1
|
Wang Z, Du J, Zhang X, Guo Z, Zhang Z, Wen W. Three-dimensional titania arrays coupled with dopamine for visible-light-induced photoelectrochemical sensing. Mikrochim Acta 2025; 192:162. [PMID: 39951221 DOI: 10.1007/s00604-025-07015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 03/15/2025]
Abstract
Three-dimensional TiO2 hierarchical nanowire arrays were synthesized featuring nanocavities via a hydrogen peroxide-assisted wet chemical reaction, followed by a simple liquid-phase deposition process. We subsequently decorated the TiO2 arrays with dopamine, leveraging its enediol ligand for chelation. Reduced nicotinamide adenine dinucleotide (NADH), a cofactor for over 300 dehydrogenases, serves as the targeted analyte to assess the PEC sensing performance of the sensor. The developed sensor exhibited a linear concentration range for NADH detection of 0.05 to 50 µM, achieving a high sensitivity of 0.29 μA∙μM-1∙cm-2 and a low detection limit of 0.03 μM (signal-to-noise ratio of 3). Notably, PEC performance of the resulting sensor surpassed that of commercial TiO2 (P25)-based sensors. The enhanced sensing capabilities can be attributed to several factors: the TiO2 hierarchical nanowire arrays with nanocavities provide a larger surface area, abundant active sites, and shorter molecular diffusion lengths for surface adsorption and reaction, thereby reducing response times and improving sensitivity. Additionally, the coupling of TiO2 with dopamine enhances visible light absorption and optimizes charge transfer dynamics. These findings open a new avenue for designing high-performance three-dimensional nanoarchitectures for PEC sensing applications.
Collapse
Affiliation(s)
- Zhencui Wang
- School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jie Du
- School of Materials Science and Engineering, Hainan University, Haikou, 570228, China.
| | - Xianman Zhang
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China
| | - Zhizhong Guo
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China
| | - Zhenyu Zhang
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
| | - Wei Wen
- School of Materials Science and Engineering, Hainan University, Haikou, 570228, China.
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China.
- School of Marine Science and Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
2
|
Ben Trad F, Carré B, Delacotte J, Lemaître F, Guille-Collignon M, Arbault S, Sojic N, Labbé E, Buriez O. Electrochemiluminescent imaging of a NADH-based enzymatic reaction confined within giant liposomes. Anal Bioanal Chem 2024; 416:7385-7394. [PMID: 38227016 DOI: 10.1007/s00216-024-05133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Herein, transient releases either from NADH-loaded liposomes or enzymatic reactions confined in giant liposomes were imaged by electrochemiluminescence (ECL). NADH was first encapsulated with the [Ru(bpy)3]2+ luminophore inside giant liposomes (around 100 µm in diameter) made of DOPC/DOPG phospholipids (i.e., 1,2-dioleolyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycerol-3-phospho-(1'-rac-glycerol) sodium salt) on their inner- and outer-leaflet, respectively. Then, membrane permeabilization triggered upon contact between the liposome and a polarized ITO electrode surface and ECL was locally generated. Combination of amperometry, photoluminescence, and ECL provided a comprehensive monitoring of a single liposome opening and content release. In a second part, the work is focused on the ECL characterization of NADH produced by glucose dehydrogenase (GDH)-catalyzed oxidation of glucose in the confined environment delimited by the liposome membrane. This was achieved by encapsulating both the ECL and catalytic reagents (i.e., the GDH, glucose, NAD+, and [Ru(bpy)3]2+) in the liposome. In accordance with the results obtained, NADH can be used as a biologically compatible ECL co-reactant to image membrane permeabilization events of giant liposomes. Under these conditions, the ECL signal duration was rather long (around 10 s). Since many enzymatic reactions involve the NADH/NAD+ redox couple, this work opens up interesting prospects for the characterization of enzymatic reactions taking place notably in artificial cells and in confined environments.
Collapse
Affiliation(s)
- Fatma Ben Trad
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Bixente Carré
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Jérôme Delacotte
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, 33600, Pessac, France
| | - Neso Sojic
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 CNRS, 33400, Talence, France.
| | - Eric Labbé
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Olivier Buriez
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
3
|
Hou M, Yuan J, Dong X, Wang Y, Yang S, Gao J. Engineering Oxygen-Independent NADH Oxidase Integrated with Electrocatalytic FAD Cofactor Regeneration. JACS AU 2024; 4:3581-3592. [PMID: 39328752 PMCID: PMC11423319 DOI: 10.1021/jacsau.4c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/28/2024]
Abstract
An electrochemically mediated enzyme process for nicotinamide adenine dinucleotide (NADH) oxidation and biosensing has been developed in which the oxygen-dependent activities of wild-type NADH oxidase are replaced by electrochemical regeneration of the flavin adenine dinucleotide (FAD) cofactor in the active site. Consequently, the present bioelectrocatalysis does not rely on a continuous oxygen supply through bubbling air or pure oxygen in biosynthetic applications, which reduces enzyme stability. The coupled electrochemical and enzymatic catalysis is achieved through a combination of enzyme immobilization on the electrode and electrochemical oxidation of FADH2 in the active site mediated by the electron transfer mediator ferrocene carboxylic acid (FcCA). Furthermore, to minimize the effect of dissolved oxygen when the electrocatalytic process is exposed to air, we successfully designed mutations at the Leu40 and Cys42 sites of Leuconostoc mesenteroides (LmNOx) to block the oxygen passage into the active site and to eliminate the native FAD cofactor regeneration half-reaction. The engineered enzymes, whose activities are significantly reduced or inactive in solution, are electrocatalytically active toward conversion of NADH to NAD+, demonstrating successful FAD cofactor regeneration in the active site via electrochemistry. Finally, we developed two highly responsive electrochemical biosensors for NADH detection which has a superior substrate specific to standard detectors using metal electrodes, and comparable detection range and detection limit (1-3 μM).
Collapse
Affiliation(s)
- Mengjie Hou
- School
of Chemical Biology and Biotechnology, Peking
University Shenzhen Graduate School, Shenzhen 518055, China
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, China
| | - Jing Yuan
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, China
| | - Xinyu Dong
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, China
| | - Yingjie Wang
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, China
| | - Shihe Yang
- School
of Advanced Materials, Peking University
Shenzhen Graduate School, Shenzhen 518055, China
- Institute
of Biomedical Engineering, Shenzhen Bay
Laboratory, Shenzhen 518055, China
| | - Jiali Gao
- School
of Chemical Biology and Biotechnology, Peking
University Shenzhen Graduate School, Shenzhen 518055, China
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, China
- Department
of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Koo KM, Kim CD, Kim TH. Recent Advances in Electrochemical Detection of Cell Energy Metabolism. BIOSENSORS 2024; 14:46. [PMID: 38248422 PMCID: PMC10813075 DOI: 10.3390/bios14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Cell energy metabolism is a complex and multifaceted process by which some of the most important nutrients, particularly glucose and other sugars, are transformed into energy. This complexity is a result of dynamic interactions between multiple components, including ions, metabolic intermediates, and products that arise from biochemical reactions, such as glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the two main metabolic pathways that provide adenosine triphosphate (ATP), the main source of chemical energy driving various physiological activities. Impaired cell energy metabolism and perturbations or dysfunctions in associated metabolites are frequently implicated in numerous diseases, such as diabetes, cancer, and neurodegenerative and cardiovascular disorders. As a result, altered metabolites hold value as potential disease biomarkers. Electrochemical biosensors are attractive devices for the early diagnosis of many diseases and disorders based on biomarkers due to their advantages of efficiency, simplicity, low cost, high sensitivity, and high selectivity in the detection of anomalies in cellular energy metabolism, including key metabolites involved in glycolysis and mitochondrial processes, such as glucose, lactate, nicotinamide adenine dinucleotide (NADH), reactive oxygen species (ROS), glutamate, and ATP, both in vivo and in vitro. This paper offers a detailed examination of electrochemical biosensors for the detection of glycolytic and mitochondrial metabolites, along with their many applications in cell chips and wearable sensors.
Collapse
Affiliation(s)
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (K.-M.K.); (C.-D.K.)
| |
Collapse
|
5
|
Ding M, Hou T, Niu H, Zhang N, Guan P, Hu X. Electrocatalytic oxidation of NADH at graphene-modified electrodes based on electropolymerized poly(thionine-methylene blue) films from nature deep eutectic solvents. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
The development of NAD+-dependent dehydrogenase screen-printed biosensor based on enzyme and nanoporous gold co-catalytic strategy. Biosens Bioelectron 2022; 211:114376. [DOI: 10.1016/j.bios.2022.114376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/20/2023]
|
7
|
Chu M, Bai Z, Zhu D, Chen W, Yang G, Xin J, Ma H, Pang H, Tan L, Wang X. A β-nicotinamide adenine dinucleotide electrochemical sensor based on polyoxometalate built by the combination of electrodeposition and self-assembly. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Ji W, Tang X, Du W, Lu Y, Wang N, Wu Q, Wei W, Liu J, Yu H, Ma B, Li L, Huang W. Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chem Soc Rev 2021; 51:71-127. [PMID: 34792041 DOI: 10.1039/d0cs01610a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review highlights the biological importance of mitochondrial energy metabolism and the applications of multiple optical/electrochemical approaches to determine energy metabolites. Mitochondria, the main sites of oxidative phosphorylation and adenosine triphosphate (ATP) biosynthesis, provide the majority of energy required by aerobic cells for maintaining their physiological activity. They also participate in cell growth, differentiation, information transmission, and apoptosis. Multiple mitochondrial diseases, caused by internal or external factors, including oxidative stress, intense fluctuations of the ionic concentration, abnormal oxidative phosphorylation, changes in electron transport chain complex enzymes and mutations in mitochondrial DNA, can occur during mitochondrial energy metabolism. Therefore, developing accurate, sensitive, and specific methods for the in vivo and in vitro detection of mitochondrial energy metabolites is of great importance. In this review, we summarise the mitochondrial structure, functions, and crucial energy metabolic signalling pathways. The mechanism and applications of different optical/electrochemical methods are thoroughly reviewed. Finally, future research directions and challenges are proposed.
Collapse
Affiliation(s)
- Wenhui Ji
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiao Tang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wei Du
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Yao Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Nanxiang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Wei Wei
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jie Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Haidong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China. .,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China. .,Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Design and fabrication of low potential NADH-sensor based on poly(caffeic acid)@multi-walled carbon nanotubes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
del Barrio M, Rana M, Vilatela JJ, Lorenzo E, De Lacey AL, Pita M. Photoelectrocatalytic detection of NADH on n-type silicon semiconductors facilitated by carbon nanotube fibers. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Zhang S, Xie Y, Feng J, Chu Z, Jin W. Screen‐printing of nanocube‐based flexible microchips for the precise biosensing of ethanol during fermentation. AIChE J 2021. [DOI: 10.1002/aic.17142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sijian Zhang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Ying Xie
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Jingyu Feng
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Zhenyu Chu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Wanqin Jin
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
12
|
Liang J, Wei W, Yao H, Shi K, Liu H. A biocomputing platform with electrochemical and fluorescent signal outputs based on multi-sensitive copolymer film electrodes with entrapped Au nanoclusters and tetraphenylethene and electrocatalysis of NADH. Phys Chem Chem Phys 2019; 21:24572-24583. [PMID: 31663551 DOI: 10.1039/c9cp03687c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, poly(N,N'-dimethylaminoethylmethacrylate-co-N-isopropylacrylamide) copolymer films were polymerized on the surface of Au electrodes with a facile one-step method, and Au nanoclusters (AuNCs) and tetraphenylethene (TPE) were synchronously embedded in the films, designated as P(DMA-co-NIPA)/AuNCs/TPE. Ferrocene dicarboxylic acid (FDA), an electroactive probe in solution displayed inverse pH- and SO42--sensitive on-off cyclic voltammetric (CV) behaviors at the film electrodes. The electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) mediated by FDA in solution could substantially amplify the CV response difference between the on and off states. Moreover, the two fluorescence emission (FL) signals from the TPE constituent at 450 nm and AuNCs component at 660 nm in the films also demonstrated SO42-- and pH-sensitive behaviors. Based on the aforementioned results, a 4-input/9-output biomolecular logic circuit was constructed with pH, Na2SO4, FDA and NADH as the inputs, and the CV signals and the FL responses at 450 and 660 nm at different levels as the outputs. Additionally, some functional non-Boolean devices were elaborately designed on an identical platform, including a 1-to-2 decoder, a 2-to-1 encoder, a 1-to-2 demultiplexer and different types of keypad locks. This work combines copolymer films, bioelectrocatalysis, and fluorescence together so that more complicated biocomputing systems could be established. This work may pave a new way to develop advanced and sophisticated biocomputing logic circuits and functional devices in the future.
Collapse
Affiliation(s)
- Jiying Liang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | | | | | | | | |
Collapse
|
13
|
Li X, Kan X. A boronic acid carbon nanodots/poly(thionine) sensing platform for the accurate and reliable detection of NADH. Bioelectrochemistry 2019; 130:107344. [PMID: 31404808 DOI: 10.1016/j.bioelechem.2019.107344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022]
Abstract
In this work, a novel electrochemical sensing platform was designed and fabricated by the modification of boronic acid functionalized carbon nanodots (B-CNDs) and poly(thionine) (pTHI) on an electrode surface. B-CNDs can not only accelerate electron transfer but also covalently interact with cis-diol groups of dihydronicotinamide adenine dinucleotide (NADH) through functionalized boronic acid groups. Meanwhile, pTHI served as an inner reference element to provide a built-in correction, which enabled the sensor to detect NADH with high accuracy and reliability based on a ratiometric signal (∆INADH/∆ITHI). The electrochemical experimental results demonstrated that the ratiometric strategy-based sensor possessed good selectivity and high sensitivity. A linear range of 5.0 × 10-7 - 2.0 × 10-4 mol/L for NADH detection was obtained with a limit of detection of 1.5 × 10-7 mol/L. The sensor has been applied to analyze NADH in human serum samples with satisfactory results. The simple and effective ratiometric strategy reported here can be further used to prepare electrochemical sensors for selective, sensitive, and reliable detection of other cis-diol compounds.
Collapse
Affiliation(s)
- Xueyan Li
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China; The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, PR China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, PR China; The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, PR China.
| |
Collapse
|
14
|
Yu G, Kim S, Bae SW, Yeo W. A Quencher‐Fluorophore‐Type Probe for Detection and Imaging of NADPH in Human Breast Cancer Cells. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Geunhyeok Yu
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics CenterKonkuk University Seoul 05029 South Korea
| | - Sungryung Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics CenterKonkuk University Seoul 05029 South Korea
| | - Se Won Bae
- Green Chemistry and Materials GroupKorea Institute of Industrial Technology (KITECH) Cheonan 31056 South Korea
| | - Woon‐Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics CenterKonkuk University Seoul 05029 South Korea
| |
Collapse
|
15
|
Güneş M, Dilgin Y. Flow injection amperometric determination of NADH at a calmagite-modified pencil graphite electrode. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02446-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Kumar S, Bukkitgar SD, Singh S, Pratibha, Singh V, Reddy KR, Shetti NP, Venkata Reddy C, Sadhu V, Naveen S. Electrochemical Sensors and Biosensors Based on Graphene Functionalized with Metal Oxide Nanostructures for Healthcare Applications. ChemistrySelect 2019. [DOI: 10.1002/slct.201803871] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sudesh Kumar
- Department of ChemistryBanasthali Vidyapeeth Rajasthan 304022 India
| | - Shikandar D. Bukkitgar
- Electrochemistry and Materials GroupDepartment of Chemistry, K. L. E. Institute of Technology Gokul, Hubballi- 580030, affiliated to Visveswaraya Technological University, Belagavi, Karnataka India
| | - Supriya Singh
- Department of ChemistryBanasthali Vidyapeeth Rajasthan 304022 India
| | - Pratibha
- Department of ChemistryBanasthali Vidyapeeth Rajasthan 304022 India
| | - Vanshika Singh
- Department of ChemistryBanasthali Vidyapeeth Rajasthan 304022 India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular EngineeringThe University of Sydney Sydney, NSW 2006 Australia
| | - Nagaraj P. Shetti
- Electrochemistry and Materials GroupDepartment of Chemistry, K. L. E. Institute of Technology Gokul, Hubballi- 580030, affiliated to Visveswaraya Technological University, Belagavi, Karnataka India
| | - Ch. Venkata Reddy
- School of Mechanical EngineeringYeungnam University Gyengsan 712–749 South Korea
| | - Veera Sadhu
- School of Physical SciencesBanasthali Vidyapeeth Rajasthan 304022 India
| | - S. Naveen
- School of Basic SciencesJain Deemed-to-be University Bangalore 562112 India
| |
Collapse
|
17
|
Lee JH, Park SJ, Choi JW. Electrical Property of Graphene and Its Application to Electrochemical Biosensing. NANOMATERIALS 2019; 9:nano9020297. [PMID: 30791566 PMCID: PMC6409852 DOI: 10.3390/nano9020297] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022]
Abstract
Graphene, a single atom thick layer of two-dimensional closely packed honeycomb carbon lattice, and its derivatives have attracted much attention in the field of biomedical, due to its unique physicochemical properties. The valuable physicochemical properties, such as high surface area, excellent electrical conductivity, remarkable biocompatibility and ease of surface functionalization have shown great potentials in the applications of graphene-based bioelectronics devices, including electrochemical biosensors for biomarker analysis. In this review, we will provide a selective overview of recent advances on synthesis methods of graphene and its derivatives, as well as its application to electrochemical biosensor development. We believe the topics discussed here are useful, and able to provide a guideline in the development of novel graphene and on graphene-like 2-dimensional (2D) materials based biosensors in the future.
Collapse
Affiliation(s)
- Jin-Ho Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Soo-Jeong Park
- Research Center for Disease Biophysics of Sogang-Harvard, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
- Research Center for Disease Biophysics of Sogang-Harvard, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea.
| |
Collapse
|
18
|
Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv 2019; 9:8778-8881. [PMID: 35517682 PMCID: PMC9062009 DOI: 10.1039/c8ra09577a] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Biosensors with high sensitivity, selectivity and a low limit of detection, reaching nano/picomolar concentrations of biomolecules, are important to the medical sciences and healthcare industry for evaluating physiological and metabolic parameters.
Collapse
Affiliation(s)
- Siva Kumar Krishnan
- CONACYT-Instituto de Física
- Benemérita Universidad Autónoma de Puebla
- Puebla 72570
- Mexico
| | - Eric Singh
- Department of Computer Science
- Stanford University
- Stanford
- USA
| | - Pragya Singh
- Department of Electrical Engineering and Computer Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Meyya Meyyappan
- Center for Nanotechnology
- NASA Ames Research Center
- Moffett Field
- Mountain View
- USA
| | | |
Collapse
|
19
|
Mohanty B, Naik KK, Sahoo S, Jena B, Chakraborty B, Rout CS, Jena BK. Efficient Photoelectrocatalytic Activity of CuWO4
Nanoplates towards the Oxidation of NADH Driven in Visible Light. ChemistrySelect 2018. [DOI: 10.1002/slct.201801137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bishnupad Mohanty
- CSIR-Institute of Minerals and Materials Technology; Bhubaneswar, Odisha; India-751013
- Department of Chemistry; Utkal University; Bhubaneswar-751004 Odisha
| | - Kusha Kumar Naik
- School of Basic Sciences; Indian Institute of Technology, Bhubaneswar, Odisha; India-751013
| | - Satyapriya Sahoo
- CSIR-Institute of Minerals and Materials Technology; Bhubaneswar, Odisha; India-751013
| | - Bijayalaxmi Jena
- Department of Chemistry; Utkal University; Bhubaneswar-751004 Odisha
| | | | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences; Jain University; Jain Global Campus, Ramanagaram; Bangalore-562112, India
| | - Bikash Kumar Jena
- CSIR-Institute of Minerals and Materials Technology; Bhubaneswar, Odisha; India-751013
- Academy of Scientific & Innovative Research, New Delhi, India-110001
| |
Collapse
|
20
|
Gu J, Yin X, Bo X, Guo L. High Performance Electrocatalyst Based on MIL-101(Cr)/Reduced Graphene Oxide Composite: Facile Synthesis and Electrochemical Detections. ChemElectroChem 2018. [DOI: 10.1002/celc.201800588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jianxia Gu
- Key Laboratory of Nanobiosensing and Nanobioanalysis Universities of Jilin Province; Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | | | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis Universities of Jilin Province; Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| | - Liping Guo
- Key Laboratory of Nanobiosensing and Nanobioanalysis Universities of Jilin Province; Faculty of Chemistry; Northeast Normal University; Changchun 130024 P. R. China
| |
Collapse
|
21
|
Gan T, Wang Z, Shi Z, Zheng D, Sun J, Liu Y. Graphene oxide reinforced core–shell structured Ag@Cu2O with tunable hierarchical morphologies and their morphology–dependent electrocatalytic properties for bio-sensing applications. Biosens Bioelectron 2018; 112:23-30. [DOI: 10.1016/j.bios.2018.04.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
|
22
|
Vukojević V, Djurdjić S, Ognjanović M, Antić B, Kalcher K, Mutić J, Stanković DM. RuO 2/graphene nanoribbon composite supported on screen printed electrode with enhanced electrocatalytic performances toward ethanol and NADH biosensing. Biosens Bioelectron 2018; 117:392-397. [PMID: 29960271 DOI: 10.1016/j.bios.2018.06.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/05/2018] [Accepted: 06/20/2018] [Indexed: 12/24/2022]
Abstract
In this work, we aimed to propose a newly synthesized composite material with enhanced electrocatalytic properties as a novel screen-printed sensor for the quantification of NADH. Additionally, the surface was modified with alcohol dehydrogenase for the preparation of an amperometric biosensor for analysis of ethanol. Synthesized material was characterized using several microstructural (FE-SEM, HR-TEM, XRD) and electrochemical (CV, EIS) techniques. The electrochemical response of the tested analytes was investigated as a function of important parameters. Under optimal conditions, the working linear range and limit of detection for ethanol sensing was 1-1800 µM and 0.19 µM, respectively. For NADH, the linear range was from 1 to 1300 µM with limit of detection of 0.52 µM. Moreover, effects of some possible interfering compounds were investigated and the developed procedure was applied to commercial alcoholic beverages. The results obtained showed satisfactory precision and accuracy of the developed method and confirm the proposed approach could be a possible replacement for the currently used techniques for ethanol and NADH quantification.
Collapse
Affiliation(s)
- Vesna Vukojević
- Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia.
| | - Sladjana Djurdjić
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Miloš Ognjanović
- The Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia
| | - Bratislav Antić
- The Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia
| | - Kurt Kalcher
- Institute of Chemistry-Analytical Chemistry, Karl-Franzens University Graz, A-8010 Graz, Austria
| | - Jelena Mutić
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia
| | - Dalibor M Stanković
- Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000 Belgrade, Serbia; The Vinca Institute of Nuclear Sciences, University of Belgrade, POB 522, 11001 Belgrade, Serbia.
| |
Collapse
|
23
|
Su W, Li Z, Liu S, Ding X. Indirect Electrochemical Detection of NADH Through an Active Stainless Steel Fiber Felt (SSFF) Electrode Decorated With the Amino-Graphene/Nafion Nano Composite Films. ChemistrySelect 2018. [DOI: 10.1002/slct.201800743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wenqiong Su
- Institute for Personalized Medicine; School of Biomedical Engineering; Shanghai Jiao Tong University; 200240 P.R. China
| | - Zonglin Li
- Institute for Personalized Medicine; School of Biomedical Engineering; Shanghai Jiao Tong University; 200240 P.R. China
| | - Shuopeng Liu
- Institute for Personalized Medicine; School of Biomedical Engineering; Shanghai Jiao Tong University; 200240 P.R. China
| | - Xianting Ding
- Institute for Personalized Medicine; School of Biomedical Engineering; Shanghai Jiao Tong University; 200240 P.R. China
| |
Collapse
|
24
|
Zhu G, Sun H, Zou B, Liu Z, Sun N, Yi Y, Wong KY. Electrochemical sensing of 4-nitrochlorobenzene based on carbon nanohorns/graphene oxide nanohybrids. Biosens Bioelectron 2018; 106:136-141. [DOI: 10.1016/j.bios.2018.01.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/20/2018] [Accepted: 01/26/2018] [Indexed: 12/25/2022]
|
25
|
Bilgi M, Sahin EM, Ayranci E. Sensor and biosensor application of a new redox mediator: Rosmarinic acid modified screen-printed carbon electrode for electrochemical determination of NADH and ethanol. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Rębiś T, Sobczak A, Wierzchowski M, Frankiewicz A, Teżyk A, Milczarek G. An approach for electrochemical functionalization of carbon nanotubes/1-amino-9,10-anthraquinone electrode with catechol derivatives for the development of NADH sensors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Sander K, Asano KG, Bhandari D, Van Berkel GJ, Brown SD, Davison B, Tschaplinski TJ. Targeted redox and energy cofactor metabolomics in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:270. [PMID: 29213318 PMCID: PMC5707896 DOI: 10.1186/s13068-017-0960-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are prominent candidate biocatalysts that, together, can enable the direct biotic conversion of lignocellulosic biomass to ethanol. The imbalance and suboptimal turnover rates of redox cofactors are currently hindering engineering efforts to achieve higher bioproductivity in both organisms. Measuring relevant intracellular cofactor concentrations will help understand redox state of these cofactors and help identify a strategy to overcome these limitations; however, metabolomic determinations of these labile metabolites have historically proved challenging. RESULTS Through our validations, we verified the handling and storage stability of these metabolites, and verified extraction matrices and extraction solvent were not suppressing mass spectrometry signals. We recovered adenylate energy charge ratios (a main quality indicator) above 0.82 for all extractions. NADH/NAD+ values of 0.26 and 0.04 for an adhE-deficient strain of C. thermocellum and its parent, respectively, reflect the expected shift to a more reduced redox potential when a species lacks the ability to re-oxidize NADH by synthesizing ethanol. This method failed to yield reliable results with C. bescii and poor-growing strains of T. saccharolyticum. CONCLUSIONS Our validated protocols demonstrate and validate the extraction and analysis of selected redox and energy-related metabolites from two candidate consolidated bioprocessing biocatalysts, C. thermocellum and T. saccharolyticum. This development and validation highlights the important, but often neglected, need to optimize and validate metabolomic protocols when adapting them to new cell or tissue types.
Collapse
Affiliation(s)
- Kyle Sander
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN USA
- Bredesen Center for Interdisciplinary Graduate Research and Education, University of Tennessee, Knoxville, TN USA
- BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Keiji G. Asano
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Deepak Bhandari
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Present Address: Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Gary J. Van Berkel
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Steven D. Brown
- Bredesen Center for Interdisciplinary Graduate Research and Education, University of Tennessee, Knoxville, TN USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- Present Address: LanzaTech, Skokie, IL USA
| | - Brian Davison
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN USA
- Bredesen Center for Interdisciplinary Graduate Research and Education, University of Tennessee, Knoxville, TN USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
- BioEnergy Sciences Center, Oak Ridge National Laboratory, Oak Ridge, TN USA
| |
Collapse
|
28
|
Aydoğdu Tığ G. Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-Cysteine)/reduced graphene oxide nanocomposite. Talanta 2017; 175:382-389. [PMID: 28842007 DOI: 10.1016/j.talanta.2017.07.073] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 10/19/2022]
Abstract
This work presents the fabrication of a novel nicotinamide adenine dinucleotide (NADH) sensor using gold-silver bimetallic nanoparticles (Au-AgNPs), poly(L-Cysteine) (P(L-Cys)) and electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE/Au-AgNPs/P(L-Cys)-ERGO). The composite electrode exhibited an excellent electrocatalytic response towards NADH at a low oxidation potential (+ 0.35V) and minimization of surface contamination due to the synergistic effects of the Au-AgNPs, polymer and ERGO. Under optimum conditions, modified sensors allowed the detection of NADH with a wide linear range from 0.083µM to 1.05mM with a low detection limit of 9.0nM (S/N = 3). Moreover, this modified electrode was also used as a sensitive ethanol biosensor, which was prepared with alcohol dehydrogenase (ADH) via glutaraldehyde, bovin serum albumin and nafion (Naf). There was a linear response for ethanol in the concentration range from 0.017 to 1.845mM with a low detection limit of 5.0µM (S/N = 3). The GCE/Au-AgNPs/P(L-Cys)-ERGO/ADH/Naf electrode can be successfully used for the determination of ethanol in different commercial beverages.
Collapse
Affiliation(s)
- Gözde Aydoğdu Tığ
- Biochemistry Division, Department of Chemistry, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| |
Collapse
|
29
|
Ahari H, Hedayati M, Akbari-adergani B, Kakoolaki S, Hosseini H, Anvar A. Staphylococcus aureus exotoxin detection using potentiometric nanobiosensor for microbial electrode approach with the effects of pH and temperature. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1347944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hamed Ahari
- Assistant Professor, Department of Food Science and Technology, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences
| | - Behrouz Akbari-adergani
- Food and Drug Laboratory Research Center, Food and Drug Organization, Ministry of Health and Medical Education, Tehran, Iran
| | - Shapour Kakoolaki
- Agricultural Research, Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Sciences and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirali Anvar
- Assistant Professor, Department of Food Science and Technology, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Li J, Sun Q, Mao Y, Bai Z, Ning X, Zheng J. Sensitive and low-potential detection of NADH based on boronic acid functionalized multi-walled carbon nanotubes coupling with an electrocatalysis. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.03.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Canevari TC, Cincotto FH, Gomes D, Landers R, Toma HE. Magnetite Nanoparticles Bonded Carbon Quantum Dots Magnetically Confined onto Screen Printed Carbon Electrodes and their Performance as Electrochemical Sensor for NADH. ELECTROANAL 2017. [DOI: 10.1002/elan.201700167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Thiago C. Canevari
- Engineering School; Presbyterian University Mackenzie; 01302-907 São Paulo, SP Brazil
- Institute of Chemistry; University of São Paulo; 05508-000 São Paulo, SP Brazil
| | - Fernando H. Cincotto
- Department Chemistry; Federal University of São Carlos; 13565-905 São Carlos, SP Brazil
| | - Delmarcio Gomes
- Institute of Chemistry; University of São Paulo; 05508-000 São Paulo, SP Brazil
| | - Richard Landers
- Institute of physic; University of Campinas; 13560-970 Campinas, SP Brazil
| | - Henrique E. Toma
- Institute of Chemistry; University of São Paulo; 05508-000 São Paulo, SP Brazil
| |
Collapse
|