from those focusing on the whole microbiota. Methods Unstimulated whole saliva samples were obtained from 18 healthy people from 3 age groups (children, adults, and the elderly). After removal of dead bacteria by propidium monoazide (PMA), changes in the profile of salivary microbiome were detected using 16S rRNA sequencing technology, and differences among age groups were compared subsequently. Results Dead bacteria accounted for nearly a half of the whole bacteria flora in saliva, while freezing had little effect on the proportion of deaths. After treatment with PMA, the numbers of OTUs reduced by 4.4–14.2%, while the Shannon diversity indices decreased significantly (P < 0.01). Only 35.2% of positive and 6.1% of negative correlations were found to be shared by the whole microbiota and that with dead bacteria removed. Differences in significantly changed OTUs and functional pathways among different age groups were also observed between the group of PMA and the control. Conclusions It was necessary to take the influence of living state of bacteria into account in analytic studies of salivary microbiome. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01832-5.
Collapse
Affiliation(s)
- Qidi Ren
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Fangqiao Wei
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Chao Yuan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Ce Zhu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China.,Department of Preventive Dentistry, Shanghai Jiao Tong University School of Dentistry, Shanghai Ninth People's Hospital, Shanghai, People's Republic of China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Junkang Quan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China.
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Abstract
The aim of this review is to assess the use of biosensors in the diagnosis and monitoring of joint infection (JI). JI is worldwide considered a significant cause of morbidity and mortality in developed countries. Due to the progressive ageing of the global population, the request for joint replacement increases, with a significant rise in the risk of periprosthetic joint infection (PJI). Nowadays, the diagnosis of JI is based on clinical and radiological findings. Nuclear imaging studies are an option but are not cost-effective. Serum inflammatory markers and the analysis of the aspirated synovial fluid are required to confirm the diagnosis. However, a quick and accurate diagnosis of JI may remain elusive as no rapid and highly accurate diagnostic method was validated. A comprehensive search on Medline, EMBASE, Scopus, CINAH, CENTRAL, Google Scholar, and Web of Science was conducted from the inception to June 2021. The PRISMA guidelines were used to improve the reporting of the review. The MINORS was used for quality assessment. From a total of 155 studies identified, only four articles were eligible for this study. The main advantages of biosensors reported were accuracy and capability to detect bacteria also in negative culture cases. Otherwise, due to the few studies and the low level of evidence of the papers included, it was impossible to find significant results. Therefore, further high-quality studies are required.
Collapse
|
7
|
Chung YD, Liu TH, Liang YL, Lin CN, Hsu KF, Lee GB. An integrated microfluidic platform for detection of ovarian clear cell carcinoma mRNA biomarker FXYD2. LAB ON A CHIP 2021; 21:2625-2632. [PMID: 34013940 DOI: 10.1039/d1lc00177a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work we developed an integrated microfluidic system for automatically detecting the ovarian clear cell carcinoma (OCCC) biomarker FXYD2. Dealing with ascites from ovarian cancer patients, capture of cancer cells, isolation of messenger RNA, and quantitative reverse-transcription polymerase chain reaction were integrated into a single microfluidic chip and carried out on-chip automatically. OCCC is a subtype of ovarian cancer with a high mortality risk, and a high FXYD2 gene expression level was shown to be closely associated with OCCC. The lowest limit of quantification using a benchtop protocol of this system could be as low as 100 copies per sample. By normalizing the expression to a housekeeping gene, GAPDH, a simple cycle threshold ratio index could distinguish high FXYD2 expression cells from the low-expression ones. This developed platform may therefore facilitate future OCCC diagnosis and/or prognosis.
Collapse
Affiliation(s)
- Yi-Da Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Ting-Hang Liu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yu-Ling Liang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan.
| | - Chang-Ni Lin
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan.
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan. and Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Hsu KW, Lee WB, You HL, Lee MS, Lee GB. An automated and portable antimicrobial susceptibility testing system for urinary tract infections. LAB ON A CHIP 2021; 21:755-763. [PMID: 33503076 DOI: 10.1039/d0lc01315c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Urinary tract infections (UTIs) are bacterial infections that 1) commonly affect females, 2) can pose high risks to impair kidney function, 3) are often treated with broad-spectrum antibiotics, and 4) are associated with high recurrence rates due to the evolution of drug-resistant strains. To choose the appropriate antibiotic, the minimum inhibitory concentration (MIC) among a panel of antibiotics should be determined before administration to avoid inadequate dosing or use of wrong antibiotics. To meet with the unmet needs, we developed a bead-based method for bacterial preconcentration with capture rates ranging from 20-50% and then automatically performed on-chip AST on an automated device which was composed of a pneumatic control module, a temperature control module and a chip image processing module. The developed portable system was capable of automatically conducting AST and MIC measurements using urine samples (via image analysis) in only 4.5-9 h and tested on four common UTIs bacterial strains. This compact system may therefore be promising for point-of-care personalized medicine in the near future.
Collapse
Affiliation(s)
- Kuo-Wei Hsu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Wen-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Huey-Ling You
- Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan
| | - Mel S Lee
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung 83301, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan. and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan and Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
9
|
Bilal M, Munir H, Khan MI, Khurshid M, Rasheed T, Rizwan K, Franco M, Iqbal HMN. Gums-based engineered bio-nanostructures for greening the 21st-century biotechnological settings. Crit Rev Food Sci Nutr 2021; 62:3913-3929. [PMID: 33427482 DOI: 10.1080/10408398.2020.1871318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Naturally occurring plant-based gums and their engineered bio-nanostructures have gained an immense essence of excellence in several industrial, biotechnological, and biomedical sectors of the modern world. Gums derived from bio-renewable resources that follow green chemistry principles are considered green macromolecules with unique structural and functional attributes. For instance, gum mostly obtained as exudates are bio-renewable, bio-degradable, bio-compatible, sustainable, overall cost-effective, and nontoxic. Gum exudates also offer tunable attributes that play a crucial role in engineering bio-nanostructures of interest for several bio- and non-bio applications, e.g., food-related items, therapeutic molecules, sustained and controlled delivery cues, bio-sensing constructs, and so on. With particular reference to plant gum exudates, this review focuses on applied perspectives of various gums, i.e., gum Arabic, gum albizzia, gum karaya, gum tragacanth, and gum kondagogu. After a brief introduction with problem statement and opportunities, structural and physicochemical attributes of plant-based natural gums are presented. Following that, considerable stress is given to green synthesis and stabilization of gum-based bio-nanostructures. The final part of the review focuses on the bio- and non-bio related applications of various types of gums polysaccharides-oriented bio-nanostructures.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hira Munir
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tahir Rasheed
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, Ilhéus, Brazil
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
10
|
Li Z, Bai Y, You M, Hu J, Yao C, Cao L, Xu F. Fully integrated microfluidic devices for qualitative, quantitative and digital nucleic acids testing at point of care. Biosens Bioelectron 2020; 177:112952. [PMID: 33453463 PMCID: PMC7774487 DOI: 10.1016/j.bios.2020.112952] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
Benefiting from emerging miniaturized and equipment-free nucleic acid testing (NAT) technologies, fully integrated NAT devices at point of care (POC) with the capability of "sample-in-answer-out" are proceeding at a break-neck speed to eliminate complex operations and reduce the risk of contamination. Like the development of polymerase chain reaction (PCR) technology (the standard technique for NAT), the detection signal of fully integrated NAT devices has evolved from qualitative to quantitative and recently to digital readout, aiming at expanding their extensive applications through gradually improving detection sensitivity and accuracy. This review firstly introduces the existing commercial products, and then illustrates recent fully integrated microfluidic devices for NAT at POC from the aspect of detection signals (i.e., qualitative, quantitative and digital). Importantly, the key issues of existing commercial products and the main challenges between scientific research and product development are discussed. On this basis, we envision that the MARCHED (miniaturized, automatic, reagent-preloaded, commercializable, high-throughput, environment-independent and disposable) NAT devices are expected to be realized in the near future.
Collapse
Affiliation(s)
- Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yuemeng Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Jie Hu
- Suzhou DiYinAn Biotechnology Co., Ltd, Suzhou, 215010, PR China
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| | - Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
11
|
Ma YD, Li KH, Chen YH, Lee YM, Chou ST, Lai YY, Huang PC, Ma HP, Lee GB. A sample-to-answer, portable platform for rapid detection of pathogens with a smartphone interface. LAB ON A CHIP 2019; 19:3804-3814. [PMID: 31620745 DOI: 10.1039/c9lc00797k] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Emerging and re-emerging infectious diseases pose global threats to human health. Although several conventional diagnostic methods have been widely adopted in the clinic, the long turn-around times of "gold standard" culture-based techniques, as well as the limited sensitivity of lateral-flow strip assays, thwart medical progress. In this study, a smartphone-controlled, automated, and portable system was developed for rapid molecular diagnosis of pathogens (including viruses and bacteria) via the use of a colorimetric loop-mediated isothermal amplification (LAMP) approach on a passive, self-driven microfluidic device. The system was capable of 1) purifying viral or bacterial samples with specific affinity reagents that had been pre-conjugated to magnetic beads, 2) lysing pathogens at low temperatures, 3) executing isothermal nucleic acid amplification, and 4) quantifying the results of colorimetric assays for detection of pathogens with an integrated color sensor. The entire, 40 min analytical process was automatically performed with a novel punching-press mechanism that could be controlled and monitored by a smartphone. As a proof of concept, the influenza A (H1N1) virus and methicillin-resistant Staphylococcus aureus bacteria were used to characterize and optimize the device, and the limits of detection were experimentally found to be 3.2 × 10-3 hemagglutinating units (HAU) per reaction and 30 colony-forming units (CFU) per reaction, respectively; both such values represent high enough sensitivity for clinical adoption. Moreover, the colorimetric assay could be both qualitative and quantitative for detection of pathogens. This is the first instance of an easy-to-use, automated, and portable system for accurate and sensitive molecular diagnosis of either viruses or bacteria, and it is envisioned that this smartphone-controlled apparatus may serve as a platform for clinical, point-of-care pathogen detection, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Yu-Dong Ma
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Kuang-Hsien Li
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Yi-Hong Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Yung-Mao Lee
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Shang-Ta Chou
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Yue-Yuan Lai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Po-Chiun Huang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Hsi-Pin Ma
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan. and Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, 30013 Taiwan and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
| |
Collapse
|
12
|
Gorgannezhad L, Stratton H, Nguyen NT. Microfluidic-Based Nucleic Acid Amplification Systems in Microbiology. MICROMACHINES 2019; 10:E408. [PMID: 31248141 PMCID: PMC6630468 DOI: 10.3390/mi10060408] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Rapid, sensitive, and selective bacterial detection is a hot topic, because the progress in this research area has had a broad range of applications. Novel and innovative strategies for detection and identification of bacterial nucleic acids are important for practical applications. Microfluidics is an emerging technology that only requires small amounts of liquid samples. Microfluidic devices allow for rapid advances in microbiology, enabling access to methods of amplifying nucleic acid molecules and overcoming difficulties faced by conventional. In this review, we summarize the recent progress in microfluidics-based polymerase chain reaction devices for the detection of nucleic acid biomarkers. The paper also discusses the recent development of isothermal nucleic acid amplification and droplet-based microfluidics devices. We discuss recent microfluidic techniques for sample preparation prior to the amplification process.
Collapse
Affiliation(s)
- Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Helen Stratton
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane QLD 4111, Australia.
| |
Collapse
|
13
|
Microfluidics-Based Organism Isolation from Whole Blood: An Emerging Tool for Bloodstream Infection Diagnosis. Ann Biomed Eng 2019; 47:1657-1674. [PMID: 30980291 DOI: 10.1007/s10439-019-02256-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/27/2019] [Indexed: 12/11/2022]
Abstract
The diagnosis of bloodstream infections presents numerous challenges, in part, due to the low concentration of pathogens present in the peripheral bloodstream. As an alternative to existing time-consuming, culture-based diagnostic methods for organism identification, microfluidic devices have emerged as rapid, high-throughput and integrated platforms for bacterial and fungal enrichment, detection, and characterization. This focused review serves to highlight and compare the emerging microfluidic platforms designed for the isolation of sepsis-causing pathogens from blood and suggest important areas for future research.
Collapse
|
14
|
Liu TH, Cheng SS, You HL, Lee MS, Lee GB. Bacterial detection and identification from human synovial fluids on an integrated microfluidic system. Analyst 2019; 144:1210-1222. [DOI: 10.1039/c8an01764f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An integrated microfluidic system was developed for detecting and identifying four bacteria in human joint fluid with the limit of detection as low as 100 colony forming units (CFUs) per milliliter (or 20 CFUs per reaction).
Collapse
Affiliation(s)
- Ting-Hang Liu
- Department of Power Mechanical Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| | - Shu-Shen Cheng
- Department of Laboratory Medicine
- Kaohsiung Chang Gung Memorial Hospital
- Kaohsiung
- Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine
- Kaohsiung Chang Gung Memorial Hospital
- Kaohsiung
- Taiwan
| | - Mel S. Lee
- Department of Orthopaedic Surgery
- Kaohsiung Chang Gung Memorial Hospital
- Kaohsiung
- Taiwan
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
- Institute of Biomedical Engineering
| |
Collapse
|
15
|
Kuo FC, Lu YD, Wu CT, You HL, Lee GB, Lee MS. Comparison of molecular diagnosis with serum markers and synovial fluid analysis in patients with prosthetic joint infection. Bone Joint J 2018; 100-B:1345-1351. [PMID: 30295521 DOI: 10.1302/0301-620x.100b10.bjj-2018-0096.r1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIMS The aim of this study was to compare the results of 16S/28S rRNA sequencing with the erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) level, and synovial fluid analysis in the diagnosis of prosthetic joint infection (PJI). PATIENTS AND METHODS Between September 2015 and August 2016, 214 consecutive patients were enrolled. In the study population, there were 25 patients with a PJI and 189 controls. Of the PJI patients, 14 (56%) were women, and the mean age at the time of diagnosis was 65 years (38 to 83). The ESR and CRP levels were measured, and synovial fluid specimens were collected prospectively. Synovial fluid was subjected to reverse transcription polymerase chain reaction (RT-PCR)/sequence analysis targeting the 16S/28S rRNA, and to conventional culture. Laboratory personnel who were blind to the clinical information performed all tests. The diagnosis of PJI was based on the criteria of the Musculoskeletal Infection Society. RESULTS A total of 25 patients had a confirmed PJI. In 20 cases of monomicrobial PJI, the PCR products could be perfectly matched with the 16S/28S rRNA genes specific for different species of bacteria provided by sequence analysis. Of the five polymicrobial cases of PJI, 16S/28S rRNA PCR sequence analysis failed to identify the concordant bacteria species. In the 189 control patients, there was one false-positive RT-PCR result. The sensitivity and specificity of the molecular diagnosis method were 100% (95% confidence interval (CI) 85.7 to 100) and 99.5% (95% CI 97.1 to 99.9), respectively, whereas the positive and negative predictive values of PCR were 96.1% (95% CI 79.6 to 99.9) and 100% (95% CI 98.1 to 100), respectively. The PCR results were significantly better than serological diagnostic methods (p = 0.004 and p = 0.010 for ESR and CRP, respectively), the synovial fluid white blood cell (WBC) count (p = 0.036), and percentage of polymorphonuclear cells (PMN%) (p = 0.014). CONCLUSION Stepwise RT-PCR and sequence analysis of the 16S/28S rRNA carried out under stringent laboratory conditions achieved highly sensitive and specific results for the differentiation between aseptic and septic joints undergoing arthroplasty. Sequence analysis successfully identified bacterial strains in monomicrobial infections but failed to identify molecular targets in polymicrobial infections. Further refinement of the protocols to identify the bacteria in polymicrobial infections is needed. Cite this article: Bone Joint J 2018;100-B:1345-51.
Collapse
Affiliation(s)
- F-C Kuo
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Y-D Lu
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - C-T Wu
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - H-L You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - G-B Lee
- Department of Power Mechanical Engineering, Institute of Nano Engineering and Microsystems, and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - M S Lee
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
16
|
An integrated microsystem with dielectrophoresis enrichment and impedance detection for detection of Escherichia coli. Biomed Microdevices 2017; 19:34. [DOI: 10.1007/s10544-017-0167-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Lee WB, Yu JC, Lee GB. A new membrane-type microfluidic device for rapid bacteria isolation. 2017 IEEE 12TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS) 2017. [DOI: 10.1109/nems.2017.8017058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
18
|
Chang WH, Yu JC, Yang SY, Lin YC, Wang CH, You HL, Wu JJ, Lee MS, Lee GB. Vancomycin-resistant gene identification from live bacteria on an integrated microfluidic system by using low temperature lysis and loop-mediated isothermal amplification. BIOMICROFLUIDICS 2017; 11:024101. [PMID: 28798845 PMCID: PMC5533491 DOI: 10.1063/1.4977439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/13/2017] [Indexed: 05/05/2023]
Abstract
Vancomycin-resistant Enterococcus (VRE) is a kind of enterococci, which shows resistance toward antibiotics. It may last for a long period of time and meanwhile transmit the vancomycin-resistant gene (vanA) to other bacteria. In the United States alone, the resistant rate of Enterococcus to vancomycin increased from a mere 0.3% to a whopping 40% in the past two decades. Therefore, timely diagnosis and control of VRE is of great need so that clinicians can prevent patients from becoming infected. Nowadays, VRE is diagnosed by antibiotic susceptibility test or molecular diagnosis assays such as matrix-assisted laser desorption ionization/time-of-flight mass spectrometry and polymerase chain reaction. However, the existing diagnostic methods have some drawbacks, for example, time-consumption, no genetic information, or high false-positive rate. This study reports an integrated microfluidic system, which can automatically identify the vancomycin resistant gene (vanA) from live bacteria in clinical samples. A new approach using ethidium monoazide, nucleic acid specific probes, low temperature chemical lysis, and loop-mediated isothermal amplification (LAMP) has been presented. The experimental results showed that the developed system can detect the vanA gene from live Enterococcus in joint fluid samples with detection limit as low as 10 colony formation units/reaction within 1 h. This is the first time that an integrated microfluidic system has been demonstrated to detect vanA gene from live bacteria by using the LAMP approach. With its high sensitivity and accuracy, the proposed system may be useful to monitor antibiotic resistance genes from live bacteria in clinical samples in the near future.
Collapse
Affiliation(s)
- Wen-Hsin Chang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ju-Ching Yu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sung-Yi Yang
- Medical R&D, Jabil Circuit Inc., Ltd., Taichung, Taiwan
| | - Yi-Cheng Lin
- Medical R&D, Jabil Circuit Inc., Ltd., Taichung, Taiwan
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jiunn-Jong Wu
- School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Mel S Lee
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | |
Collapse
|
19
|
Derkus B. Applying the miniaturization technologies for biosensor design. Biosens Bioelectron 2016; 79:901-13. [DOI: 10.1016/j.bios.2016.01.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/11/2022]
|
20
|
HE QD, HUANG DP, HUANG G, CHEN ZG. Advance in Research of Microfluidic Polymerase Chain Reaction Chip. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60921-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Keays MC, O'Brien M, Hussain A, Kiely PA, Dalton T. Rapid identification of antibiotic resistance using droplet microfluidics. Bioengineered 2016; 7:79-87. [PMID: 26942773 DOI: 10.1080/21655979.2016.1156824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Culturing bacteria and monitoring bacterial cell growth is a critical issue when dealing with patients who present with bacterial infections. One of the main challenges that arises is the time taken to identify the particular strain of bacteria and consequently, decide the correct treatment. In the majority of cases, broad spectrum antibiotics are used to target infections when a narrow spectrum drug would be more appropriate. The efficient monitoring of bacterial growth and potential antibiotic resistance is necessary to identify the best treatment options for patients. Minturising the reactions into microfluidic droplets offers a novel method to rapidy analyze bacteria. Microfluidics facilitates low volume reactions that provide a unique system where each droplet reaction acts as an individual bioreactor. Here, we designed and built a novel platform that allowed us to create and monitor E.coli microfluidic droplet cultures. Optical capacity was built in and measurements of bacterial cultures were captured facilitating the continuous monitoring of individual reactions. The capacity of the instrument was demonstrated by the application of treatments to both bacteria and drug resistant strains of bacteria. We were able to detect responses within one hour in the droplet cultures, demonstrating the capacity of this workflow to the culture and rapid characterization of bacterial strains.
Collapse
Affiliation(s)
- Marie C Keays
- a Stokes Laboratories, Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick , Limerick , Ireland
| | - Mark O'Brien
- a Stokes Laboratories, Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick , Limerick , Ireland
| | - Anam Hussain
- a Stokes Laboratories, Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick , Limerick , Ireland
| | - Patrick A Kiely
- a Stokes Laboratories, Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick , Limerick , Ireland.,b Graduate Entry Medical School and Health Research Institute, University of Limerick , Limerick , Ireland
| | - Tara Dalton
- a Stokes Laboratories, Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick , Limerick , Ireland
| |
Collapse
|
22
|
Lu W, Wang J, Wu Q, Sun J, Chen Y, Zhang L, Zheng C, Gao W, Liu Y, Jiang X. High-throughput sample-to-answer detection of DNA/RNA in crude samples within functionalized micro-pipette tips. Biosens Bioelectron 2016; 75:28-33. [DOI: 10.1016/j.bios.2015.08.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/29/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
|
23
|
Recent applications of microchip electrophoresis to biomedical analysis. J Pharm Biomed Anal 2015; 113:72-96. [DOI: 10.1016/j.jpba.2015.03.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
|
24
|
Si Y, Grazon C, Clavier G, Rieger J, Audibert JF, Sclavi B, Méallet-Renault R. Rapid and accurate detection of Escherichia coli growth by fluorescent pH-sensitive organic nanoparticles for high-throughput screening applications. Biosens Bioelectron 2015; 75:320-7. [PMID: 26334591 DOI: 10.1016/j.bios.2015.08.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/03/2015] [Accepted: 08/14/2015] [Indexed: 12/31/2022]
Abstract
Rapid detection of bacterial growth is an important issue in the food industry and for medical research. Here we present a novel kind of pH-sensitive fluorescent nanoparticles (FANPs) that can be used for the rapid and accurate real-time detection of Escherichia coli growth. These organic particles are designed to be non-toxic and highly water-soluble. Here we show that the coupling of pH sensitive fluoresceinamine to the nanoparticles results in an increased sensitivity to changes in pH within a physiologically relevant range that can be used to monitor the presence of live bacteria. In addition, these FANPs do not influence bacterial growth and are stable over several hours in a complex medium and in the presence of bacteria. The use of these FANPs allows for continuous monitoring of bacterial growth via real-time detection over long time scales in small volumes and can thus be used for the screening of a large number of samples for high-throughput applications such as screening for the presence of antibiotic resistant strains.
Collapse
Affiliation(s)
- Yang Si
- PPSM, CNRS UMR 8531, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France; LBPA, CNRS UMR 8113, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France
| | - Chloé Grazon
- PPSM, CNRS UMR 8531, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France
| | - Gilles Clavier
- PPSM, CNRS UMR 8531, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France
| | - Jutta Rieger
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, F-75005 Paris, France
| | | | - Bianca Sclavi
- LBPA, CNRS UMR 8113, ENS-Cachan, 61 av President Wilson, 94230 Cachan, France.
| | | |
Collapse
|
25
|
Cho S, Park TS, Nahapetian TG, Yoon JY. Smartphone-based, sensitive µPAD detection of urinary tract infection and gonorrhea. Biosens Bioelectron 2015; 74:601-11. [PMID: 26190472 DOI: 10.1016/j.bios.2015.07.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/22/2015] [Accepted: 07/08/2015] [Indexed: 01/16/2023]
Abstract
The presence of bacteria in urine can be used to monitor the onset or prognosis of urinary tract infection (UTI) and some sexually-transmitted diseases (STDs), such as gonorrhea. Typically, bacteria's presence in urine is confirmed by culturing samples overnight on agar plates, followed by a microscopic examination. Additionally, the presence of Escherichia coli in a urine sample can be indirectly confirmed through assaying for nitrite (generated by reducing nitrate in urine), however this is not sufficiently specific and sensitive. Species/strains identification of bacteria in a urine sample provides insight to appropriate antibiotic treatment options. In this work, a microfluidic paper analytical device (µPAD) was designed and fabricated for evaluating UTI (E. coli) and STD (Neisseria gonorrhoeae) from human urine samples. Anti-E. coli or anti-N. gonorrhoeae antibodies were conjugated to submicron particles then pre-loaded and dried in the center of each paper microfluidic channel. Human urine samples (undiluted) spiked with E. coli or N. gonorrhoeae were incubated for 5 min with 1% Tween 80. The bacteria-spiked urine samples were then introduced to the inlet of paper microfluidic channel, which flowed through the channel by capillary force. Data confirms that proteins were not filtered by μPAD, which is essential for this assay. Urobilin, the component responsible for the yellow appearance of urine and green fluorescence emission, was filtered by μPAD, resulting in significantly minimized false-positive signals. This filtration was simultaneously made during the μPAD assay and no pretreatment/purification step was necessary. Antibody-conjugated particles were immunoagglutinated at the center of the paper channel. The extent of immunoagglutination was quantified by angle-specific Mie scatter under ambient lighting conditions, utilizing a smartphone camera as a detector. The total μPAD assay time was less than 30s. The detection limit was 10 CFU/mL for both E. coli and N. gonorrhoeae, while commercially available gonorrhea rapid kit showed a detection limit of 10(6) CFU/mL. A commercially available nitrite assay test strip also had a detection limit of 10(6) CFU/mL, but this method is not antibody-based and thus not sufficiently specific. By optimizing the particle concentration, we were also able to extend the linear range of the assay up to 10(7) CFU/mL. The proposed prototype will serve as a low-cost, point-of-care, sensitive urinalysis biosensor to monitor UTI and gonorrhea from human urine.
Collapse
Affiliation(s)
- Soohee Cho
- Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721-0038, USA
| | - Tu San Park
- Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721-0038, USA
| | - Tigran G Nahapetian
- Biomedical Engineering Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85721-0038, USA
| | - Jeong-Yeol Yoon
- Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721-0038, USA; Biomedical Engineering Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85721-0038, USA.
| |
Collapse
|