1
|
Pechnikova NA, Domvri K, Porpodis K, Istomina MS, Iaremenko AV, Yaremenko AV. Carbon Quantum Dots in Biomedical Applications: Advances, Challenges, and Future Prospects. AGGREGATE 2024. [DOI: 10.1002/agt2.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
ABSTRACTCarbon quantum dots (CQDs) represent a rapidly emerging class of nanomaterials with significant potential in biomedical applications due to their tunable fluorescence, high biocompatibility, and versatile functionalization. This review focuses on the recent progress in utilizing CQDs for drug delivery, bioimaging, biosensing, and cancer therapy. With their unique optical properties, such as tunable fluorescence, high quantum yield, and photostability, CQDs enable precise bioimaging and sensitive biosensing. Their small size, biocompatibility, and ease of surface functionalization allow for the development of targeted drug delivery systems, enhancing therapeutic precision and minimizing side effects. In cancer therapy, CQDs have shown potential in photodynamic and photothermal treatments by generating reactive oxygen species under light exposure, selectively targeting cancer cells while sparing healthy tissues. Furthermore, CQDs’ ability to penetrate biological barriers including the blood–brain barrier opens new possibilities for delivering therapeutic agents to hard‐to‐reach areas, such as tumors or diseased tissues. However, challenges such as optimizing synthesis, ensuring long‐term stability, and addressing safety concerns in biological environments remain critical hurdles. This review discusses current efforts to overcome these barriers and improve CQD performance in clinical settings, including scalable production methods and enhanced biocompatibility. As research progresses, CQDs are expected to play an important role in improving healthcare by offering more targeted treatment options and contributing to advancements in personalized medicine.
Collapse
Affiliation(s)
- Nadezhda A. Pechnikova
- Department of Biochemistry & Biotechnology University of Thessaly Volos Greece
- Laboratory of Chemical Engineering A’ Department of Chemical Engineering Faculty of Engineering Aristotle University of Thessaloniki Thessaloniki Greece
- Saint Petersburg Pasteur Institute Saint Petersburg Russia
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Laboratory of Histology‐Embryology School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Pathology Department George Papanikolaou Hospital Aristotle University of Thessaloniki Thessaloniki Greece
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Maria S. Istomina
- Institute of Experimental Medicine Almazov National Medical Research Centre Saint‐Peterburg Russia
| | | | - Alexey V. Yaremenko
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Center for Nanomedicine Brigham and Women's Hospital, Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
2
|
Angela S, Fadhilah G, Hsiao WWW, Lin HY, Ko J, Lu SCW, Lee CC, Chang YS, Lin CY, Chang HC, Chiang WH. Nanomaterials in the treatment and diagnosis of rheumatoid arthritis: Advanced approaches. SLAS Technol 2024; 29:100146. [PMID: 38844139 DOI: 10.1016/j.slast.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/06/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Rheumatoid arthritis (RA), a chronic inflammatory condition that affects persons between the ages of 20 and 40, causes synovium inflammation, cartilage loss, and joint discomfort as some of its symptoms. Diagnostic techniques for RA have traditionally been split into two main categories: imaging and serological tests. However, significant issues are associated with both of these methods. Imaging methods are costly and only helpful in people with obvious symptoms, while serological assays are time-consuming and require specialist knowledge. The drawbacks of these traditional techniques have led to the development of novel diagnostic approaches. The unique properties of nanomaterials make them well-suited as biosensors. Their compact dimensions are frequently cited for their outstanding performance, and their positive impact on the signal-to-noise ratio accounts for their capacity to detect biomarkers at low detection limits, with excellent repeatability and a robust dynamic range. In this review, we discuss the use of nanomaterials in RA theranostics. Scientists have recently synthesized, characterized, and modified nanomaterials and biomarkers commonly used to enhance RA diagnosis and therapy capabilities. We hope to provide scientists with the promising potential that nanomaterials hold for future theranostics and offer suggestions on further improving nanomaterials as biosensors, particularly for detecting autoimmune disorders.
Collapse
Affiliation(s)
- Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Gianna Fadhilah
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hsuan-Yi Lin
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Joshua Ko
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Steven Che-Wei Lu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Cheng-Chung Lee
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Lin
- The Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Huan-Cheng Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
3
|
Feng ZY, Jiang JC, Meng LY. Carbon-based photoelectrochemical sensors: recent developments and future prospects. Dalton Trans 2024; 53:11192-11215. [PMID: 38864748 DOI: 10.1039/d4dt00534a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Owing to the considerable potential of photoelectrochemical (PEC) sensors, they have gained significant attention in the analysis of biological, environmental, and food markers. However, the limited charge mass transfer efficiency and rapid recombination of electron hole pairs have become obstacles in the development of PEC sensors. In this case, considering the unique advantages of carbon-based materials, they can be used as photosensitizers, supporting materials and conductive substrates and coupled with semiconductors to prepare composite materials, solving the above problems. In addition, there are many types of carbon materials, which can have semiconductor properties and form heterojunctions after coupling with semiconductors, effectively promoting the separation of electron hole pairs. Herein, we aimed to provide a comprehensive analysis of reports on carbon-based PEC sensors by introducing their research and application status and discussing future development trends in this field. In particular, the types and performance improvement strategies of carbon-based electrodes and the working principles of carbon-based PEC sensors are explained. Furthermore, the applications of carbon-based photoelectric sensors in environmental monitoring, biomedicine, and food detection are highlighted. Finally, the current limitations in the research on carbon-based PEC sensors are emphasized and the need to enhance the sensitivity and selectivity through material modification, structural design, improved device performance, and other strategies are emphasized.
Collapse
Affiliation(s)
- Zhi-Yuan Feng
- Department of Chemistry, College of Science, Yanbian University, Park Road 977, Yanji, 133002, PR China
| | - Jin-Chi Jiang
- Department of Chemistry, College of Science, Yanbian University, Park Road 977, Yanji, 133002, PR China
| | - Long-Yue Meng
- Department of Chemistry, College of Science, Yanbian University, Park Road 977, Yanji, 133002, PR China
- Department of Environmental Science, College of Geography and Ocean Science, Yanbian University, Park Road 977, Yanji, 133002, PR China.
| |
Collapse
|
4
|
Deng Y, Zheng H, Li B, Huang F, Qiu Y, Yang Y, Sheng W, Peng C, Tian X, Wang W, Yu H. Nanomedicines targeting activated immune cells and effector cells for rheumatoid arthritis treatment. J Control Release 2024; 371:498-515. [PMID: 38849090 DOI: 10.1016/j.jconrel.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and inflammatory cellular infiltration. Functional cells in the RA microenvironment (RAM) are composed of activated immune cells and effector cells. Activated immune cells, including macrophages, neutrophils, and T cells, can induce RA. Effector cells, including synoviocytes, osteoclasts, and chondrocytes, receiving inflammatory stimuli, exacerbate RA. These functional cells, often associated with the upregulation of surface-specific receptor proteins and significant homing effects, can secrete pro-inflammatory factors and interfere with each other, thereby jointly promoting the progression of RA. Recently, some nanomedicines have alleviated RA by targeting and modulating functional cells with ligand modifications, while other nanoparticles whose surfaces are camouflaged by membranes or extracellular vesicles (EVs) of these functional cells target and attack the lesion site for RA treatment. When ligand-modified nanomaterials target specific functional cells to treat RA, the functional cells are subjected to attack, much like the intended targets. When functional cell membranes or EVs are modified onto nanomaterials to deliver drugs for RA treatment, functional cells become the attackers, similar to arrows. This study summarized how diversified functional cells serve as targets or arrows by engineered nanoparticles to treat RA. Moreover, the key challenges in preparing nanomaterials and their stability, long-term efficacy, safety, and future clinical patient compliance have been discussed here.
Collapse
Affiliation(s)
- Yasi Deng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hao Zheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feibing Huang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yun Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
5
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
6
|
Radu AF, Bungau SG. Nanomedical approaches in the realm of rheumatoid arthritis. Ageing Res Rev 2023; 87:101927. [PMID: 37031724 DOI: 10.1016/j.arr.2023.101927] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Rheumatoid arthritis (RA) is a heterogeneous autoimmune inflammatory disorder defined by the damage to the bone and cartilage in the synovium, which causes joint impairment and an increase in the mortality rate. It is associated with an incompletely elucidated pathophysiological mechanism. Even though disease-modifying antirheumatic drugs have contributed to recent improvements in the standard of care for RA, only a small fraction of patients is able to attain and maintain clinical remission without the necessity for ongoing immunosuppressive drugs. The evolution of tolerance over time as well as patients' inability to respond to currently available therapy can alter the overall management of RA. A significant increase in the research of RA nano therapies due to the possible improvements they may provide over traditional systemic treatments has been observed. New approaches to getting beyond the drawbacks of existing treatments are presented by advancements in the research of nanotherapeutic techniques, particularly drug delivery nano systems. Via passive or active targeting of systemic delivery, therapeutic drugs can be precisely transported to and concentrated in the affected sites. As a result, nanoscale drug delivery systems improve the solubility and bioavailability of certain drugs and reduce dose escalation. In the present paper, we provide a thorough overview of the possible biomedical applications of various nanostructures in the diagnostic and therapeutic management of RA, derived from the shortcomings of conventional therapies. Moreover, the paper suggests the need for improvement on the basis of research directions and properly designed clinical studies.
Collapse
Affiliation(s)
- Andrei-Flavius Radu
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania.
| | - Simona Gabriela Bungau
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| |
Collapse
|
7
|
Pourmadadi M, Rahmani E, Rajabzadeh-Khosroshahi M, Samadi A, Behzadmehr R, Rahdar A, Ferreira LFR. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Xu Y, Zhang T, Li Z, Liu X, Zhu Y, Zhao W, Chen H, Xu J. Photoelectrochemical Cytosensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi‐Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Tian‐Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiang‐Nan Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yuan‐Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- State Key Laboratory of Pharmaceutical Biotechnology School of Life Science Nanjing University Nanjing 210023 China
| | - Wei‐Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
9
|
Shen YZ, Guan J, Ma C, Shu Y, Xu Q, Hu XY. Competitive Displacement Triggering DBP Photoelectrochemical Aptasensor via Cetyltrimethylammonium Bromide Bridging Aptamer and Perovskite. Anal Chem 2022; 94:1742-1751. [PMID: 35026109 DOI: 10.1021/acs.analchem.1c04348] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Here, a label-free perovskite-based photoelectrochemical (PEC) aptasensor was rationally designed for the displacement assay of dibutyl phthalate (DBP), a well-known endocrine disruptor, with the aid of cetyltrimethylammonium bromide (CTAB). In this method, CTAB significantly enhanced the PEC response and humidity resistance of the CH3NH3PbI3 perovskite by forming a protecting layer and passivating the X- and A-sites vacancies of CH3NH3PbI3. In addition, CTAB facilitated the immobilization of an aptamer through van der Waals and hydrophobicity forces, as well as the electrostatic interactions between the phosphate group of the aptamer and the cationic group of CTAB. When exposed to DBP in the affinity solution, the DBP aptamer was released from the electrode because the affinity between DBP and its aptamer competes with the interaction of the aptamer and CTAB. The displacement of the aptamer from the perovskite surface relieves the block effect and thus enhances the photoelectric signal of perovskite. By virtue of the good photoelectrochemical characters of CH3NH3PbI3 and the specific recognition ability of aptamer, the linear range of the PEC sensor was 1.0 × 10-13 to 1.0 × 10-8 M and the detection and quantification limits were down to 2.5 × 10-14 and 8.2 × 10-14 M (S/N = 3), respectively. This work offers a novel strategy for designing aptasensors for the detection of various targets and exhibits the marvelous potential of organic-inorganic perovskite in the field of PEC analysis.
Collapse
Affiliation(s)
- Ying-Zhuo Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jie Guan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chen Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiao-Ya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
10
|
Ansari L, Hallaj S, Hallaj T, Amjadi M. Doped-carbon dots: Recent advances in their biosensing, bioimaging and therapy applications. Colloids Surf B Biointerfaces 2021; 203:111743. [PMID: 33872828 DOI: 10.1016/j.colsurfb.2021.111743] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 04/01/2021] [Indexed: 12/28/2022]
Abstract
As a fascinating class of fluorescent carbon dots (CDs), doped-CDs are now sparked intense research interest, particularly in the diverse fields of biomedical applications due to their unique advantages, including low toxicity, physicochemical, photostability, excellent biocompatibility, and so on. In this review, we have summarized the most recent developments in the literature regarding the employment of doped-CDs for pharmaceutical and medical applications, which are published over approximately the past five years. Accordingly, we discuss the toxicity and optical properties of these nanomaterials. Beyond the presentation of successful examples of the application of these multifunctional nanoparticles in photothermal therapy, photodynamic therapy, and antibacterial activity, we further highlight their application in the cellular labeling, dual imaging, and in vitro and in vivo bioimaging by use of fluorescent-, photoacoustic-, magnetic-, and computed tomography (CT)-imaging. The potency of doped-CDs was also described in the biosensing of ions, small molecules, and drugs in biological samples or inside the cells. Finally, the advantages, disadvantages, and common limitations of doped-CD technologies are reviewed, along with the future prospects in biomedical research. Therefore, this review provides a concise insight into the current developments and challenges in the field of doped-CDs, especially for biological and biomedical researchers.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Shahin Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
11
|
Yan Y, Li Q, Wang Q, Mao H. A one-step hydrothermal route to fabricate a ZnO nanorod/3D graphene aerogel-sensitized structure with enhanced photoelectrochemistry performance and self-powered photoelectrochemical biosensing of parathion-methyl. RSC Adv 2021; 11:35644-35652. [PMID: 35493183 PMCID: PMC9043228 DOI: 10.1039/d1ra06339a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/15/2021] [Indexed: 01/26/2023] Open
Abstract
A facile one-pot hydrothermal method for fabricating ZnO/GAs was developed. And a novel self-powered PEC biosensor was constructed based on the ZnO/GAs with the amplification of thiocholine for the detection of parathion-methyl.
Collapse
Affiliation(s)
- Yuting Yan
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Qian Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Qirui Wang
- School of Aeronautical and Mechanical Engineering, Changzhou Institute of Technology, Changzhou, 213022, People's Republic of China
| | - Hanping Mao
- School of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| |
Collapse
|
12
|
|
13
|
A cardiac troponin I photoelectrochemical immunosensor: nitrogen-doped carbon quantum dots–bismuth oxyiodide–flower-like SnO2. Mikrochim Acta 2020; 187:332. [DOI: 10.1007/s00604-020-04302-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
|
14
|
Yin H, Gao D, Qiu Y, Yi G, Li J, Dong Y, Zhang K, Xia Z, Fu Q. Carbon source self-heating: ultrafast, energy-efficient and room temperature synthesis of highly fluorescent N, S-codoped carbon dots for quantitative detection of Fe(iii) ions in biological samples. NANOSCALE ADVANCES 2020; 2:1483-1492. [PMID: 36132331 PMCID: PMC9419051 DOI: 10.1039/c9na00806c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/22/2020] [Indexed: 06/15/2023]
Abstract
In recent years, photoluminescent (PL) carbon dots (CDs) have attracted enormous attention because of their many fascinating properties. However, the traditional synthesis routes of PL CDs usually suffer from relatively low quantum yields (QYs) and require complicated operation processes as well as lots of externally supplied energy. Herein, we report a room temperature, green, ultrafast and energy-efficient route for large scale synthesis of highly PL N, S-codoped CDs without any external energy supply. The N, S-codoped CDs are prepared through a novel carbon source self-heating strategy, using the sole precursor tetraethylenepentamine (TEPA) simultaneously as the carbon, nitrogen and heat source, triggered by the heat initiator sodium persulfate (Na2S2O8). The large amount of heat released from Na2S2O8-triggered oxidation of TEPA could effectively promote the spontaneous polymerization and carbonization of TEPA precursors themselves as well as the in situ co-doping of sulfur, which had marked synergistic effects on the fluorescence enhancement of CDs, eventually leading to the high-yield (58.0%) preparation of highly fluorescent N, S-codoped CDs (QY 26.4%) at room temperature within 2 min. Moreover, the fluorescence of N, S-codoped CDs could be selectively quenched by Fe3+ ions in the presence of EDTA, in an ultra-wide range of 0.2-600 μM, with a detection limit of 0.10 μM. Ultimately, the fluorescent nanoprobe was successfully used for the quantitative detection of Fe3+ in human serum samples, indicating its great potential for sensing and biomedical applications.
Collapse
Affiliation(s)
- Honggang Yin
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Die Gao
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Yan Qiu
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Gaoyi Yi
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Jun Li
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University Chongqing 400030 China
| | - Yingying Dong
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University Chongqing 400030 China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University Luzhou Sichuan 646000 China
| |
Collapse
|
15
|
Yang L, Zhang S, Liu X, Tang Y, Zhou Y, Wong DKY. Detection signal amplification strategies at nanomaterial-based photoelectrochemical biosensors. J Mater Chem B 2020; 8:7880-7893. [DOI: 10.1039/d0tb01191f] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focusses on unique material modification and signal amplification strategies reported in developing photoelectrochemical biosensors with utmost sensitivity and selectivity.
Collapse
Affiliation(s)
- Liwei Yang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Si Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Xiaoqiang Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Yunfei Tang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng 475004
- P. R. China
| | - Danny K. Y. Wong
- Department of Molecular Sciences
- Macquarie University
- Sydney
- Australia
| |
Collapse
|
16
|
Liu X, Bao C, Shao X, Zhang Y, Zhang N, Sun X, Fan D, Wei Q, Ju H. A procalcitonin photoelectrochemical immunosensor: NCQDs and Sb 2S 3 co-sensitized hydrangea-shaped WO 3 as a matrix through a layer-by-layer assembly. NEW J CHEM 2020. [DOI: 10.1039/c9nj06118e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electron-transfer mechanism of a PEC immunosensor based on WO3/NCQDs/Sb2S3 composites in PBS electrolytes containing AA.
Collapse
Affiliation(s)
- Xin Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Chunzhu Bao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xinrong Shao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yong Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Nuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xu Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
17
|
Ghorbani F, Abbaszadeh H, Mehdizadeh A, Ebrahimi-Warkiani M, Rashidi MR, Yousefi M. Biosensors and nanobiosensors for rapid detection of autoimmune diseases: a review. Mikrochim Acta 2019; 186:838. [DOI: 10.1007/s00604-019-3844-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
|
18
|
Photoelectrochemical biosensor for 5hmC detection based on the photocurrent inhibition effect of ZnO on MoS2/C3N4 heterojunction. Biosens Bioelectron 2019; 142:111516. [DOI: 10.1016/j.bios.2019.111516] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/05/2019] [Accepted: 07/13/2019] [Indexed: 12/19/2022]
|
19
|
Yang X, Gao Y, Ji Z, Zhu LB, Yang C, Zhao Y, Shu Y, Jin D, Xu Q, Zhao WW. Dual Functional Molecular Imprinted Polymer-Modified Organometal Lead Halide Perovskite: Synthesis and Application for Photoelectrochemical Sensing of Salicylic Acid. Anal Chem 2019; 91:9356-9360. [DOI: 10.1021/acs.analchem.9b01739] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoyu Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuan Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhengping Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Li-Bang Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Dangqin Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Ge L, Liu Q, Hao N, Kun W. Recent developments of photoelectrochemical biosensors for food analysis. J Mater Chem B 2019; 7:7283-7300. [DOI: 10.1039/c9tb01644a] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent developments of photoelectrochemical biosensors for food analysis are summarized and the future prospects in this field are discussed.
Collapse
Affiliation(s)
- Lan Ge
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Wang Kun
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
21
|
Meng L, Li Y, Yang R, Zhang X, Du C, Chen J. A sensitive photoelectrochemical assay of miRNA-155 based on a CdSe QDs//NPC-ZnO polyhedra photocurrent-direction switching system and target-triggered strand displacement amplification strategy. Chem Commun (Camb) 2019; 55:2182-2185. [DOI: 10.1039/c8cc09411j] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new photoelectrochemical biosensor based on a CdSe QD//NPC-ZnO polyhedra photocurrent-direction switching system and a target-triggered strand displacement amplification strategy was developed for the detection of miRNA-155.
Collapse
Affiliation(s)
- Leixia Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yanmei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ruiying Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
22
|
Su L, Tong P, Zhang L, Luo Z, Fu C, Tang D, Zhang Y. Photoelectrochemical immunoassay of aflatoxin B1 in foodstuff based on amorphous TiO2 and CsPbBr3 perovskite nanocrystals. Analyst 2019; 144:4880-4886. [DOI: 10.1039/c9an00994a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A split-type photoelectrochemical immunoassay was designed to detect AFB1 in foodstuffs using amorphous TiO2 and CsPbBr3 perovskite nanocrystals.
Collapse
Affiliation(s)
- Lingshan Su
- College of Biological Science and Engineering
- Testing Center
- & Key Laboratory for Analytic Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
| | - Ping Tong
- College of Biological Science and Engineering
- Testing Center
- & Key Laboratory for Analytic Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
| | - Lijia Zhang
- College of Biological Science and Engineering
- Testing Center
- & Key Laboratory for Analytic Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
| | - Zhongbin Luo
- College of Biological Science and Engineering
- Testing Center
- & Key Laboratory for Analytic Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
| | - Caili Fu
- College of Biological Science and Engineering
- Testing Center
- & Key Laboratory for Analytic Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
| | - Dianping Tang
- College of Biological Science and Engineering
- Testing Center
- & Key Laboratory for Analytic Science of Food Safety and Biology (MOE & Fujian Province)
- Department of Chemistry
- Fuzhou University
| | - Yuyu Zhang
- School of Food and Chemical Engineering
- Beijing Technology and Business University
- Beijing
- China
| |
Collapse
|
23
|
Zang Y, Fan J, Ju Y, Xue H, Pang H. Current Advances in Semiconductor Nanomaterial‐Based Photoelectrochemical Biosensing. Chemistry 2018; 24:14010-14027. [DOI: 10.1002/chem.201801358] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Zang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Jing Fan
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Yun Ju
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| |
Collapse
|
24
|
Wang H, Qi C, He W, Wang M, Jiang W, Yin H, Ai S. A sensitive photoelectrochemical immunoassay of N6-methyladenosine based on dual-signal amplification strategy: Ru doped in SiO2 nanosphere and carboxylated g-C3N4. Biosens Bioelectron 2018; 99:281-288. [DOI: 10.1016/j.bios.2017.07.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/04/2017] [Accepted: 07/16/2017] [Indexed: 11/16/2022]
|
25
|
Zhu Y, Tong X, Song H, Wang Y, Qiao Z, Qiu D, Huang J, Lu Z. CsPbBr3 perovskite quantum dots/ZnO inverse opal electrodes: photoelectrochemical sensing for dihydronicotinamide adenine dinucleotide under visible irradiation. Dalton Trans 2018; 47:10057-10062. [DOI: 10.1039/c8dt01790e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
All-inorganic perovskite quantum dots (PQDs) have attracted tremendous attention due to their extraordinary optical properties, especially CsPbBr3 QDs with their high stability and photoluminescence efficiency.
Collapse
Affiliation(s)
- Yongsheng Zhu
- College of Chemistry and Pharmaceutical Engineering
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Xinling Tong
- College of Chemistry and Pharmaceutical Engineering
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Haizhen Song
- College of Chemistry and Pharmaceutical Engineering
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Yinhua Wang
- College of Chemistry and Pharmaceutical Engineering
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Zhanping Qiao
- College of Chemistry and Pharmaceutical Engineering
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Dongfang Qiu
- College of Chemistry and Pharmaceutical Engineering
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Jinshu Huang
- College of Chemistry and Pharmaceutical Engineering
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| | - Zhiwen Lu
- College of Chemistry and Pharmaceutical Engineering
- College of Physics and Electronic Engineering
- Nanyang Normal University
- Nanyang 473061
- China
| |
Collapse
|
26
|
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
27
|
Zang Y, Lei J, Ju H. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron 2017; 96:8-16. [DOI: 10.1016/j.bios.2017.04.030] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/05/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
|
28
|
Wang H, Zhang Q, Yin H, Wang M, Jiang W, Ai S. Photoelectrochemical immunosensor for methylated RNA detection based on g-C 3N 4/CdS quantum dots heterojunction and Phos-tag-biotin. Biosens Bioelectron 2017; 95:124-130. [PMID: 28433859 DOI: 10.1016/j.bios.2017.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/24/2017] [Accepted: 04/10/2017] [Indexed: 11/28/2022]
Abstract
N6-methyladenosine (m6A) is an enigmatic and abundant internal modification in eukaryotic messenger RNA (mRNA), which could affect various aspects of RNA metabolism and mRNA translation. Herein, a novel photoelectrochemical (PEC) immunosensor was constructed for m6A detection based on the inhibition of Cu2+ to the photoactivity of g-C3N4/CdS quantum dots (g-C3N4/CdS) heterojunction, where g-C3N4/CdS heterojunction was used as photoactive material, anti-m6A antibody as recognition unit for m6A-containing RNA, Phos-tag-biotin as link unit and avidin functionalized CuO as PEC signal indicator. When CuO was captured on electrode through biotin-avidin affinity reaction and then treated with HCl, Cu2+ could be released and CuxS would be formed based on the selective interaction between CdS and Cu2+, leading the photocurrent obviously decreased. Under the optimal detection conditions, the PEC biosensor displayed a linear range of 0.01-10nM and a low detection limit of 3.53 pM for methylated RNA determination. Furthermore, the developed method could also be used to detect the expression level of m6A methylated RNA in serum samples of breast cancer patient before and after operative treatment. The proposed assay strategy has a great potential for detecting the expression methylation level of RNA in real sample.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China
| | - Qihai Zhang
- Department of pediatric orthopedics, Tai'an Central Hospital, Tai'an 271000, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Minghui Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China
| | - Wenjing Jiang
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
29
|
Zhang N, Zhang L, Ruan YF, Zhao WW, Xu JJ, Chen HY. Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosens Bioelectron 2017; 94:207-218. [PMID: 28285198 DOI: 10.1016/j.bios.2017.03.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/25/2017] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Photoelectrochemical (PEC) bioanalysis is a newly developed methodology that provides an exquisite route for innovative biomolecular detection. Quantum dots (QDs) are semiconductor nanocrystals with unique photophysical properties that have attracted tremendous attentions among the analytical community. QDs-based PEC bioanalysis comprises an important research hotspot in the field of PEC bioanalysis due to its combined advantages and potentials. Currently, it has ignited increasing interests as demonstrated by increased research papers. This review aims to cover the most recent advances in this field. With the discussion of recent examples of QDs-PEC bioanalysis from the literatures, special emphasis will be placed on work reporting on fundamental advances in the signaling strategies of QDs-based PEC bioanalysis from 2013 to now. Future prospects in this field are also discussed.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ling Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yi-Fan Ruan
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
30
|
Zhang Y, Wei Q. The role of nanomaterials in electroanalytical biosensors: A mini review. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.09.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Zhao WW, Yu XD, Xu JJ, Chen HY. Recent advances in the use of quantum dots for photoelectrochemical bioanalysis. NANOSCALE 2016; 8:17407-17414. [PMID: 27738694 DOI: 10.1039/c6nr05011e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoelectrochemical (PEC) bioanalysis is a newly developed technique for innovative biomolecular detection. Quantum dots (QDs) with unique photophysical properties are key components in realization of various exquisite PEC bioanalyses. Particularly, significant progress has been made in the QD-based PEC bioanalysis. In this work, we briefly summarize the most recent and important developments in the use of traditional and newly emerging QDs for novel PEC bioanalytical applications. The future prospects in this dynamic field are also highlighted.
Collapse
Affiliation(s)
- Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Xiao-Dong Yu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, P.R. China.
| |
Collapse
|
32
|
Ultrasensitive photoelectrochemical aptasensing of miR-155 using efficient and stable CH3NH3PbI3 quantum dots sensitized ZnO nanosheets as light harvester. Biosens Bioelectron 2016; 85:142-150. [PMID: 27162145 DOI: 10.1016/j.bios.2016.04.099] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 11/22/2022]
Abstract
An ultrasensitive photoelectrochemical (PEC) aptasensor based on a novel signal amplification strategy was developed for the quantitative determination of microRNA (miR)-155. CH3NH3PbI3 quantum dots (QDs) functionalized ZnO nanosheets (NSs) were employed as the light harvester. Owing to the synergetic effect between CH3NH3PbI3 QDs and ZnO NSs, ZnO@CH3NH3PbI3 can provide an obviously increasing PEC signal by forming the heterojunction. Due to the larger steric hindrance, the sensitive decrease of the PEC signal can be achieved by the specific recognition between the primers and ssDNA of miR-155. In this sense, this developed aptasensor can achieve a high sensitivity (especially in the presence of the low concentrations of miR-155) and a wide detection range (0.01fmol/L to 20,000pmol/L). Under the optimal conditions, the proposed aptasensor offered an ultrasensitive and specific determination of miR-155 down to 0.005fmol/L. This aptassay method would open up a new promising platform at ultralow levels for early diagnose of different miRNA.
Collapse
|
33
|
Pang X, Zhang Y, Liu C, Huang Y, Wang Y, Pan J, Wei Q, Du B. Enhanced photoelectrochemical cytosensing of fibroblast-like synoviocyte cells based on visible light-activated ox-GQDs and carboxylated g-C3N4 sensitized TiO2 nanorods. J Mater Chem B 2016; 4:4612-4619. [DOI: 10.1039/c6tb00295a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scheme A: Schematic illustration of the PEC cytosensor fabrication process, B: schematic illustration of the energy level diagram.
Collapse
Affiliation(s)
- Xuehui Pang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- Key Laboratory of Fluorine Chemistry and Chemical Materials of Shandong Province
- University of Jinan
- Jinan 250022
- China
| | - Yong Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- Key Laboratory of Fluorine Chemistry and Chemical Materials of Shandong Province
- University of Jinan
- Jinan 250022
- China
| | - Cheng Liu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- Key Laboratory of Fluorine Chemistry and Chemical Materials of Shandong Province
- University of Jinan
- Jinan 250022
- China
| | - Ya Huang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- Key Laboratory of Fluorine Chemistry and Chemical Materials of Shandong Province
- University of Jinan
- Jinan 250022
- China
| | - Yaoguang Wang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- Key Laboratory of Fluorine Chemistry and Chemical Materials of Shandong Province
- University of Jinan
- Jinan 250022
- China
| | - Jihong Pan
- Shandong Medicinal Biotechnology Centre
- The Key Lab for Biotechnology Drugs of Ministry of Health
- The Key Lab of Rare and Uncommon Disease
- Jinan 250022
- China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- Key Laboratory of Fluorine Chemistry and Chemical Materials of Shandong Province
- University of Jinan
- Jinan 250022
- China
| | - Bin Du
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- Key Laboratory of Fluorine Chemistry and Chemical Materials of Shandong Province
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|