1
|
Wang N, Yang J, Luo Z, Qin D, Wu Y, Deng B. Electrochemiluminescence immunosensor based on Cu 3(PO 4) 2 hybrid nanoflowers as a novel luminophore for the sensitive detection of prostate-specific antigen. Mikrochim Acta 2023; 190:389. [PMID: 37700114 DOI: 10.1007/s00604-023-05966-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023]
Abstract
Copper phosphate hybrid nanoflowers (Cu3(PO4)2HNFs) were demonstrated to produce cathodic ECL emission in the presence of potassium persulfate (K2S2O8) and then used as a carrier due to their large specific surface area. AgNPs modified on Cu3(PO4)2HNFs provided more binding sites for immobilizing secondary antibodies and accelerating the electron transfer rate to enhance the ECL signal. In addition, FONDs-Au was used to capture primary antibodies due to its good biocompatibility and large specific surface area. A sandwich electrochemiluminescence (ECL) immunosensor based on copper phosphate hybrid nanoflower/Ag nanoparticle (Cu3(PO4)2HNFs@Ag) composite and Au NPs-functionalized Fe2O3 nanodendrites (FONDs-Au) was constructed to detect prostate-specific antigen (PSA) in real samples. Under optimal conditions, the constructed sandwich ECL immunosensor was sensitive to PSA with a detection limit of 0.037 pg/mL (S/N = 3), a linear detection concentration range of 0.0001-50 ng/mL, and a recovery range of 97.33-102.5%. This immunosensor is expected to provide a method to detect PSA or other biomarkers.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Juan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zhi Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
2
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Organic-inorganic hybrid nanoflowers: The known, the unknown, and the future. Adv Colloid Interface Sci 2022; 309:102780. [DOI: 10.1016/j.cis.2022.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023]
|
4
|
Lee SJ, Jang H, Lee DN. Inorganic Nanoflowers—Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review. Pharmaceutics 2022; 14:pharmaceutics14091887. [PMID: 36145635 PMCID: PMC9505446 DOI: 10.3390/pharmaceutics14091887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoflowers, which are flower-shaped nanomaterials, have attracted significant attention from scientists due to their unique morphologies, facile synthetic methods, and physicochemical properties such as a high surface-to-volume ratio, enhanced charge transfer and carrier immobility, and an increased surface reaction efficiency. Nanoflowers can be synthesized using inorganic or organic materials, or a combination of both (called a hybrid), and are mainly used for biomedical applications. Thus far, researchers have focused on hybrid nanoflowers and only a few studies on inorganic nanoflowers have been reported. For the first time in the literature, we have consolidated all the reports on the biomedical applications of inorganic nanoflowers in this review. Herein, we review some important inorganic nanoflowers, which have applications in antibacterial treatment, wound healing, combinatorial cancer therapy, drug delivery, and biosensors to detect diseased conditions such as diabetes, amyloidosis, and hydrogen peroxide poisoning. In addition, we discuss the recent advances in their biomedical applications and preparation methods. Finally, we provide a perspective on the current trends and potential future directions in nanoflower research. The development of inorganic nanoflowers for biomedical applications has been limited to date. Therefore, a diverse range of nanoflowers comprising inorganic elements and materials with composite structures must be synthesized using ecofriendly synthetic strategies.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| |
Collapse
|
5
|
Wang Z, Tu J, Dong P, Bai Y, Han J, Xie G. BSA-Cu3(PO4)2 hybrid nanoflowers as a high-performance redox indicator for robust label-free electrochemical immunoassay. Anal Chim Acta 2022; 1210:339873. [DOI: 10.1016/j.aca.2022.339873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022]
|
6
|
Ji C, Zheng J, Jin Y, Yin X, Han S, Zhang M. In Site Generation of Well‐Dispersed Ag
3
PO
4
NPs on Protein‐Inorganic Hybrid Nanoflowers with Enhanced Catalytic Performance. ChemistrySelect 2022. [DOI: 10.1002/slct.202104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chunxiao Ji
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Jing Zheng
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Yuqin Jin
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Xue‐bo Yin
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Suping Han
- Department of Pharmacy Shandong Medical College No.5460 Erhuannanlu Road Jinan 250002 China
| | - Min Zhang
- Department of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai 201620 P. R. China
| |
Collapse
|
7
|
da Costa FP, Cipolatti EP, Furigo Junior A, Oliveira Henriques R. Nanoflowers: A New Approach of Enzyme Immobilization. CHEM REC 2022; 22:e202100293. [PMID: 35103373 DOI: 10.1002/tcr.202100293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/17/2022] [Indexed: 01/15/2023]
Abstract
Enzymes are biocatalysts known for versatility, selectivity, and brand operating conditions compared to chemical catalysts. However, there are limitations to their large-scale application, such as the high costs of enzymes and their low stability under extreme reaction conditions. Immobilization techniques can efficiently solve these problems; nevertheless, most current methods lead to a significant loss of enzymatic activity and require several steps of activation and functionalization of the supports. In this context, a new form of immobilization has been studied: forming organic-inorganic hybrids between metal phosphates as inorganic parts and enzymes as organic parts. Compared to traditional immobilization methods, the advantages of these nanomaterials are high surface area, simplicity of synthesis, high stability, and catalytic activity. The current study presents an overview of organic-inorganic hybrid nanoflowers and their applications in enzymatic catalysis.
Collapse
Affiliation(s)
- Felipe Pereira da Costa
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88010-970
| | - Eliane Pereira Cipolatti
- Department of Chemical Engineering, Federal Rural University of Rio de Janeiro - UFRRJ, Seropédica, RJ 23890-000, Brazil
| | - Agenor Furigo Junior
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88010-970
| | - Rosana Oliveira Henriques
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88010-970
| |
Collapse
|
8
|
Preparation of a flowerlike protein-inorganic nanohybrid biocatalyst via co-immobilization of cobalt phosphate with mutant cellobiose 2-epimerase. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Subramani IG, Perumal V, Gopinath SCB, Mohamed NM, Ovinis M, Sze LL. 1,1'-Carbonyldiimidazole-copper nanoflower enhanced collapsible laser scribed graphene engraved microgap capacitive aptasensor for the detection of milk allergen. Sci Rep 2021; 11:20825. [PMID: 34675227 PMCID: PMC8531451 DOI: 10.1038/s41598-021-00057-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022] Open
Abstract
The bovine milk allergenic protein, 'β-lactoglobulin' is one of the leading causes of milk allergic reaction. In this research, a novel label-free non-faradaic capacitive aptasensor was designed to detect β-lactoglobulin using a Laser Scribed Graphene (LSG) electrode. The graphene was directly engraved into a microgapped (~ 95 µm) capacitor-electrode pattern on a flexible polyimide (PI) film via a simple one-step CO2 laser irradiation. The novel hybrid nanoflower (NF) was synthesized using 1,1'-carbonyldiimidazole (CDI) as the organic molecule and copper (Cu) as the inorganic molecule via one-pot biomineralization by tuning the reaction time and concentration. NF was fixed on the pre-modified PI film at the triangular junction of the LSG microgap specifically for bio-capturing β-lactoglobulin. The fine-tuned CDI-Cu NF revealed the flower-like structures was viewed through field emission scanning electron microscopy. Fourier-transform infrared spectroscopy showed the interactions with PI film, CDI-Cu NF, oligoaptamer and β-lactoglobulin. The non-faradaic sensing of milk allergen β-lactoglobulin corresponds to a higher loading of oligoaptamer on 3D-structured CDI-Cu NF, with a linear range detection from 1 ag/ml to 100 fg/ml and attomolar (1 ag/ml) detection limit (S/N = 3:1). This novel CDI-Cu NF/LSG microgap aptasensor has a great potential for the detection of milk allergen with high-specificity and sensitivity.
Collapse
Affiliation(s)
- Indra Gandi Subramani
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia. .,Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering , Universiti Malaysia Perlis (UniMAP) , Kangar, 01000, Malaysia. .,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP) , Arau, 02600, Perlis, Malaysia.
| | - Norani Muti Mohamed
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mark Ovinis
- Mechanical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Lim Li Sze
- Medical Innovation Ventures Sdn. Bhd (Mediven), Gelugor, 11700, Penang, Malaysia
| |
Collapse
|
10
|
Dube S, Rawtani D. Understanding intricacies of bioinspired organic-inorganic hybrid nanoflowers: A quest to achieve enhanced biomolecules immobilization for biocatalytic, biosensing and bioremediation applications. Adv Colloid Interface Sci 2021; 295:102484. [PMID: 34358991 DOI: 10.1016/j.cis.2021.102484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023]
Abstract
The immobilization of biomolecules has been a subject of interest for scientists for a long time. The organic-inorganic hybrid nanoflowers are a new class of nanostructures that act as a host platform for the immobilization of such biomolecules. It provides better practical applicability to these functional biomolecules while also providing superior activity and reusability when catalysis is involved. These nanostructures have a versatile and straightforward synthesis process and also exhibit enzyme mimicking activity in many cases. However, this facile synthesis involves many intricacies that require in-depth analysis to fully attain its potential as an immobilization technique. A complete account of all the factors involving the synthesis process optimisation is essential to be studied to make it commercially viable. This paper explores all the different aspects of hybrid nanoflowers which sets them apart from the conventional immobilization techniques while also giving an overview of its wide range of applications in industries.
Collapse
|
11
|
Ahirwar R, Khan N, Kumar S. Aptamer-based sensing of breast cancer biomarkers: a comprehensive review of analytical figures of merit. Expert Rev Mol Diagn 2021; 21:703-721. [PMID: 33877005 DOI: 10.1080/14737159.2021.1920397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Accurate determination of the aberrantly expressed biomarkers such as human epidermal growth factor receptor 2 (HER2), carcinoembryonic antigen (CEA), platelet-derived growth factor (PDGF), mucin 1 (MUC1), and vascular endothelial growth factor VEGF165 have played an essential role in the clinical management of the breast cancer. Assessment of these cancer-specific biomarkers has conventionally relied on time-taking methods like the enzyme-linked immunosorbent assay and immunohistochemistry. However, recent development in the aptamer-based diagnostics has allowed developing tools that may substitute the conventional means of biomarker assessment in breast cancer. Adopting the aptamer-based diagnostic tools (aptasensors) to clinical practices will depend on their analytical performance on clinical samples. AREAS COVERED In this review, we provide an overview of the analytical merits of HER2, CEA, PDGF, MUC1, and VEGF165 aptasensors. Scopus and Pubmed databases were searched for studies reporting aptasensor development for the listed breast cancer biomarkers in the past one decade. Linearity, detection limit, and response time are emphasized. EXPERT OPINION In our opinion, aptasensors have proven to be on a par with the antibody-based methods for detection of various breast cancer biomarkers. Though robust validation of the aptasensors on significant sample size is required, their ability to detect pathophysiological range of biomarkers suggest the possibility of future clinical adoption.
Collapse
Affiliation(s)
- Rajesh Ahirwar
- Department of Environmental Biochemistry, ICMR- National Institute for Research in Environmental Health, Bhopal, India
| | - Nabab Khan
- Department of Environmental Biochemistry, ICMR- National Institute for Research in Environmental Health, Bhopal, India
| | - Saroj Kumar
- School of Biosciences, Apeejay Stya University, Gurgaon, India
| |
Collapse
|
12
|
Al-Maqdi KA, Bilal M, Alzamly A, Iqbal HMN, Shah I, Ashraf SS. Enzyme-Loaded Flower-Shaped Nanomaterials: A Versatile Platform with Biosensing, Biocatalytic, and Environmental Promise. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1460. [PMID: 34072882 PMCID: PMC8227841 DOI: 10.3390/nano11061460] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
As a result of their unique structural and multifunctional characteristics, organic-inorganic hybrid nanoflowers (hNFs), a newly developed class of flower-like, well-structured and well-oriented materials has gained significant attention. The structural attributes along with the surface-engineered functional entities of hNFs, e.g., their size, shape, surface orientation, structural integrity, stability under reactive environments, enzyme stabilizing capability, and organic-inorganic ratio, all significantly contribute to and determine their applications. Although hNFs are still in their infancy and in the early stage of robust development, the recent hike in biotechnology at large and nanotechnology in particular is making hNFs a versatile platform for constructing enzyme-loaded/immobilized structures for different applications. For instance, detection- and sensing-based applications, environmental- and sustainability-based applications, and biocatalytic and biotransformation applications are of supreme interest. Considering the above points, herein we reviewed current advances in multifunctional hNFs, with particular emphasis on (1) critical factors, (2) different metal/non-metal-based synthesizing processes (i.e., (i) copper-based hNFs, (ii) calcium-based hNFs, (iii) manganese-based hNFs, (iv) zinc-based hNFs, (v) cobalt-based hNFs, (vi) iron-based hNFs, (vii) multi-metal-based hNFs, and (viii) non-metal-based hNFs), and (3) their applications. Moreover, the interfacial mechanism involved in hNF development is also discussed considering the following three critical points: (1) the combination of metal ions and organic matter, (2) petal formation, and (3) the generation of hNFs. In summary, the literature given herein could be used to engineer hNFs for multipurpose applications in the biosensing, biocatalysis, and other environmental sectors.
Collapse
Affiliation(s)
- Khadega A. Al-Maqdi
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Ahmed Alzamly
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
| | - Iltaf Shah
- Department of Chemistry, College of Science, UAE University, Al Ain P. O. Box 15551, United Arab Emirates; (K.A.A.-M.); (A.A.)
| | - Syed Salman Ashraf
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi P. O. Box 127788, United Arab Emirates
| |
Collapse
|
13
|
Wang T, Li X, Chen L, Zhang Y, Zheng Y, Yu L, Ye Z, Wang H, Cui X, Zhao S. The preparation of bifunctional hybrid nano-flowers and their application in the enzyme-linked immunosorbent assay for Helicobacter pylori detection. Analyst 2021; 146:338-347. [PMID: 33159778 DOI: 10.1039/d0an01533d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As the infection by Helicobacter pylori (H. pylori, HP) remains for a lifetime and may induce diseases such as gastric cancer, it is vital to detect and diagnose it. A new non-invasive indirect enzyme-linked immunosorbent assay (iELISA) method based on nano-flowers (NFs) is very advantageous for the sensitive detection of HP. Furthermore, the established iELISA method based on the organic-inorganic bifunctional hybrid nano-flowers including rabbit polyclonal antibody of HP labeled with peroxidase from horseradish (R-HP-Ab-HRP@Cu2+ NFs) showed linearity with HP at a concentration of 0-105 CFU mL-1 (R2 = 0.9997). Moreover, the limit of detection (LOD) reached 50 CFU mL-1, and not only was the detection sensitivity 20 times higher than that based on rabbit polyclonal antibody of HP labeled with peroxidase from horseradish (R-HP-Ab-HRP) but also the stability of R-HP-Ab-HRP in NFs was improved. In addition, the OD450 nm value was still linearly related to the concentration of HP at a range of 0-105 CFU mL-1 (R2 = 0.9952) with a LOD of 50 CFU mL-1 in an artificial saliva system. This study provided a sensitive, low-cost and convenient method for the non-invasive detection of HP.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmace-utical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Subramani IG, Perumal V, Gopinath SCB, Fhan KS, Mohamed NM. Organic-Inorganic Hybrid Nanoflower Production and Analytical Utilization: Fundamental to Cutting-Edge Technologies. Crit Rev Anal Chem 2021; 52:1488-1510. [PMID: 33691533 DOI: 10.1080/10408347.2021.1889962] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Over the past decade, science has experienced a growing rise in nanotechnology with ground-breaking contributions. Through various laborious technologies, nanomaterials with different architectures from 0 D to 3 D have been synthesized. However, the 3 D flower-like organic-inorganic hybrid nanomaterial with the most direct one-pot green synthesis method has attracted widespread attention and instantly become research hotspot since its first allusion in 2012. Mild synthesis procedure, high surface-to-volume ratio, enhanced enzymatic activity and stability are the main factor for its rapid development. However, its lower mechanical strength, difficulties in recovery from the reaction system, lower loading capacity, poor reusability and accessibility of enzymes are fatal, which hinders its wide application in industry. This review first discusses the selection of non-enzymatic biomolecules for the synthesis of hybrid nanoflowers followed by the innovative advancements made in organic-inorganic hybrid nanoflowers to overcome aforementioned issues and to enhance their extensive downstream applications in transduction technologies. Besides, the role of hybrid nanoflower has been successfully utilized in many fields including, water remediation, biocatalyst, pollutant adsorption and decolourization, nanoreactor, biosensing, cellular uptake and others, accompanied with several quantification technologies, such as ELISA, electrochemical, surface plasmon resonance (SPR), colorimetric, and fluorescence were comprehensively reviewed.
Collapse
Affiliation(s)
- Indra Gandi Subramani
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Veeradasan Perumal
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Khor Shing Fhan
- Faculty of Electrical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Norani Muti Mohamed
- Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia.,Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
15
|
Kaur H, Bari NK, Garg A, Sinha S. Protein morphology drives the structure and catalytic activity of bio-inorganic hybrids. Int J Biol Macromol 2021; 176:106-116. [PMID: 33556398 DOI: 10.1016/j.ijbiomac.2021.01.217] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/26/2022]
Abstract
Bio-hybrid materials have received a lot of attention in view of their bio-mimicking nature. One such biomimetic material with catalytic activity are the protein derived floral nanohybrid. Copper phosphate coordinated flakes can be curated to distinct floral morphology using proteins. Structurally two different proteins with similar size and with no known enzymatic activity are used to evaluate the role of protein structure and morphology, on the structure-activity relationship of the developed hybrid nanoflowers. Globular protein BSA and bacterial microcompartment domain protein PduBB' are selected. PduBB' because of self-assembling nature forms extended sheets, whereas BSA lacks specific assembly. The developed hybrid NFs differ in their morphology and also in their mimicry as a biological catalyst. The present investigation highlights the importance of the quaternary structure of proteins in tailoring the structure and function of the h-NFs. The results in this manuscript will motivate and guide designing, engineering and selection of glue material for fabricating biomacromolecule derived biohybrid material to mimic natural enzymes of potential industrial application.
Collapse
Affiliation(s)
- Harpreet Kaur
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India
| | - Naimat K Bari
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India
| | - Ankush Garg
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India.
| |
Collapse
|
16
|
Malecka K, Mikuła E, Ferapontova EE. Design Strategies for Electrochemical Aptasensors for Cancer Diagnostic Devices. SENSORS 2021; 21:s21030736. [PMID: 33499136 PMCID: PMC7866130 DOI: 10.3390/s21030736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Improved outcomes for many types of cancer achieved during recent years is due, among other factors, to the earlier detection of tumours and the greater availability of screening tests. With this, non-invasive, fast and accurate diagnostic devices for cancer diagnosis strongly improve the quality of healthcare by delivering screening results in the most cost-effective and safe way. Biosensors for cancer diagnostics exploiting aptamers offer several important advantages over traditional antibodies-based assays, such as the in-vitro aptamer production, their inexpensive and easy chemical synthesis and modification, and excellent thermal stability. On the other hand, electrochemical biosensing approaches allow sensitive, accurate and inexpensive way of sensing, due to the rapid detection with lower costs, smaller equipment size and lower power requirements. This review presents an up-to-date assessment of the recent design strategies and analytical performance of the electrochemical aptamer-based biosensors for cancer diagnosis and their future perspectives in cancer diagnostics.
Collapse
Affiliation(s)
- Kamila Malecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (K.M.); (E.M.)
| | - Edyta Mikuła
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (K.M.); (E.M.)
| | - Elena E. Ferapontova
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Science and Technology, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
- Correspondence: ; Tel.: +45-87156703
| |
Collapse
|
17
|
Li Y, Liu Z, Lu W, Zhao M, Xiao H, Hu T, Ma J, Zheng Z, Jia J, Wu H. A label-free electrochemical aptasensor based on the core-shell Cu-MOF@TpBD hybrid nanoarchitecture for the sensitive detection of PDGF-BB. Analyst 2020; 146:979-988. [PMID: 33554228 DOI: 10.1039/d0an01885f] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As one of the significant serum cytokines, platelet-derived growth factor-BB (PDGF-BB) is a crucial protein biomarker overexpressed in human life-threatening tumors, the sensitive identification and quantification of which are urgently desired but challenging. Herein we report a novel core-shell nanoarchitecture consisting of Cu-based metal-organic frameworks (Cu-MOFs) and covalent organic frameworks (denoted as TpBD-COFs), which was used to prepare an aptasensor for the detection of platelet-derived growth factor-BB (PDGF-BB). The central Cu-MOFs function as signal labels with no need for extra redox media, whereas the porous TpBD serves as the shell to immobilize the PDGF-BB-targeted aptamer strands in abundance via strong interactions involving π-π stacking, electrostatic, and hydrogen bonding interactions. The proposed aptasensor based on Cu-MOF@TpBD can achieve a detection limit as low as 0.034 pg mL-1 within the dynamic detection range from 0.0001 to 60 ng mL-1. The hybridization of MOFs and COFs, together with the immobilization with the specific analyte targeted aptamer, provides a promising and propagable approach to prepare an aptasensor for the simple, sensitive, and selective detection of a specific biomarker in clinical diagnosis.
Collapse
Affiliation(s)
- Ya Li
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Linfen 041004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
3D nanoporous hybrid nanoflower for enhanced non-faradaic redox-free electrochemical impedimetric biodetermination. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. J Cancer 2020; 11:6902-6915. [PMID: 33123281 PMCID: PMC7592013 DOI: 10.7150/jca.49532] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/20/2020] [Indexed: 01/04/2023] Open
Abstract
Traditional anticancer therapies can cause serious side effects in clinical treatment due to their nonspecific of tumor cells. Aptamers, also termed as 'chemical antibodies', are short DNA or RNA oligonucleotides selected from the synthetic large random single-strand oligonucleotide library by systematic evolution of ligands by exponential enrichment (SELEX) to bind to lots of different targets, such as proteins or nucleic acid structures. Aptamers have good affinities and high specificity with target molecules, thus may be able to act as drugs themselves to directly inhibit the proliferation of tumor cells, or own great potentialities in the targeted drug delivery systems which can be used in tumor diagnosis and target specific tumor cells, thereby minimizing the toxicity to normal cells. Here we review the unique properties of aptamer represents a great opportunity when applied to the rapidly developing fields of biotechnology and discuss the recent developments in the use of aptamers as powerful tools for analytic, diagnostic and therapeutic applications for cancer.
Collapse
Affiliation(s)
- Jing Han
- Department of Reproductive Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Liang Gao
- Department of Dermatology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Jinsheng Wang
- Department of Pathology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi, 046000 China
| |
Collapse
|
20
|
Impedimetric Aptamer-Based Biosensors: Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:43-91. [PMID: 32313965 DOI: 10.1007/10_2020_125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Impedimetric aptamer-based biosensors show high potential for handheld devices and point-of-care tests. In this review, we report on recent advances in aptamer-based impedimetric biosensors for applications in biotechnology. We detail on analytes relevant in medical and environmental biotechnology as well as food control, for which aptamer-based impedimetric biosensors were developed. The reviewed biosensors are examined for their performance, including sensitivity, selectivity, response time, and real sample validation. Additionally, the benefits and challenges of impedimetric aptasensors are summarized.
Collapse
|
21
|
Impedimetric Aptamer-Based Biosensors: Principles and Techniques. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:17-41. [PMID: 32328684 DOI: 10.1007/10_2019_113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aptamers are a specific class of ligands with high affinities comparable to antibodies, which are selected and synthesized in vitro. In combination with impedance spectroscopy as sensitive measurement method, we gain a class of biosensors with high potential for handheld devices and point-of-care tests. In this review, we report on recent advances in aptamer-based impedimetric biosensors. Besides giving a short summary of electrochemical measurement techniques, the most exciting innovative developments of detection strategies in the last decades are reviewed. Finally, important criteria for the comparison of aptamer-based biosensors are discussed.
Collapse
|
22
|
Liu H, Zhu N, Li M, Huang X, Wu P, Hu Z, Shuai J. Induced fluorescent enhancement of protein-directed synthesized gold nanoclusters for selective and sensitive detection of flame retardants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136488. [PMID: 31955081 DOI: 10.1016/j.scitotenv.2019.136488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Organophosphate flame retardants (OPFRs), typical toxic and hazardous pollutants, are called for new detection approaches to avoid laborious synthetic procedures and large and expensive instruments. Hence, a novel fluorescent probe was constructed for quantitative detection of OPFRs via heightening the fluorescence of acetylcholinesterase synthesized gold nanoclusters (AChE-AuNCs). The as-prepared AChE-AuNCs exhibited high fluorescence emission at about 398 nm with the average particle size of about 1.60 nm. When the AChE-AuNCs was applied to the proposed fluorescent detection, excellent sensitivity with wide linear range (50-1000 ng L-1) and low detection limit (30 ng L-1) for TClPP with the response time less than 1 h were achieved. The fluorescent probe could be extended to detect other three types of OPFRs (TEP, TPHP, and TBOEP) and the target pollutants could be detectable in the presence of halogenated flame retardants. The mechanism might be mainly contributed by the interaction between OPFRs and AChE-AuNCs restricting internal vibration consumption of their capping ligands. The proposed detection approach could be easily operated and was not involved with other intermediate products. Therefore, AChE-AuNCs could be a promising fluorescent probe for rapid, selective and sensitive detection of OPFRs and even in the practical application.
Collapse
Affiliation(s)
- Huangrui Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, Guangdong, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, Guangdong, PR China.
| | - Minting Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Xixian Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, Guangdong, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, Guangdong, PR China
| | - Zhilin Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jiangtao Shuai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, PR China
| |
Collapse
|
23
|
Liu Y, Ji X, He Z. Organic-inorganic nanoflowers: from design strategy to biomedical applications. NANOSCALE 2019; 11:17179-17194. [PMID: 31532431 DOI: 10.1039/c9nr05446d] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Organic-inorganic hybrid nanoflowers (NF) with sizes or features on a nanoscale are a class of flower-shaped nanomaterials self-assembled from metal ions and organic components. Here, to be more specific, the organic components mainly refer to biomolecules ranging from proteins, peptides, and amino acids to DNA/RNA. Beyond their pleasing aesthetics, their unique properties and integrated functions have attracted widespread interest and made them promising candidates in the application of biomedical areas. Great efforts have been made to design and synthesize versatile functional hybrid nanoflowers. In this review, we begin with the clarification of versatile recently reported hybrid nanoflowers according to the types of metal ions and biomolecules employed. To highlight the design of organic-inorganic hybrid nanoflowers, their synthetic methods and mechanisms, structural and biological characteristics are discussed. After that, the state-of-the-art applications of hybrid nanoflowers in biomedical fields including biosensing, biocatalysis, and cancer therapy are demonstrated. In the end, we discuss the prospects of organic-inorganic hybrid nanoflowers and highlight the challenges and opportunities for future research.
Collapse
Affiliation(s)
- Yucheng Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China. and Division of Engineering in Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
24
|
Shcharbin D, Halets-Bui I, Abashkin V, Dzmitruk V, Loznikova S, Odabaşı M, Acet Ö, Önal B, Özdemir N, Shcharbina N, Bryszewska M. Hybrid metal-organic nanoflowers and their application in biotechnology and medicine. Colloids Surf B Biointerfaces 2019; 182:110354. [DOI: 10.1016/j.colsurfb.2019.110354] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/07/2019] [Indexed: 12/11/2022]
|
25
|
Qi L, Hu Q, Kang Q, Bi Y, Jiang Y, Yu L. Detection of Biomarkers in Blood Using Liquid Crystals Assisted with Aptamer-Target Recognition Triggered in Situ Rolling Circle Amplification on Magnetic Beads. Anal Chem 2019; 91:11653-11660. [PMID: 31430128 DOI: 10.1021/acs.analchem.9b02186] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Detection of biomarkers in body fluids is critical to both diagnosing the life-threatening diseases and optimizing therapeutic interventions. We herein report use of liquid crystals (LCs) to detect biomarkers in blood with high sensitivity and specificity by employing in situ rolling circle amplification (RCA) on magnetic beads (MBs). Specific recognition of cancer biomarkers, such as platelet derived growth factor BB (PDGF-BB) and adenosine, by aptamers leads to formation of a nucleic acid circle on MBs preassembled with ligation DNA, linear padlock DNA, and aptamers, thereby triggering in situ RCA. LCs change from dark to bright appearance after the in situ RCA products being transferred onto the LC interface decorated with octadecy trimethylammonium bromide (OTAB), which is particularly sensitive to the amplified DNA on MBs. Overall, this label-free approach takes advantages of high specificity of aptamer-based assay, efficient enrichment of signaling molecules on MBs, remarkable DNA elongation performance of the RCA reaction, and high sensitivity of LC-based assay. It successfully eliminates the matrix interference on the LC-based sensors and thus achieves at least 4 orders of magnitude improvement in sensitivity for detection of biomarkers compared to other LC-based sensors. In addition, performance of the developed sensor is comparable to that of the commercial ones. Thus, this study provides a simple, powerful, and promising approach to facilitate highly sensitive, specific, and label-free detection of biomarkers in body fluids.
Collapse
Affiliation(s)
- Lubin Qi
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Qiongzheng Hu
- Shandong Analysis and Test Center , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250014 , China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , China
| | - Yanhui Bi
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Yifei Jiang
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry , Shandong University, Ministry of Education , Jinan 250100 , China
| |
Collapse
|
26
|
Gan T, Zhang H, Liu Y, He Q, Zhang Y, He X, Ji H. Self‐Assembled Metalloporphyrins–Magnesium Phosphate Hybrid Spheres as Efficient Catalysts for Cycloaddition of Carbon Dioxide. ChemistrySelect 2019. [DOI: 10.1002/slct.201901845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tao Gan
- School of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Hao Zhang
- School of Chemical Engineering and TechnologySun Yat-sen University Zhuhai 519000 China
| | - Yifei Liu
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 China
| | - Qian He
- School of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Ying Zhang
- School of Chemical Engineering and TechnologySun Yat-sen University Zhuhai 519000 China
| | - Xiaohui He
- School of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Hongbing Ji
- School of ChemistrySun Yat-sen University Guangzhou 510275 China
- Guangdong University of Petrochemical Technology, Maoming 525000 Guangdong China
| |
Collapse
|
27
|
A simple and rapid fluorescent approach for flavonoids sensor based on gold nanoclusters. J Colloid Interface Sci 2019; 539:175-183. [DOI: 10.1016/j.jcis.2018.12.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
|
28
|
Jeevanandam J, Kulabhusan PK, Danquah MK. Biofunctional Nanoparticles for Protein Separation, Purification and Detection. HORIZONS IN BIOPROCESS ENGINEERING 2019:113-156. [DOI: 10.1007/978-3-030-29069-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Organic-Inorganic Hybrid Nanoflowers as Potent Materials for Biosensing and Biocatalytic Applications. BIOCHIP JOURNAL 2018. [DOI: 10.1007/s13206-018-2409-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Zhu J, Wen M, Wen W, Du D, Zhang X, Wang S, Lin Y. Recent progress in biosensors based on organic-inorganic hybrid nanoflowers. Biosens Bioelectron 2018; 120:175-187. [DOI: 10.1016/j.bios.2018.08.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022]
|
31
|
He L, Liu J, Yang L, Song Y, Wang M, Peng D, Zhang Z, Fang S. Copper metal–organic framework-derived CuOx-coated three-dimensional reduced graphene oxide and polyaniline composite: Excellent candidate free-standing electrodes for high-performance supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.089] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Razmi N, Baradaran B, Hejazi M, Hasanzadeh M, Mosafer J, Mokhtarzadeh A, de la Guardia M. Recent advances on aptamer-based biosensors to detection of platelet-derived growth factor. Biosens Bioelectron 2018; 113:58-71. [PMID: 29729560 DOI: 10.1016/j.bios.2018.04.048] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 01/13/2023]
Abstract
Platelet-derived growth factor (PDGF-BB), a significant serum cytokine, is an important protein biomarker in diagnosis and recognition of cancer, which straightly rolled in proceeding of various cell transformations, including tumor growth and its development. Fibrosis, atherosclerosis are certain appalling diseases, which PDGF-BB is near to them. Generally, the expression amount of PDGF-BB increases in human life-threatening tumors serving as an indicator for tumor angiogenesis. Thus, identification and quantification of PDGF-BB in biomedical fields are particularly important. Affinity chromatography, immunohistochemical methods and enzyme-linked immunosorbent assay (ELISA), conventional methods for PDGF-BB detection, requiring high-cost and complicated instrumentation, take too much time and offer deficient sensitivity and selectivity, which restrict their usage in real applications. Hence, it is essential to design and build enhanced systems and platforms for the recognition and quantification of protein biomarkers. In the past few years, biosensors especially aptasensors have been received noticeable attention for the detection of PDGF-BB owing to their high sensitivity, selectivity, accuracy, fast response, and low cost. Since the role and importance of developing aptasensors in cancer diagnosis is undeniable. In this review, optical and electrochemical aptasensors, which have been applied by many researchers for PDGF-BB cancer biomarker detection, have been mentioned and merits and demerits of them have been explained and compared. Efforts related to design and development of aptamer-based biosensors using nanoparticles for sensitive and selective detection of PDGF-BB have been reviewed considering: Aptamer importance as recognition elements, principal, application and the recent improvements and developments of aptamer based optical and electrochemical methods. In addition, commercial biosensors and future perspectives for rapid and on-site detection of PDGF-BB have been summarized.
Collapse
Affiliation(s)
- Nasrin Razmi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 51664 Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
33
|
Lei Z, Gao C, Chen L, He Y, Ma W, Lin Z. Recent advances in biomolecule immobilization based on self-assembly: organic-inorganic hybrid nanoflowers and metal-organic frameworks as novel substrates. J Mater Chem B 2018; 6:1581-1594. [PMID: 32254274 DOI: 10.1039/c7tb03310a] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the past few years, the immobilization of biomolecules on hybrid nanoflowers and metal-organic frameworks (MOFs) via self-assembly synthesis has received much attention due to its simplicity, high efficiency, and a bright prospect of enhancing the stability, activity and even selectivity of biomolecules compared to conventional immobilization methods. In the synthesis of organic-inorganic hybrid nanoflowers, biomolecules used as organic components are simply mixed with metal ions which act as inorganic components to form flower-like nanocomposites, while in the self-assembly process of encapsulating biomolecules in MOFs (biomolecule@MOF composites), the biomolecules just need to be added to the precursor mixtures of MOFs, in which the biomolecules are therefore embedded in MOF crystals with small pores. In this review, we focus on the recent advances of these composites, especially in the synthesis strategies, mechanism and applications in biosensors, biomedicine, pollutant disposal, and industrial biocatalysis, and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Zhixian Lei
- Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | | | | | | | | | | |
Collapse
|
34
|
Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. J Pharm Biomed Anal 2018; 147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
35
|
|
36
|
Dual signal amplification strategy for amperometric aptasensing using hydroxyapatite nanoparticles. Application to the sensitive detection of the cancer biomarker platelet-derived growth factor BB. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2471-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Zhang ZH, Duan FH, Tian JY, He JY, Yang LY, Zhao H, Zhang S, Liu CS, He LH, Chen M, Chen DM, Du M. Aptamer-Embedded Zirconium-Based Metal-Organic Framework Composites Prepared by De Novo Bio-Inspired Approach with Enhanced Biosensing for Detecting Trace Analytes. ACS Sens 2017; 2:982-989. [PMID: 28750523 DOI: 10.1021/acssensors.7b00236] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A series of Zr-based metal-organic framework (MOF) composites embedded with three kinds of aptamer strands (509-MOF@Apt) were achieved by a one-step de novo synthetic approach. A platform for ultrasensitive detection of analytes, namely, thrombin, kanamycin, and carcinoembryonic antigen (CEA), was also established. Considering the conformational changes caused by the binding interactions between aptamer strands and targeted molecules, the label-free electrochemical aptasensors based on 509-MOF@Apt composites could be developed to detect various target molecules. By comparing the common fabrication approaches of aptasensors, a distinct determination mechanism was presented through analysis of the electrochemical measurements on different interaction behaviors between probe aptamer strands and 509-MOF materials. The optimized aptasensors based on 509-MOFs@Apt demonstrated excellent sensitivity (with the detection limit of 0.40, 0.37, and 0.21 pg mL-1 for CEA, thrombin, and kanamycin, respectively), stability, repeatability, and applicability. This work will provide a new platform for direct and feasible detection in biosensing related to clinical diagnostics and therapeutics, and further, extend the scope of potential applications for MOF materials.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Feng-He Duan
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jia-Yue Tian
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jun-Ying He
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Long-Yu Yang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hui Zhao
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shuai Zhang
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Chun-Sen Liu
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Ling-Hao He
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Min Chen
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Di-Ming Chen
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Miao Du
- Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
38
|
Ravalli A, Voccia D, Palchetti I, Marrazza G. Electrochemical, Electrochemiluminescence, and Photoelectrochemical Aptamer-Based Nanostructured Sensors for Biomarker Analysis. BIOSENSORS-BASEL 2016; 6:bios6030039. [PMID: 27490578 PMCID: PMC5039658 DOI: 10.3390/bios6030039] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/12/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022]
Abstract
Aptamer-based sensors have been intensively investigated as potential analytical tools in clinical analysis providing the desired portability, fast response, sensitivity, and specificity, in addition to lower cost and simplicity versus conventional methods. The aim of this review, without pretending to be exhaustive, is to give the readers an overview of recent important achievements about electrochemical, electrochemiluminescence, and photoelectrochemical aptasensors for the protein biomarker determination, mainly cancer related biomarkers, by selected recent publications. Special emphasis is placed on nanostructured-based aptasensors, which show a substantial improvement of the analytical performances.
Collapse
Affiliation(s)
- Andrea Ravalli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Diego Voccia
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.
| |
Collapse
|