1
|
Castelo RM, de Albuquerque Oliveira M, Furtado RF, de Oliveira BP, Martoni LVL, Machado TF, Muniz CR, da Silva Abreu FOM, Machado SAS, Melo AMA, Cheng HN, Biswas A, Alves CR. Carbon-dot pequi-nut in the development of immunosensor to detect pathogenic bacteria. Braz J Microbiol 2025; 56:275-284. [PMID: 39812971 PMCID: PMC11885730 DOI: 10.1007/s42770-025-01612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Carbon dots in biosensing have advanced significantly, adding improvements to different detection techniques. In this study, an amperometric immunosensor for Salmonella Thyphimurium was designed using antibodies labeled with carbon dots (Cdots) from pequi almond (Caryocar brasiliensis). Cdots were synthesized by pyrolysis and characterized by FTIR, UV/fluorescence, electrochemistry, zeta potential, and transmission electron microscopy (TEM). A particle size of 6.80 ± 2.13 nm was estimated, and the zeta potential was - 47.4 mV, indicating the preponderant presence of acidic groups, as confirmed by FTIR. The impedance evaluation of the response of biosensors assembled for live (Rct = 13.4 kΩ) and dead (Rct = 499.7 Ω) Salmonella showed a significant difference in their values, in agreement with chronoamperometric analyses, which had their current values drastically reduced from - 2.2 mA (live) to 0 mA (dead). An analytical curve for Salmonella was established with the limit of detection lower than 1 CFU/mL. This electrochemical biosensor using pequi carbon dots for antibody labeling showed promising results for detecting the pathogen. Thus, carbon dots can be used as substitutes for enzymes in labeling antibodies used in the design and production of sensors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Celli Rodrigues Muniz
- Laboratório de Microscopia Eletrônica, Embrapa Agroindústria Tropical, Fortaleza, Brazil
| | | | | | | | - Huai N Cheng
- Southern Regional Research Center, USD Agricultural Research Service, New Orleans, LA, 70124, USA
| | - Atanu Biswas
- USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, 61604, USA
| | | |
Collapse
|
2
|
Feleni U, Morare R, Masunga GS, Magwaza N, Saasa V, Madito MJ, Managa M. Recent developments in waterborne pathogen detection technologies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:233. [PMID: 39903332 PMCID: PMC11794368 DOI: 10.1007/s10661-025-13644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Waterborne pathogens find their way into water bodies through contamination of fecal discharge, stormwater run-offs, agriculture and industrial activities, and poor water infrastructure. These organisms are responsible for causing diarrheal, gastroenteritis, cholera, and typhoid diseases which raise an alarming sense on public human health due to the high mortality rate, especially in children. Several studies have indicated that these waterborne diseases can be managed by monitoring pathogens in water using traditional culture-based and molecular techniques. However, these methods have shown several setbacks such as the longer duration for detection and the inability to detect pathogens at low concentrations. Effective management of these diseases requires rapid, sensitive, highly selective, fast, and efficient economic methods to monitor pathogens in water. Since the creation of biosensors, these tools have been applied and shown the ability to detect pathogens at low concentrations. The highlights of biosensor systems are that they are fast, portable, easy to use, highly sensitive, and specific. The capabilities of biosensors have given these tools exposure to be widely applied in detecting pharmaceutical pollutants, pesticides, toxins, residues of detergents, and cosmetics from household activities in soil and water. With such difficulties faced for detecting waterborne pathogens, this review evaluates the effectiveness of technologies for waterborne pathogens detection and their drawbacks. It further highlights biosensors as the current reliable method available for detecting pathogens in water and its future capabilities in sustaining safe potable water.
Collapse
Affiliation(s)
- Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa.
| | - Rebotiloe Morare
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Ginny S Masunga
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Nontokozo Magwaza
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Valentine Saasa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| | - Moshawe J Madito
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Florida Park 1710, Johannesburg, South Africa
| |
Collapse
|
3
|
Jyoti, Castillo A, Jurado‐Sánchez B, Pumera M, Escarpa A. Active Quantum Biomaterials-Enhanced Microrobots for Food Safety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404248. [PMID: 39449211 PMCID: PMC11673522 DOI: 10.1002/smll.202404248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/22/2024] [Indexed: 10/26/2024]
Abstract
Timely disruptive tools for the detection of pathogens in foods are needed to face global health and economic challenges. Herein, the utilization of quantum biomaterials-enhanced microrobots (QBEMRs) as autonomous mobile sensors designed for the precise detection of endotoxins originating from Salmonella enterica (S. enterica) as an indicator species for food-borne contamination globally is presented. A fluorescent molecule-labeled affinity peptide functions as a specific probe, is quenched upon binding to the surface of QBEMRs. Owing to its selective affinity for endotoxin, in the presence of S. enterica the fluorescence is restored and easy to observe and quantifies optical color change to indicate the presence of Salmonella. The devised approach is designed to achieve highly sensitive detection of the S. enterica serovar Typhimurium endotoxin with exquisite selectivity through the utilization of QBEMRs. Notably, no fluorescence signal is observed in the presence of endotoxins bearing similar structural characteristics, highlighting the selectivity of the approach during food sample analysis. Technically, the strategy is implemented in microplate readers to extend microrobots-based approaches to the routine laboratory. This new platform can provide fast and anticipated results in food safety.
Collapse
Affiliation(s)
- Jyoti
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversidad de AlcalaAlcala de HenaresMadridE‐28802Spain
- Future Energy and Innovation LaboratoryCentral European Institute of TechnologyBrno University of Technology (CEITEC‐BUT)Brno61200Czech Republic
| | - Alberto‐Rodríguez Castillo
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversidad de AlcalaAlcala de HenaresMadridE‐28802Spain
| | - Beatriz Jurado‐Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversidad de AlcalaAlcala de HenaresMadridE‐28802Spain
- Chemical Research Institute “Andres M. Del Río,”Universidad de AlcalaAlcala de HenaresMadridE‐28802Spain
| | - Martin Pumera
- Future Energy and Innovation LaboratoryCentral European Institute of TechnologyBrno University of Technology (CEITEC‐BUT)Brno61200Czech Republic
- Advanced Nanorobots & Multiscale Robotics LaboratoryFaculty of Electrical Engineering and Computer ScienceVSB‐Technical University of Ostrava17. Listopadu 2172/15Ostrava70800Czech Republic
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityNo. 91 Hsueh‐Shih RoadTaichung40402Taiwan
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversidad de AlcalaAlcala de HenaresMadridE‐28802Spain
- Chemical Research Institute “Andres M. Del Río,”Universidad de AlcalaAlcala de HenaresMadridE‐28802Spain
| |
Collapse
|
4
|
Konstantinou L, Varda E, Apostolou T, Loizou K, Dougiakis L, Inglezakis A, Hadjilouka A. A Novel Application of B.EL.D™ Technology: Biosensor-Based Detection of Salmonella spp. in Food. BIOSENSORS 2024; 14:582. [PMID: 39727847 DOI: 10.3390/bios14120582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
The prevalence of foodborne diseases is continuously increasing, causing numerous hospitalizations and deaths, as well as money loss in the agri-food sector and food supply chain worldwide. The standard analyses currently used for bacteria detection have significant limitations with the most important being their long procedural time that can be crucial for foodborne outbreaks. In this study, a biosensor system able to perform robust and accurate detection of Salmonella spp. in meat products was developed. To achieve this, a portable device developed by EMBIO Diagnostics called B.EL.DTM (Bio Electric Diagnostics) and cell-based biosensor technology (BERA) were used. Results indicated that the new method could detect the pathogen within 24 h after a 3-min analysis and discriminate samples with and without Salmonella with high accuracy. Achieving an accuracy of 86.1% and a detection limit (LOD) of 1 log CFU g-1, this innovative technology enables rapid and sensitive identification of Salmonella spp. in meat and meat products, making it an excellent tool for pathogen screening.
Collapse
Affiliation(s)
- Lazaros Konstantinou
- EMBIO Diagnostics Ltd., Athalassas, 2018 Nicosia, Cyprus
- Department of Life Sciences, School of Sciences, European University of Cyprus, 2404 Nicosia, Cyprus
| | - Eleni Varda
- EMBIO Diagnostics Ltd., Athalassas, 2018 Nicosia, Cyprus
| | | | | | | | | | - Agni Hadjilouka
- EMBIO Diagnostics Ltd., Athalassas, 2018 Nicosia, Cyprus
- Department of Life Sciences, School of Sciences, European University of Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
5
|
Alsharabi RM, Singh J, Saxena PS, Srivastava A. Ultra-sensitive electrochemical immunosensor based on 2D vanadium diselenide (VSe 2) for efficient detection of pathogens: Salmonella Typhimurium. LUMINESCENCE 2024; 39:e4896. [PMID: 39268684 DOI: 10.1002/bio.4896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
Layered transition metal dichalcogenides (TMDs), with an extensive surface area, intriguing tunable electrical and optical features, and a distinctive Van der Waals layered structure, yield outstanding sensing properties. Essentially, most TMDs originally existed in the crystallographic phase of a 2H trigonal prismatic structure, which is semiconducting in nature with poor electrocatalytic activity. In contrast, vanadium diselenide (VSe2) with its metastable metallic 1 T octahedral crystal structure has been proven to be an outstanding electrode material, embracing exceptional electrocatalytic behavior for various electrochemical (EC) applications. However, practically, VSe2 has hardly ever been explored in the field of biosensing technology. This study presents a novel EC biosensor based on the antibody of Salmonella Typhimurium (Anti-ST) immobilized on VSe2-supported Indium tin oxide (Anti-ST/VSe2/ITO) for quantitative and efficient Salmonella Typhimurium (ST) detection. The Anti-ST/VSe2/ITO bioelectrode displayed a linear relationship with ST concentration (1.3 × 10-107 CFU/ml) with a limit of detection (LOD) (0.096 CFU/ml) that is lower than previously reported ST biosensors and impressively high sensitivity (0.001996 μA.mL/CFU). Furthermore, the proposed electrode's electroanalytical activity was evaluated in spiked sugarcane juice, demonstrating distinguished applicability for specific ST detection in real samples.
Collapse
Affiliation(s)
- Rim M Alsharabi
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Physics, Institute of Science, Sana'a University, Sana'a, Yemen
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Preeti S Saxena
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anchal Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Zambry NS, Awang MS, Hamzah HH, Mohamad AN, Khalid MF, Khim BK, Bustami Y, Jamaluddin NF, Ibrahim F, Aziah I, Abd Manaf A. A portable label-free electrochemical DNA biosensor for rapid detection of Salmonella Typhi. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5254-5262. [PMID: 39011785 DOI: 10.1039/d4ay00888j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
A highly accurate, rapid, portable, and robust platform for detecting Salmonella enterica serovar Typhi (S. Typhi) is crucial for early-stage diagnosis of typhoid to avert and control the outbreaks of this pathogen, which threaten global public health. This study presents a proof-of-concept for our developed label-free electrochemical DNA biosensor system for S. Typhi detection, which employs a printed circuit board gold electrode (PCBGE), integrated with a portable potentiostat reader. Initially, the functionalized DNA biosensor and target detection were characterized using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) methods using a benchtop potentiostat. Interestingly, the newly developed DNA biosensor can identify target single-stranded DNA concentrations ranging from 10 nM to 20 μM, achieving a detection limit of 7.6 nM within a brief 5 minute timeframe. Under optimal detection conditions, the DNA biosensor exhibits remarkable selectivity, capable of distinguishing a single mismatch base pair from the target single-stranded DNA sequence. We then evaluated the feasibility of the developed DNA biosensor system as a diagnostic tool by detecting S. Typhi in 50 clinical samples using a portable potentiostat reader based on the DPV technique. Remarkably, the developed biosensor can distinctly distinguish between positive and negative samples, indicating that the miniaturised DNA biosensor system is practical for detecting S. Typhi in real biological samples. The developed DNA biosensor device in this work proves to be a promising point-of-care (POC) device for Salmonella detection due to its swift detection time, uncomplicated design, and streamlined workflow detection system.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| | - Hairul Hisham Hamzah
- School of Health & Life Sciences, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Ahmad Najib Mohamad
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Beh Khi Khim
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Nurul Fauzani Jamaluddin
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fatimah Ibrahim
- Centre for Innovation in Medical Engineering (CIME), Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| |
Collapse
|
7
|
Wei F, Zheng H, Gao C, Tian J, Gou J, Hamouda HI, Xue C. In Situ Preparation of Star-Shaped Protein-"Smart" Polymer Conjugates with pH and Thermo-Dual Responsibility for Bacterial Separation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38817042 DOI: 10.1021/acs.jafc.3c09129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
To achieve effective separation and enrichment of bacteria, a novel synthetic scheme was developed to synthesize star-style boronate-functionalized copolymers with excellent hydrophilicity and temperature and pH responsiveness. A hydrophilic copolymer brush was synthesized by combining surface-initiated atom-transfer radical polymerization with amide reaction using bovine serum albumin as the core. The copolymer brush was further modified by introducing and immobilizing fluorophenylboronic acids through an amide reaction, resulting in the formation of boronate affinity material BSA@poly(NIPAm-co-AGE)@DFFPBA. The morphology and organic content of BSA@poly(NIPAm-co-AGE)@DFFPBA were systematically characterized. The BSA-derived composites demonstrated a strong binding capacity to both Gram-positive and Gram-negative bacteria. The binding capabilities of the affinity composite to Staphylococcus aureus and Salmonella spp. were 195.8 × 1010 CFU/g and 79.2 × 1010 CFU/g, respectively, which indicates that the novel composite exhibits a high binding capability to bacteria and shows a particularly more significant binding capacity toward Gram-positive bacteria. The bacterial binding of BSA@poly(NIPAm-co-AGE)@DFFPBA can be effectively altered by adjusting the pH and temperature. This study demonstrated that the star-shaped affinity composite had the potential to serve as an affinity material for the rapid separation and enrichment of bacteria in complex samples.
Collapse
Affiliation(s)
- Fayi Wei
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Hongwei Zheng
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
| | - Chao Gao
- Technology Center of Qingdao Customs, Qingdao 266003, China
| | - Jiaojiao Tian
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
| | - Jinpeng Gou
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
| | - Hamed I Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science & Engineering, Ocean University of China, Qingdao 266404, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao 266109, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
8
|
Mishra KK, Dhamu VN, Poudyal DC, Muthukumar S, Prasad S. PathoSense: a rapid electroanalytical device platform for screening Salmonella in water samples. Mikrochim Acta 2024; 191:146. [PMID: 38372811 DOI: 10.1007/s00604-024-06232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Salmonella contamination is a major global health challenge, causing significant foodborne illness. However, current detection methods face limitations in sensitivity and time, which mostly rely on the culture-based detection techniques. Hence, there is an immediate and critical need to enhance early detection, reduce the incidence and impact of Salmonella contamination resulting in outbreaks. In this work, we demonstrate a portable non-faradaic, electrochemical sensing platform capable of detecting Salmonella in potable water with an assay turnaround time of ~ 9 min. We evaluated the effectiveness of this sensing platform by studying two sensor configurations: one utilizing pure gold (Au) and the other incorporating a semiconductor namely a zinc oxide thin film coated on the surface of the gold (Au/ZnO). The inclusion of zinc oxide was intended to enhance the sensing capabilities of the system. Through comprehensive experimentation and analysis, the LoD (limit of detection) values for the Au sensor and Au/ZnO sensor were 0.9 and 0.6 CFU/mL, respectively. In addition to sensitivity, we examined the sensing platform's precision and reproducibility. Both the Au sensor and Au/ZnO sensor exhibited remarkable consistency, with inter-study percentage coefficient of variation (%CV) and intra-study %CV consistently below 10%. The proposed sensing platform exhibits high sensitivity in detecting low concentrations of Salmonella in potable water. Its successful development demonstrates its potential as a rapid and on-site detection tool, offering portability and ease of use. This research opens new avenues for electrochemical-based sensors in food safety and public health, mitigating Salmonella outbreaks and improving water quality monitoring.
Collapse
Affiliation(s)
- Kundan Kumar Mishra
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | | | - Durgasha C Poudyal
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | | | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, 75080, USA.
- EnLiSense LLC, 1813 Audubon Pondway, Allen, TX, 75013, USA.
| |
Collapse
|
9
|
Zhang M, Xu F, Cao J, Dou Q, Wang J, Wang J, Yang L, Chen W. Research advances of nanomaterials for the acceleration of fracture healing. Bioact Mater 2024; 31:368-394. [PMID: 37663621 PMCID: PMC10474571 DOI: 10.1016/j.bioactmat.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
The bone fracture cases have been increasing yearly, accompanied by the increased number of patients experiencing non-union or delayed union after their bone fracture. Although clinical materials facilitate fracture healing (e.g., metallic and composite materials), they cannot fulfill the requirements due to the slow degradation rate, limited osteogenic activity, inadequate osseointegration ability, and suboptimal mechanical properties. Since early 2000, nanomaterials successfully mimic the nanoscale features of bones and offer unique properties, receiving extensive attention. This paper reviews the achievements of nanomaterials in treating bone fracture (e.g., the intrinsic properties of nanomaterials, nanomaterials for bone defect filling, and nanoscale drug delivery systems in treating fracture delayed union). Furthermore, we discuss the perspectives on the challenges and future directions of developing nanomaterials to accelerate fracture healing.
Collapse
Affiliation(s)
- Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Fan Xu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jingcheng Cao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Qingqing Dou
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Lei Yang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| |
Collapse
|
10
|
P U A, Raj G, John J, Mohan K M, John F, George J. Aptamers: Features, Synthesis and Applications. Chem Biodivers 2023; 20:e202301008. [PMID: 37709723 DOI: 10.1002/cbdv.202301008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Aptamers have become a topic of interest among the researchers and scientists since they not only possess all of the benefits of antibodies but also possess special qualities including heat stability, low cost, and limitless uses⋅ Here we give a review about the features, applications, and challenges of aptamers and also how they are beneficial over the antibodies for biomedical applications. Their unique features make aptamers a prominent tool in therapeutics, diagnostics, biosensors and targeted drug delivery. In conclusion, aptamers represent exciting materials for a variety of applications and can be modified to improve their properties and to extend their applications in biomedical field.
Collapse
Affiliation(s)
- Aiswarya P U
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Gopika Raj
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinju John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Malavika Mohan K
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Franklin John
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| | - Jinu George
- Bio-organic Laboratory, Department of Chemistry, Sacred Heart College, Kochi, 682013, India
| |
Collapse
|
11
|
Sadr S, Lotfalizadeh N, Ghafouri SA, Delrobaei M, Komeili N, Hajjafari A. Nanotechnology innovations for increasing the productivity of poultry and the prospective of nanobiosensors. Vet Med Sci 2023; 9:2118-2131. [PMID: 37433046 PMCID: PMC10508580 DOI: 10.1002/vms3.1193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/22/2023] [Accepted: 06/03/2023] [Indexed: 07/13/2023] Open
Abstract
Nanotechnology is an innovative, promising technology with a great scope of applications and socioeconomic potential in the poultry industry sector. Nanoparticles (NPs) show the advantages of high absorption and bioavailability with more effective delivery to the target tissue than their bulk particles. Various nanomaterials are available in different forms, sizes, shapes, applications, surface modifications, charges and natures. Nanoparticles can be utilised in the delivery of medicines, targeting them to their right effective site in the body and, at the same time, decreasing their toxicity and side effects. Furthermore, nanotechnology can be beneficial in the diagnosis of diseases and prevention of them and in enhancing the quality of animal products. There are different mechanisms through which NPs could exert their action. Despite the vast benefits of NPs in poultry production, some concerns about their safety and hazardous effects should be considered. Therefore, this review article focuses on NPs' types, manufacture, mechanism of action and applications regarding safety and hazard impact.
Collapse
Affiliation(s)
- Soheil Sadr
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Narges Lotfalizadeh
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Seyed Ali Ghafouri
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Matineh Delrobaei
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Nima Komeili
- Faculty of Veterinary MedicineDepartment of Pathobiology, Ferdowsi University of MashhadMashhadIran
| | - Ashkan Hajjafari
- Faculty of Veterinary MedicineDepartment of Pathobiology, Islamic Azad University Olom TahghighatTehranIran
| |
Collapse
|
12
|
Ding Y, Zhu W, Huang C, Zhang Y, Wang J, Wang X. Quantum dot-labeled phage-encoded RBP 55 as a fluorescent nanoprobe for sensitive and specific detection of Salmonella in food matrices. Food Chem 2023; 428:136724. [PMID: 37418877 DOI: 10.1016/j.foodchem.2023.136724] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
As a commonly pathogenic bacterium, the rapid detection of Salmonella outbreaks and assurance of food safety require a highly efficient detection method. Herein, a novel approach to Salmonella detection using quantum dot-labeled phage-encoded RBP 55 as a fluorescent nanoprobe is reported. RBP 55, a novel phage receptor binding protein (RBP), was identified and characterized from phage STP55. RBP 55 was functionalized onto quantum dots (QDs) to form fluorescent nanoprobes. The assay was based on the combination of immunomagnetic separation and RBP 55-QDs, which formed a sandwich composite structure. The results showed a good linear correlation between the fluorescence values and the concentration of Salmonella (101-107 CFU/mL) with a low detection limit of 2 CFU/mL within 2 h. The method was used to successfully detect Salmonella in spiked food samples. This approach can be used for the simultaneous detection of multiple pathogens by labeling different phage-encoded RBPs using polychromatic QDs in the future.
Collapse
Affiliation(s)
- Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenjuan Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chenxi Huang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yiming Zhang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Guan Z, Sun Y, Ma CB, Lee JJ, Zhang S, Zhang X, Guo Z, Du Y. Dual targets-induced specific hemin/G-quadruplex assemblies for label-free electrochemical detection capable of distinguishing Salmonella and its common serotype in food samples. Biosens Bioelectron 2023; 236:115438. [PMID: 37263053 DOI: 10.1016/j.bios.2023.115438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
Efficient detection of pathogenic bacteria is paramount for ensuring food safety and safeguarding public health. Herein, we developed a label-free and signal-on dual-target recognition electrochemical DNA sensing platform based on the conformational formation of split G-quadruplex. This platform focused on achieving sensitive and low-cost detection of Salmonella and its most human-infecting S. typhimurium serotype. In simple terms, the dual-target recognition probe (DTR-6P) was ingeniously designed for the loop sequence on the loop-mediated isothermal amplification (LAMP) amplicons. It could recognize two different genes and release their corresponding G-rich sequences. The exfoliated G-rich sequences could be captured by the capture probes on the electrode, and then the bimolecular G-quadruplex or the tetramolecular G-quadruplex would be formed to capture hemin, thereby enabling dual-signal reporting. The minimum detection amount of target genes can be as low as 2 copies/μL. Encouragingly, the real food samples contaminated by Salmonella and the S. typhimurium serotype can be readily identified. The sensing platform with ingenious design paves a new way for label-free, multi-target simultaneous detection, whose advantage of rapidity, sensitivity, cost-effectiveness, and specificity also lay a solid foundation for practical applications.
Collapse
Affiliation(s)
- Zhaowei Guan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; Department of Food Science and Engineering, Yanbian University, YanJi, Jilin, 133002, China
| | - Yi Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, China
| | - Chong-Bo Ma
- Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Jung Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, China
| | - Sicai Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zhijun Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, 133002, China; Department of Food Science and Engineering, Yanbian University, YanJi, Jilin, 133002, China.
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China; Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
14
|
Patil V, Hedau M, Kaore M, Badar S, Kadam M, Chaudhari S, Rawool D, Barbuddhe S, Vergis J, Kurkure N. Potential of cinnamaldehyde essential oil as a possible antimicrobial against fowl typhoid in layers. Trop Anim Health Prod 2023; 55:126. [PMID: 36944831 DOI: 10.1007/s11250-023-03543-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Fowl typhoid (FT) is an economically significant bacterial disease of layers leading to a drastic drop in egg production. Due to increased public health concerns about antibiotics in poultry feed, a search for new safe antimicrobials for treating fowl typhoid is crucial. The antimicrobial effect of cinnamaldehyde essential oil (CnEO) against fowl typhoid in layers was investigated in this experiment. The 60-week-old BV300-layer birds (n = 100) were divided into five groups: the non-challenged control group A, only cinnamaldehyde-treated group B (CnEO @ 1:8000 dilutions through drinking water for 60 days), the challenged group C, challenged plus cinnamaldehyde therapy group D (CnEO @ 1:8000 dilutions through drinking water from 16 to 30 dpi), and challenged plus antibiotic therapy group E (chloramphenicol @ 1 gm/5lit through drinking water from 16 to 30 dpi). Hens from all challenged groups were challenged with Salmonella Gallinarum (VTCCBAA588) @ 1 × 108 CFU/ml orally. Various parameters such as clinical signs, mortality, egg production and egg weight, colony-forming unit (CFU) count of cecal content, eggshell surface, and egg yolk were evaluated all through 60 days of an experimental trial. Results indicated that, in the case of the cinnamaldehyde therapeutic group, there was a significant improvement in egg production, mild clinical signs, lower feed conversion ratio (FCR), and a significantly lower bacterial count in ceca and on the eggshell surface compared to the control challenge group. Thus, CnEO @ 1:8000 dilutions through drinking water can be a potential antimicrobial for controlling fowl typhoid.
Collapse
Affiliation(s)
- Vaibhav Patil
- Department of Veterinary Pathology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Seminary Hills, Nagpur, 440006, Maharashtra, India
| | - Madhuri Hedau
- Department of Veterinary Pathology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Seminary Hills, Nagpur, 440006, Maharashtra, India
| | - Megha Kaore
- Department of Veterinary Pathology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Seminary Hills, Nagpur, 440006, Maharashtra, India
| | - Shweta Badar
- Department of Veterinary Pathology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Seminary Hills, Nagpur, 440006, Maharashtra, India
| | - Mukund Kadam
- Department of Poultry Sciences, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur, 440006, Maharashtra, India
| | - Sandeep Chaudhari
- Department of Veterinary Public Health, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Nagpur, 440006, Maharashtra, India
| | - Deepak Rawool
- ICAR-National Research Centre On Meat, Chengicherla, Hyderabad, 500 092, Telanagana, India
| | - Sukhadeo Barbuddhe
- ICAR-National Research Centre On Meat, Chengicherla, Hyderabad, 500 092, Telanagana, India
| | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode Kerala Veterinary, and Animal Sciences University, Wayanad, Kerala, 673 576, India
| | - Nitin Kurkure
- Department of Veterinary Pathology, Nagpur Veterinary College, Maharashtra Animal and Fishery Sciences University, Seminary Hills, Nagpur, 440006, Maharashtra, India.
| |
Collapse
|
15
|
Ali MR, Bacchu MS, Das S, Akter S, Rahman MM, Saad Aly MA, Khan MZH. Label free flexible electrochemical DNA biosensor for selective detection of Shigella flexneri in real food samples. Talanta 2023; 253:123909. [PMID: 36152607 DOI: 10.1016/j.talanta.2022.123909] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022]
Abstract
An effective tool for early-stage selective detection of the foodborne bacterial pathogen Shigella flexneri (S. flexneri) is essential for diagnosing infectious diseases and controlling outbreaks. Here, a label-free electrochemical DNA biosensor for monitoring S. flexneri is developed. To fabricate the biosensor, detection probe (capture probe) is immobilized on the surface of poly melamine (P-Mel) and poly glutamic acid (PGA), and disuccinimidyl suberate (DSS) functionalized flexible indium tin oxide (ITO) electrode. Anthraquinone-2-sulfonic acid monohydrate sodium salt (AQMS) is used as a signal indicator for the detection of S. flexneri. The proposed DNA biosensor exhibits a wide dynamic range with concentration of the targets ranging from 1 × 10-6 to 1 × 10-21 molL-1 with a limit of detection (LOD) of 7.4 × 10-22 molL-1 in the complementary linear target of S. flexneri, and a detection range of 8 × 1010-80 cells/ml with a LOD of 10 cells/ml in real S. flexneri sample. The proposed flexible biosensor provides high specificity for the detection of S. flexneri compared to other target signals such as discrete base mismatches and different bacterial species. The developed biosensor displayed excellent recoveries in detecting S. flexneri in spiked food samples. Therefore, the proposed biosensor can serve as a model methodology for the detection of other pathogens in a broad span of industries.
Collapse
Affiliation(s)
- M R Ali
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M S Bacchu
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - S Das
- Dept. of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - S Akter
- Dept. of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - M M Rahman
- Faculty of Science and Information Technology, Daffodil International University, Dhaka, 1207, Bangladesh
| | - M Aly Saad Aly
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Daegu, 42988, South Korea
| | - M Z H Khan
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
16
|
Esmaeilzadeh AA, Yaseen MM, Khudaynazarov U, Al-Gazally ME, Catalan Opulencia MJ, Jalil AT, Mohammed RN. Recent advances on the electrochemical and optical biosensing strategies for monitoring microRNA-21: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4449-4459. [PMID: 36330992 DOI: 10.1039/d2ay01384c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The small non-coding RNA, microRNA-21 (miR-21), is dysregulated in various cancers and can be considered an appropriate target for therapeutic approaches. Therefore, the detection of miR-21 concentration is important in the diagnosis of diseases. Low specificity and the cost of materials are two necessary limitations in the traditional diagnosis method such as RT-PCR, northern blotting and microarray analysis. Biosensor technology can play an effective role in improving the quality of human life due to its capacity of rapid diagnosis, monitoring different markers, suitable sensitivity, and specificity. Moreover, bioanalytical systems have an essential role in the detection of biomolecules or miRNAs due to their critical features, including easy usage, portability, low cost and real-time analysis. Electrochemical biosensors based on novel nanomaterials and oligonucleotides can hybridize with miR-21 in different ranges. Moreover, optical biosensors and piezoelectric devices have been developed for miR-21 detection. In this study, we have evaluated different materials used in bioanalytical systems for miR-21 detection as well as various nanomaterials that offer improved electrodes for its detection.
Collapse
Affiliation(s)
| | - Muna Mohammed Yaseen
- Basic Science Department, Dentistry of College, University of Anbar, Al-Anbar, Iraq
| | - Utkir Khudaynazarov
- Teaching Assistant, MD, Department of Surgical Diseases, Faculty of Pediatrics, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihlan university of Sulaimaniya, Kurdistan Region, Iraq
- College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| |
Collapse
|
17
|
Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, Md Yasin IS, Wasoh H. Advances in Aptamer-Based Biosensors and Cell-Internalizing SELEX Technology for Diagnostic and Therapeutic Application. BIOSENSORS 2022; 12:bios12110922. [PMID: 36354431 PMCID: PMC9687594 DOI: 10.3390/bios12110922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 05/28/2023]
Abstract
Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.
Collapse
Affiliation(s)
- Zixuen Gan
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | | | - Mohd Yunus Abd Shukor
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Murni Halim
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Nur Adeela Yasid
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Jaafar Abdullah
- Faculty of Science, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Ina Salwany Md Yasin
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Helmi Wasoh
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| |
Collapse
|
18
|
Du Z, Lin S, Li J, Tian J, Xu W, Huang K, Liu Q, Sun Y. Nano-gold-enhanced LAMP method for qualitative visual detection of Salmonella in milk. Mikrochim Acta 2022; 189:365. [PMID: 36048255 DOI: 10.1007/s00604-022-05459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/09/2022] [Indexed: 10/14/2022]
Abstract
Since Salmonella can cause foodborne disease and public health safety issues and requires a robust, rapid, on-site detection method, a novel visual qualitative method with nano-gold-enhanced loop-mediated isothermal amplification (LAMP) reaction was established for detecting Salmonella in an integrated tube. During the experiment, nano-gold were used to enhance LAMP amplification, improving amplification efficiency and shortening the reaction time to within 30 min. Visual qualitative detection is achieved via negative staining, involving the addition of CuSO4 to the final products of the LAMP reaction. Ring-like white accumulation occurs in the absence of Salmonella targets but not when they are present. After completing the LAMP reaction, the integration tube was shaken gently for 1 min to observe the liquid phase system changes, realizing the closed tube detection of Salmonella. The process resolved the challenge presented by cross-contamination, false positives, and nonspecific amplification during the LAMP reaction. This method was used to detect Salmonella in milk, further highlighting its prospects in the field of rapid food safety detection.
Collapse
Affiliation(s)
- ZaiHui Du
- College of Food Science and Nutritional Engineering (Institute of Nutrition and Health), China Agricultural University, Beijing, 100083, China
| | - ShengHao Lin
- College of Food Science and Nutritional Engineering (Institute of Nutrition and Health), China Agricultural University, Beijing, 100083, China
| | - JiaLe Li
- College of Food Science and Nutritional Engineering (Institute of Nutrition and Health), China Agricultural University, Beijing, 100083, China
| | - JingJing Tian
- College of Food Science and Nutritional Engineering (Institute of Nutrition and Health), China Agricultural University, Beijing, 100083, China
| | - WenTao Xu
- College of Food Science and Nutritional Engineering (Institute of Nutrition and Health), China Agricultural University, Beijing, 100083, China. .,Key Laboratory of Agricultural Genetically Modified Organisms Safety Evaluation (Edible), Ministry of Agriculture, Beijing, 100083, China.
| | - KunLun Huang
- College of Food Science and Nutritional Engineering (Institute of Nutrition and Health), China Agricultural University, Beijing, 100083, China.,Key Laboratory of Agricultural Genetically Modified Organisms Safety Evaluation (Edible), Ministry of Agriculture, Beijing, 100083, China
| | - QingLiang Liu
- Shandong Baier Testing Co., Ltd, No.1, Fuhua Lane 2, Weifang City, 261061, Shandong Province, China
| | - YanLi Sun
- Shandong Baier Testing Co., Ltd, No.1, Fuhua Lane 2, Weifang City, 261061, Shandong Province, China
| |
Collapse
|
19
|
Velusamy K, Periyasamy S, Kumar PS, Rangasamy G, Nisha Pauline JM, Ramaraju P, Mohanasundaram S, Nguyen Vo DV. Biosensor for heavy metals detection in wastewater: A review. Food Chem Toxicol 2022; 168:113307. [PMID: 35917955 DOI: 10.1016/j.fct.2022.113307] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
Pollution due to heavy metals is a global issue in recent years. Initially, there were fewer contaminants, which has increased exponentially owing to rapid industrialization and various anthropogenic activities. Toxicity due to heavy metals causes a lot of health problems and organ system failure in human beings. It also affects other forms of living beings such as plants, animals and even the microbiota. This has been reported by various press reports and research findings. In this review, the production of heavy metals, associated effects on the environment and the technologies employed for detecting these heavy metals are comprehensively discussed. The analytical instruments, including biosensors, have been found to be more beneficial than other techniques. Biosensor exhibits numerous special features, such as reproducibility, reusability, linearity, sensitivity, selectivity, and stability. Over the last three years, biosensors have also had a detection limit of 65.36 ng/mL for heavy metals. The design of biosensors, features and types were also explained in detail. The limit of detection for the heavy metals in wastewater using biosensors was also included with recent references up to the last five years.
Collapse
Affiliation(s)
- Karthik Velusamy
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - J Mercy Nisha Pauline
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Pradeep Ramaraju
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Sneka Mohanasundaram
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
20
|
Arshad R, Sargazi S, Fatima I, Mobashar A, Rahdar A, Ajalli N, Kyzas GZ. Nanotechnology for Therapy of Zoonotic Diseases: A Comprehensive Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202201271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Saman Sargazi
- Cellular and Molecular Research Center Research Institute of Cellular and Molecular Sciences in Infectious Diseases Zahedan University of Medical Sciences Zahedan 98167-43463 Iran
| | - Iqra Fatima
- Department of Pharmacy Quaid-i-Azam University Islamabad Islamabad Pakistan
| | - Aisha Mobashar
- Faculty of Pharmacy University of Lahore Lahore 54000 Pakistan
| | - Abbas Rahdar
- Department of Physics University of Zabol Zabol P. O. Box. 98613–35856 Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering University of Tehran Tehran Iran
| | - George Z. Kyzas
- Department of Chemistry International Hellenic University Kavala Greece
| |
Collapse
|
21
|
Sohrabi H, Majidi MR, Khaki P, Jahanban-Esfahlan A, de la Guardia M, Mokhtarzadeh A. State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr Rev Food Sci Food Saf 2022; 21:1868-1912. [PMID: 35194932 DOI: 10.1111/1541-4337.12913] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Diverse chemicals and some physical phenomena recently introduced in nanotechnology have enabled scientists to develop useful devices in the field of food sciences. Concerning such developments, detecting foodborne pathogenic bacteria is now an important issue. These kinds of bacteria species have demonstrated severe health effects after consuming foods and high mortality related to acute cases. The most leading path of intoxication and infection has been through food matrices. Hence, quick recognition of foodborne bacteria agents at low concentrations has been required in current diagnostics. Lateral flow assays (LFAs) are one of the urgent and prevalently applied quick recognition methods that have been settled for recognizing diverse types of analytes. Thus, the present review has stressed on latest developments in LFAs-based platforms to detect various foodborne pathogenic bacteria such as Salmonella, Listeria, Escherichia coli, Brucella, Shigella, Staphylococcus aureus, Clostridium botulinum, and Vibrio cholera. Proper prominence has been given on exactly how the labels, detection elements, or procedures have affected recent developments in the evaluation of diverse bacteria using LFAs. Additionally, the modifications in assays specificity and sensitivity consistent with applied food processing techniques have been discussed. Finally, a conclusion has been drawn for highlighting the main challenges confronted through this method and offered a view and insight of thoughts for its further development in the future.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Pegah Khaki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Fundamental Sciences, University College of Nabi Akram (UCNA), Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
A DNA functionalized advanced electrochemical biosensor for identification of the foodborne pathogen Salmonella enterica serovar Typhi in real samples. Anal Chim Acta 2022; 1192:339332. [DOI: 10.1016/j.aca.2021.339332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022]
|
23
|
Sohrabi H, Majidi MR, Fakhraei M, Jahanban-Esfahlan A, Hejazi M, Oroojalian F, Baradaran B, Tohidast M, Guardia MDL, Mokhtarzadeh A. Lateral flow assays (LFA) for detection of pathogenic bacteria: A small point-of-care platform for diagnosis of human infectious diseases. Talanta 2022; 243:123330. [DOI: 10.1016/j.talanta.2022.123330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/31/2022]
|
24
|
Sohrabi H, Majidi MR, Asadpour-Zeynali K, Khataee A, Mokhtarzadeh A. Bimetallic Fe/Mn MOFs/MβCD/AuNPs stabilized on MWCNTs for developing a label-free DNA-based genosensing bio-assay applied in the determination of Salmonella typhimurium in milk samples. CHEMOSPHERE 2022; 287:132373. [PMID: 34600005 DOI: 10.1016/j.chemosphere.2021.132373] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Monitoring of pathogenic bacteria plays a vital role in precluding foodborne disease outbreaks. In this research work, a genosensor based on innovative label-free DNA was developed for the detection of Salmonella. typhimurium (S. typhimurium) in the milk samples. To realize this objective, bimetallic Fe/Mn MOF is synthesized and mixed with methyl-β-cyclodextrin (MβCD) and AuNPs which are then stabilized on multi-walled carbon nanotubes (MWCNTs), and the obtained nanocomposite is immobilized on the Au electrode surface. Different characterization methods such as FE-SEM, TEM, EDS, FTIR, and XRD were used for investigating the particle size and morphological features. Electrochemical and impedimetric techniques were used for exploring the applicability of the fabricated genosensor. Under optimal circumstances, LOD and LOQ have acquired at 0.07 pM and 0.21 pM. Moreover, an extensive linear range of 1 pM-1 μM was resulted for ss-tDNA (single-stranded target DNA), R2 obtained 0.9991. The recoveries were obtained 95.6-104%. Great selectivity against one, two, and three-base mismatched sequences was also shown for fabricated biosensing assay. Furthermore, negative genosensing assay control for investigating selectivity was provided by the ss-tDNAs of Haemophilusinfluenzae and Shigella dysenteriae bacteria. Well-fabricated genosensing bio-assay represents better performance, great specificity, high sensitivity, increased active sites, and finally results in an increase in the electron transfer rate. It is to be noted that the organized genosensing bio-assay is capable of being re-used and re-generated in a straightforward manner to estimate the hybridization process.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666 16471, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666 16471, Tabriz, Iran.
| | - Karim Asadpour-Zeynali
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51666 16471, Tabriz, Iran; Pharmaceutical Analysis Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 51664, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Zaky ZA, Ahmed AM, Aly AH. Remote Temperature Sensor Based on Tamm Resonance. SILICON 2022; 14:2765-2777. [PMCID: PMC7982511 DOI: 10.1007/s12633-021-01064-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 06/13/2023]
Abstract
A highly-sensitive remote temperature sensor based on Tamm resonance is proposed using a one-dimensional photonic crystal. The proposed structure is prism/Ag/Toluene/SiO2 /(PSi1/PSi2)N/Si. The transfer matrix method is used to discuss the interaction between the structure and the S-polarization of the incident radiation waves. We optimized the structure by studying the effect of the incident angle, the thickness of the first and second layers of the photonic crystal unit cell, the porosity of them, and the thickness of the toluene layer. High sensitivity, high signal-to-noise ratio, and very low resolution are achieved due to the coupling between the porous silicon photonic crystal properties and Tamm resonance that makes it very distinguished compared to previous works.
Collapse
Affiliation(s)
- Zaky A. Zaky
- TH-PPM Group, Physics Department, Faculty of Sciences, Beni-Suef University, Bani Sweif, Egypt
| | - Ashour M. Ahmed
- TH-PPM Group, Physics Department, Faculty of Sciences, Beni-Suef University, Bani Sweif, Egypt
| | - Arafa H. Aly
- TH-PPM Group, Physics Department, Faculty of Sciences, Beni-Suef University, Bani Sweif, Egypt
| |
Collapse
|
26
|
Varghese R, Salvi S, Sood P, Karsiya J, Kumar D. Carbon nanotubes in COVID-19: A critical review and prospects. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2022; 46:100544. [PMID: 34778007 PMCID: PMC8577996 DOI: 10.1016/j.colcom.2021.100544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/31/2021] [Indexed: 05/11/2023]
Abstract
The rapid spread of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) around the world has ravaged both global health and economy. This unprecedented situation has thus garnered attention globally. This further necessitated the deployment of an effective strategy for rapid and patient-compliant identification and isolation of patients tested positive for SARS-CoV-2. Following this, several companies and institutions across the globe are striving hard to develop real-time methods, like biosensors for the detection of various viral components including antibodies, antigens, ribonucleic acid (RNA), or the whole virus. This article attempts to review the various, mechanisms, advantages and limitations of the common biosensors currently being employed for detection. Additionally, it also summarizes recent advancements in various walks of fighting COVID-19, including its prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Purab Sood
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra 400013, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University) Erandwane, Pune - 411038, Maharashtra, India
| |
Collapse
|
27
|
Khorablou Z, Shahdost-Fard F, Razmi H, Yola ML, Karimi-Maleh H. Recent advances in developing optical and electrochemical sensors for analysis of methamphetamine: A review. CHEMOSPHERE 2021; 278:130393. [PMID: 33823350 DOI: 10.1016/j.chemosphere.2021.130393] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Recognition of misused stimulant drugs has always been a hot topic from a medical and judicial perspective. Methamphetamine (MAMP) is an addictive and illegal drug that profoundly affects the central nervous system. Like other illicit drugs, the detection of MAMP in biological and street samples is vital for several organizations such as forensic medicine, anti-drug headquarters and diagnostic clinics. By emerging nanotechnology and exploiting nanomaterials in sensing applications, a great deal of attention has been given to the design of analytical sensors in MAMP tracing. For the first time, this study has briefly reviewed all the optical and electrochemical sensors in MAMP detection from earlier so far. How various receptors with engineering nanomaterials allow developing novel approaches to measure MAMP have been studied. Fundamental concepts related to optical and electrochemical recognition assays in which nanomaterials have been used and relevant MAMP sensing applications have been comprehensively covered. Challenges, opportunities and future outlooks of this field have also been discussed at the end.
Collapse
Affiliation(s)
- Zeynab Khorablou
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, PO BOX 53714-161, Tabriz, Iran
| | | | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, PO BOX 53714-161, Tabriz, Iran.
| | - Mehmet Lütfi Yola
- Hasan Kalyoncu University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep, Turkey
| | - Hassan Karimi-Maleh
- School of Resources and Enviroment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028, Johannesburg, P.O. Box 17011, South Africa.
| |
Collapse
|
28
|
Ming Y, Yu Y, Yang CL, Chen XM, Han RX, Hao Y, Hu DR, Pan M, Zhou XH, Qian ZY. Rapid Electrochemical Screening of Phenylketonuria Maker Depending on Dehydrogenase Attached to the Pt-Doped Reduced Graphene Oxide Nanocomposites. J Biomed Nanotechnol 2021; 17:921-931. [PMID: 34082877 DOI: 10.1166/jbn.2021.3067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phenylketonuria (PKU) is a common disease associated with amino acid metabolism, and usually occurs in newborns. It can cause serious neurological diseases and even death. However, owing to inadequate-effective treatment, it can only be slowed by a low-phenylalanine (Phe) diet. In addition, PKU screening is essential for newborns in many countries. Therefore, rapid screening is crucial for preventing damage and meeting the large sample diagnosis demand. For confirmed patients, a convenient method to monitor their regular Phe levels is required. However, current clinical methods do not meet the rapid screening and convenient monitoring requirements. Herein, a rapid and facile electrochemical device based on platinum-doped reduced graphene oxide nanocomposites was developed to detect PKU biomarker-Phe. The results demonstrated that the developed electrode has great sensitivity, selectivity, and stability. The detection range was 0.0001 mM to 6 mM with a limit of detection of 0.01 μM. Therefore, this work offers a simple and rapid method for point-of-care PKU screening and daily monitoring.
Collapse
Affiliation(s)
- Yang Ming
- The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Yu
- The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng-Li Yang
- The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin-Mian Chen
- The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ru-Xia Han
- The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Hao
- The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan-Rong Hu
- The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Pan
- The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao-Han Zhou
- The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhi-Yong Qian
- The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Gao S, Liu J, Li Z, Ma Y, Wang J. Sensitive detection of foodborne pathogens based on CRISPR-Cas13a. J Food Sci 2021; 86:2615-2625. [PMID: 33931854 DOI: 10.1111/1750-3841.15745] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022]
Abstract
Salmonella, being one of the most widespread foodborne pathogens, is a compulsory test item required by national food safety standard of China and many other countries. More sensitive and specific Salmonella detection method is still needed since traditional methods are time consuming and highly dependent on enormous manpower and material resources. In this research, a bacteria detection method based on CRISPR-Cas13a system (where CRISPR is Clustered Regularly Interspaced Short Palindromic Repeats) was proposed. The target DNA was amplified by PCR and transcribed into RNA by T7 transcriptase, which can activate the RNase activity of the Cas13a protein. The self-folding quenched fluorescent probe can be cleaved by the activated Cas13a protein to generate fluorescent signal. We named this method as PCF detection (PCR-CRISPR-Fluorescence based nucleic acid detection). In this study, PCF detection showed excellent sensitivity, which can detect Salmonella genomic DNA with a minimum of 101 aM or 10° CFU/ml Salmonella bacteria in 2 hr. It also showed good specificity with no cross-reaction with other common foodborne bacteria. PRACTICAL APPLICATION: The PCF detection method proposed in this article can detect Salmonella sensitively and specifically, providing a novel strategy for the detection of foodborne pathogens in food and has great application potential in other microbial detection fields.
Collapse
Affiliation(s)
- Song Gao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jingwen Liu
- Guangzhou Customs Technology Centre, Guangzhou, China
| | - Zhiyong Li
- Guangzhou Customs Technology Centre, Guangzhou, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
30
|
Angelopoulou M, Tzialla K, Voulgari A, Dikeoulia M, Raptis I, Kakabakos SE, Petrou P. Rapid Detection of Salmonella typhimurium in Drinking Water by a White Light Reflectance Spectroscopy Immunosensor. SENSORS 2021; 21:s21082683. [PMID: 33920297 PMCID: PMC8069642 DOI: 10.3390/s21082683] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/01/2023]
Abstract
Biosensors represent an attractive approach for fast bacteria detection. Here, we present an optical biosensor for the detection of Salmonella typhimurium lipopolysaccharide (LPS) and Salmonella bacteria in drinking water, based on white light reflectance spectroscopy. The sensor chip consisted of a Si die with a thin SiO2 layer on top that was transformed into a biosensor through the immobilization of Salmonella LPS. The optical setup included a reflection probe with seven 200 μm fibers, a visible and near-infrared light source, and a spectrometer. The six fibers at the reflection probe circumference were coupled with the light source and illuminated the biosensor chip vertically, whereas the central fiber collected the reflected light and guided it to the spectrometer. A competitive immunoassay configuration was adopted for the analysis. Accordingly, a mixture of LPS or bacteria solution, pre-incubated for 15 min, with an anti-Salmonella LPS antibody was pumped over the chip followed by biotinylated secondary antibody and streptavidin for signal enhancement. The binding of the free anti-Salmonella antibody to chip-immobilized LPS led to a shift of the reflectance spectrum that was inversely related to the analyte concentration (LPS or bacteria) in the calibrators or samples. The total assay duration was 15 min, and the detection limits achieved were 4 ng/mL for LPS and 320 CFU/mL for bacteria. Taking into account the low detection limits, the short analysis time, and the small size of the chip and instrumentation employed, the proposed immunosensor could find wide application for bacteria detection in drinking water.
Collapse
Affiliation(s)
- Michailia Angelopoulou
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Aghia Paraskevi, Greece; (K.T.); (S.E.K.)
- Correspondence: (M.A.); (P.P.); Tel.: +30-2106503819 (M.A. & P.P.)
| | - Konstantina Tzialla
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Aghia Paraskevi, Greece; (K.T.); (S.E.K.)
| | | | - Mary Dikeoulia
- Delta Foods S.A., 14565 Agios Stefanos, Greece; (A.V.); (M.D.)
| | | | - Sotirios Elias Kakabakos
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Aghia Paraskevi, Greece; (K.T.); (S.E.K.)
| | - Panagiota Petrou
- Immunoassays/Immunosensors Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Aghia Paraskevi, Greece; (K.T.); (S.E.K.)
- Correspondence: (M.A.); (P.P.); Tel.: +30-2106503819 (M.A. & P.P.)
| |
Collapse
|
31
|
Arshad R, Pal K, Sabir F, Rahdar A, Bilal M, Shahnaz G, Kyzas GZ. A review of the nanomaterials use for the diagnosis and therapy of salmonella typhi. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Zahra QUA, Khan QA, Luo Z. Advances in Optical Aptasensors for Early Detection and Diagnosis of Various Cancer Types. Front Oncol 2021; 11:632165. [PMID: 33718215 PMCID: PMC7946820 DOI: 10.3389/fonc.2021.632165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is a life-threatening concern worldwide. Sensitive and early-stage diagnostics of different cancer types can make it possible for patients to get through the best available treatment options to combat this menace. Among several new detection methods, aptamer-based biosensors (aptasensors) have recently shown promising results in terms of sensitivity, identification, or detection of either cancerous cells or the associated biomarkers. In this mini-review, we have summarized the most recent (2016-2020) developments in different approaches belonging to optical aptasensor technologies being widely employed for their simple operation, sensitivity, and early cancer diagnostics. Finally, we shed some light on limitations, advantages, and current challenges of aptasensors in clinical diagnostics, and we elaborated on some future perspectives.
Collapse
Affiliation(s)
- Qurat ul ain Zahra
- Core Facility Center for Life Sciences, Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sciences and Technology of China, Hefei, China
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Qaiser Ali Khan
- Institute of Chemistry of New Materials, Universität Osnabrück, Osnabrück, Germany
| | - Zhaofeng Luo
- Core Facility Center for Life Sciences, Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sciences and Technology of China, Hefei, China
| |
Collapse
|
33
|
Sensitive colorimetric aptasensor based on g-C3N4@Cu2O composites for detection of Salmonella typhimurium in food and water. Mikrochim Acta 2021; 188:87. [DOI: 10.1007/s00604-021-04745-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022]
|
34
|
Wang Y, Ma X, Qiao X, Yang P, Sheng Q, Zhou M, Yue T. Perspectives for Recognition and Rapid Detection of Foodborne Pathogenic Bacteria Based on Electrochemical Sensors. EFOOD 2021. [DOI: 10.2991/efood.k.210621.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
35
|
Shen Y, Xu L, Li Y. Biosensors for rapid detection of Salmonella in food: A review. Compr Rev Food Sci Food Saf 2020; 20:149-197. [PMID: 33443806 DOI: 10.1111/1541-4337.12662] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Salmonella is one of the main causes of foodborne infectious diseases, posing a serious threat to public health. It can enter the food supply chain at various stages of production, processing, distribution, and marketing. High prevalence of Salmonella necessitates efficient and effective approaches for its identification, detection, and monitoring at an early stage. Because conventional methods based on plate counting and real-time polymerase chain reaction are time-consuming and laborious, novel rapid detection methods are urgently needed for in-field and on-line applications. Biosensors provide many advantages over conventional laboratory assays in terms of sensitivity, specificity, and accuracy, and show superiority in rapid response and potential portability. They are now recognized as promising alternative tools and one of the most on-site applicable and end user-accessible methods for rapid detection. In recent years, we have witnessed a flourishing of studies in the development of robust and elaborate biosensors for detection of Salmonella in food. This review aims to provide a comprehensive overview on Salmonella biosensors by highlighting different signal-transducing mechanisms (optical, electrochemical, piezoelectric, etc.) and critically analyzing its recent trends, particularly in combination with nanomaterials, microfluidics, portable instruments, and smartphones. Furthermore, current challenges are emphasized and future perspectives are discussed.
Collapse
Affiliation(s)
- Yafang Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lizhou Xu
- Department of Materials, Imperial College London, London, UK
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
36
|
Yi J, Xiao W, Li G, Wu P, He Y, Chen C, He Y, Ding P, Kai T. The research of aptamer biosensor technologies for detection of microorganism. Appl Microbiol Biotechnol 2020; 104:9877-9890. [PMID: 33047168 DOI: 10.1007/s00253-020-10940-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/27/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
The activities and transmissions of microorganisms are closely related to human, and all kinds of diseases caused by pathogenic microorganisms have attracted attention in the world and brought many challenges to human health and public health. The traditional microbial detection technologies have characteristics of longer detection cycle and complicated processes, therefore, which can no longer meet the detection requirements in the field of public health. At present, it is the focus to develop and design a novel, rapid, and simple microbial detection method in the field of public health. Herein, this article summarized the development of aptamer biosensor technologies for detection of microorganism in the aspect of bacteria, viruses, and toxins in detail, including optical aptamer sensors such as fluorometry and colorimetry, electrochemical aptamer sensors, and other technologies combined with aptamer. KEY POINTS: • Aptamer biosensor is a good platform for microbial detection. • Aptamer biosensors include optical sensors and electrochemical sensors. • Aptamer sensors have been widely used in the detection of bacteria, viruses, and other microorganisms.
Collapse
Affiliation(s)
- Jiecan Yi
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.,School of Public Health, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Wen Xiao
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, 410000, Hunan, China
| | - Guiyin Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541014, Guangxi, China
| | - Pian Wu
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yayuan He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Cuimei Chen
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yafei He
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Tianhan Kai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
37
|
Kordasht HK, Hassanpour S, Baradaran B, Nosrati R, Hashemzaei M, Mokhtarzadeh A, la Guardia MD. Biosensing of microcystins in water samples; recent advances. Biosens Bioelectron 2020; 165:112403. [PMID: 32729523 DOI: 10.1016/j.bios.2020.112403] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Safety and quality of water are significant matters for agriculture, animals and human health. Microcystins, as secondary metabolite of cyanobacteria (blue-green algae) and cyclic heptapeptide cyanotoxin, are one of the main marine toxins in continental aquatic ecosystems. More than 100 microcystins have been identified, of which MC-LR is the most important type due to its high toxicity and common detection in the environment. Climate change is an impressive factor with effects on cyanobacterial blooms as source of microcystins. The presence of this cyanotoxin in freshwater, drinking water, water reservoir supplies and food (vegetable, fish and shellfish) has created a common phenomenon in eutrophic freshwater ecosystems worldwide. International public health organizations have categorized microcystins as a kind of neurotoxin and carcinogen. There are several conventional methods for detection of microcystins. The limitations of traditional methods have encouraged the development of innovative methods for detection of microcystins. In recent years, the developed sensor techniques, with advantages, such as accuracy, reproducibility, portability and low cost, have attracted considerable attention. This review compares the well-known of biosensor types for detection of microcystins with a summary of their analytical performance.
Collapse
Affiliation(s)
- Houman Kholafazad Kordasht
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, 77146, Olomouc, Czech Republic
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahim Nosrati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
38
|
Hu M, Yang D, Wu X, Luo M, Xu F. A novel high-resolution melting analysis-based method for Salmonella genotyping. J Microbiol Methods 2019; 172:105806. [PMID: 31837350 DOI: 10.1016/j.mimet.2019.105806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
To establish a simple and rapid high-resolution melting curve (HRM) method, 5 different strains of Salmonella were identified by adding DNA denaturants at different concentrations into the HRM system to change the characteristics of DNA melting and to obtain different Tm (dissolving temperature) values of DNA from different target bacteria. When the concentration of n-butanol was 7% (v/v), the Tm value of the melting curve of the 5 strains changed from 89 °C to 80.5 °C, 81.5 °C, 79.5 °C, 81.0 °C and 82.5 °C, respectively. The sensitivity and specificity of the proposed method were both over 90% in the detection of 270 spiked milk powder samples. In summary, the proposed method in this study has potential for application to food safety and epidemiological research on Salmonella infection.
Collapse
Affiliation(s)
- Miaomiao Hu
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Dong Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoli Wu
- College of Basic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Meng Luo
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Feng Xu
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
39
|
Garzón V, Pinacho DG, Bustos RH, Garzón G, Bustamante S. Optical Biosensors for Therapeutic Drug Monitoring. BIOSENSORS 2019; 9:E132. [PMID: 31718050 PMCID: PMC6955905 DOI: 10.3390/bios9040132] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Therapeutic drug monitoring (TDM) is a fundamental tool when administering drugs that have a limited dosage or high toxicity, which could endanger the lives of patients. To carry out this monitoring, one can use different biological fluids, including blood, plasma, serum, and urine, among others. The help of specialized methodologies for TDM will allow for the pharmacodynamic and pharmacokinetic analysis of drugs and help adjust the dose before or during their administration. Techniques that are more versatile and label free for the rapid quantification of drugs employ biosensors, devices that consist of one element for biological recognition coupled to a signal transducer. Among biosensors are those of the optical biosensor type, which have been used for the quantification of different molecules of clinical interest, such as antibiotics, anticonvulsants, anti-cancer drugs, and heart failure. This review presents an overview of TDM at the global level considering various aspects and clinical applications. In addition, we review the contributions of optical biosensors to TDM.
Collapse
Affiliation(s)
- Vivian Garzón
- Doctoral Programme of Biosciences, Universidad de La Sabana, Chía 140013, Colombia
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Daniel G. Pinacho
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Rosa-Helena Bustos
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia
| | - Gustavo Garzón
- Faculty of Medicine, Universidad de La Sabana, Chía 140013, Colombia
| | - Sandra Bustamante
- Physics Department, the Centre for NanoHealth, Swansea University, Swansea SA2 8PP, UK
- Vedas, Corporación de Investigación e Innovación, Medellín 050001, Colombia
| |
Collapse
|
40
|
Rapid detection of Salmonella enterica in raw milk samples using Stn gene-based biosensor. 3 Biotech 2019; 9:425. [PMID: 31696030 DOI: 10.1007/s13205-019-1957-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
In this study, a DNA-based nanosensor using specific NH2 labeled single standard probe was developed against stn gene of Salmonella enterica in milk samples. The single-stranded DNA probe was immobilized on carboxylated multiwalled carbon nanotube and gold nanoparticle (c-MWCNT/AuNP) electrode using 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC): N-hydroxy succinimide-based cross-linking chemistry. Electrochemical characterization was performed using cyclic voltammetry (CV) and Differential Pulse Voltammetry (DPV) techniques. The electrode surface at each step of fabrication was characterized using scanning electron microscopy. The sensitivity and lower limit of detection were found to be 728.42 (μA/cm2)/ng and 1.8 pg/6 μl (0.3 pg/ml), respectively, with regression coefficient (R 2) of 0.843 using DPV. The sensor was further validated using raw and artificial milk samples, and results were compared with conventional methods of detection. The developed sensor was found to be highly sensitive and stable up to 6 months, with only 10% loss of initial peak current in CV analysis on storage at 4 °C.
Collapse
|
41
|
Lemjallad L, Chabir R, Kandri Rodi Y, El Ghadraoui L, Ouazzani Chahdi F, Errachidi F. Improvement of Heliciculture by Three Medicinal Plants Belonging to the Lamiaceae Family. ScientificWorldJournal 2019; 2019:2630537. [PMID: 31885523 PMCID: PMC6925714 DOI: 10.1155/2019/2630537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/11/2019] [Indexed: 12/01/2022] Open
Abstract
Snails were fed with three medicinal plants belonging to the Lamiaceae family (rosemary, sage, and peppermint) in order to test their effects on those animals with high nutritive values. The media of raising were flour containing different percentages of the cited plants ranging from 1% to 9%. The feed had benefits on the raised snails depending on the plant and its percentage. Minerals in those aromatic plants, especially zinc and magnesium, had their effect on protein synthesis in snails fed with those plant percentages. Rosemary was the most profitable plant with the highest protein amount, the lowest mortality rate, and reduced microbial charge. Furthermore, it was a good regulator of the specific catalase activity which confirmed the role of the antioxidant activity of rosemary during raising snails.
Collapse
Affiliation(s)
- Lamiaa Lemjallad
- Department of Chemistry, Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technologies, University Sidi Mohamed Ben Abdellah, B.P. 2202-route Imouzzer, Fez, Morocco
- Team of Nutrition, Agri-Food and Environment, Laboratory of Human Pathology, Biomedicine and Environment, Faculty of Medicine and Pharmacy, University Sidi Mohamed Ben Abdellah, P.B. 1893 km 2200 Road Sidi Harazem, Fez, Morocco
| | - Rachida Chabir
- Team of Nutrition, Agri-Food and Environment, Laboratory of Human Pathology, Biomedicine and Environment, Faculty of Medicine and Pharmacy, University Sidi Mohamed Ben Abdellah, P.B. 1893 km 2200 Road Sidi Harazem, Fez, Morocco
| | - Youssef Kandri Rodi
- Department of Chemistry, Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technologies, University Sidi Mohamed Ben Abdellah, B.P. 2202-route Imouzzer, Fez, Morocco
| | - Lahssen El Ghadraoui
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technologies, University Sidi Mohamed Ben Abdellah, B.P. 2202-route Imouzzer, Fez, Morocco
| | - Fouad Ouazzani Chahdi
- Department of Chemistry, Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technologies, University Sidi Mohamed Ben Abdellah, B.P. 2202-route Imouzzer, Fez, Morocco
| | - Faouzi Errachidi
- Laboratory of Functional Ecology and Environment, Faculty of Sciences and Technologies, University Sidi Mohamed Ben Abdellah, B.P. 2202-route Imouzzer, Fez, Morocco
| |
Collapse
|
42
|
Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarzadeh A, Hamblin MR. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res 2019; 18:185-201. [PMID: 31032119 PMCID: PMC6479020 DOI: 10.1016/j.jare.2019.03.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 01/29/2023] Open
Abstract
Tissue engineering is a rapidly-growing approach to replace and repair damaged and defective tissues in the human body. Every year, a large number of people require bone replacements for skeletal defects caused by accident or disease that cannot heal on their own. In the last decades, tissue engineering of bone has attracted much attention from biomedical scientists in academic and commercial laboratories. A vast range of biocompatible advanced materials has been used to form scaffolds upon which new bone can form. Carbon nanomaterial-based scaffolds are a key example, with the advantages of being biologically compatible, mechanically stable, and commercially available. They show remarkable ability to affect bone tissue regeneration, efficient cell proliferation and osteogenic differentiation. Basically, scaffolds are templates for growth, proliferation, regeneration, adhesion, and differentiation processes of bone stem cells that play a truly critical role in bone tissue engineering. The appropriate scaffold should supply a microenvironment for bone cells that is most similar to natural bone in the human body. A variety of carbon nanomaterials, such as graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds and their derivatives that are able to act as scaffolds for bone tissue engineering, are covered in this review. Broadly, the ability of the family of carbon nanomaterial-based scaffolds and their critical role in bone tissue engineering research are discussed. The significant stimulating effects on cell growth, low cytotoxicity, efficient nutrient delivery in the scaffold microenvironment, suitable functionalized chemical structures to facilitate cell-cell communication, and improvement in cell spreading are the main advantages of carbon nanomaterial-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Eivazzadeh-Keihan R, Pashazadeh-Panahi P, Mahmoudi T, Chenab KK, Baradaran B, Hashemzaei M, Radinekiyan F, Mokhtarzadeh A, Maleki A. Dengue virus: a review on advances in detection and trends - from conventional methods to novel biosensors. Mikrochim Acta 2019; 186:329. [PMID: 31055654 DOI: 10.1007/s00604-019-3420-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/06/2019] [Indexed: 02/06/2023]
Abstract
Dengue virus is an important arbovirus infection which transmitted by the Aedes female mosquitoes. The attempt to control and early detection of this infection is a global public health issue at present. Because of the clinical importance of its detection, the main focus of this review is on all of the methods that can offer the new diagnosis strategies. The advantages and disadvantages of reported methods have been discussed comprehensively from different aspects like biomarkers type, sensitivity, accuracy, rate of detection, possibility of commercialization, availability, limit of detection, linear range, simplicity, mechanism of detection, and ability of usage for clinical applications. The optical, electrochemical, microfluidic, enzyme linked immunosorbent assay (ELISA), and smartphone-based biosensors are the main approaches which developed for detection of different biomarkers and serotypes of Dengue virus. Future efforts in miniaturization of these methods open the horizons for development of commercial biosensors for early-diagnosis of Dengue virus infection. Graphical abstract Transmission of Dengue virus by the biting of an Aedes aegypti mosquito, the symptoms of Dengue hemorrhagic fever and the structure of Dengue virus and application of biosensors for its detection.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
44
|
Lee T, Ahn JH, Park SY, Kim GH, Kim J, Kim TH, Nam I, Park C, Lee MH. Recent Advances in AIV Biosensors Composed of Nanobio Hybrid Material. MICROMACHINES 2018; 9:E651. [PMID: 30544883 PMCID: PMC6316213 DOI: 10.3390/mi9120651] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 11/17/2022]
Abstract
Since the beginning of the 2000s, globalization has accelerated because of the development of transportation systems that allow for human and material exchanges throughout the world. However, this globalization has brought with it the rise of various pathogenic viral agents, such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus, and Dengue virus. In particular, avian influenza virus (AIV) is highly infectious and causes economic, health, ethnical, and social problems to human beings, which has necessitated the development of an ultrasensitive and selective rapid-detection system of AIV. To prevent the damage associated with the spread of AIV, early detection and adequate treatment of AIV is key. There are traditional techniques that have been used to detect AIV in chickens, ducks, humans, and other living organisms. However, the development of a technique that allows for the more rapid diagnosis of AIV is still necessary. To achieve this goal, the present article reviews the use of an AIV biosensor employing nanobio hybrid materials to enhance the sensitivity and selectivity of the technique while also reducing the detection time and high-throughput process time. This review mainly focused on four techniques: the electrochemical detection system, electrical detection method, optical detection methods based on localized surface plasmon resonance, and fluorescence.
Collapse
Affiliation(s)
- Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Jae-Hyuk Ahn
- Department of Electronic Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Sun Yong Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Ga-Hyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Jeonghyun Kim
- Department of Electronics Convergence Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Inho Nam
- Division of Chemistry & Bio-Environmental Sciences, Seoul Women's University, Seoul 01797, Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01899, Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
45
|
Hassanpour S, Baradaran B, de la Guardia M, Baghbanzadeh A, Mosafer J, Hejazi M, Mokhtarzadeh A, Hasanzadeh M. Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: a review on recent advancements. Mikrochim Acta 2018; 185:568. [DOI: 10.1007/s00604-018-3088-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022]
|
46
|
Chun HJ, Kim S, Han YD, Kim KR, Kim JH, Yoon H, Yoon HC. Salmonella Typhimurium Sensing Strategy Based on the Loop-Mediated Isothermal Amplification Using Retroreflective Janus Particle as a Nonspectroscopic Signaling Probe. ACS Sens 2018; 3:2261-2268. [PMID: 30350587 DOI: 10.1021/acssensors.8b00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is a powerful gene amplification method, which has many advantages, including high specificity, sensitivity, and simple operation. However, quantitative analysis of the amplified target gene with the LAMP assay is very difficult. To overcome this limitation, we developed a novel biosensing platform for molecular diagnosis by integrating the LAMP method and retroreflective Janus particle (RJP) together. The final amplified products of the LAMP assay are dumbbell-shaped DNA structures, containing a single-stranded loop with two different sequences. Therefore, the concentration of the amplified products can be measured in a manner similar to the sandwich-type immunoassay. To carry out the sandwich-type molecular diagnostics using the LAMP product, two DNA probes, with complementary sequences to the loop-regions, were prepared and immobilized on both the sensing surface and the surface of the RJPs. When the amplified LAMP product was applied to the sensing surface, the surface-immobilized DNA probe hybridized to the loop-region of the LAMP product to form a double-stranded structure. When the DNA probe-conjugated RJPs were injected, the RJPs bound to the unreacted loop-region of the LAMP product. The number of RJPs bound to the loop-region of the LAMP product was proportional to the concentration of the amplified LAMP product, indicating that the concentration of the target gene can be quantitatively analyzed by counting the number of observed RJPs. Using the developed system, a highly sensitive and selective quantification of Salmonella was successfully performed with a detection limit of 102 CFU.
Collapse
Affiliation(s)
- Hyeong Jin Chun
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Seongok Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Yong Duk Han
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Ka Ram Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Hyun C. Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| |
Collapse
|
47
|
|
48
|
Bianchi F, Giannetto M, Careri M. Analytical systems and metrological traceability of measurement data in food control assessment. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Hoyos-Nogués M, Gil FJ, Mas-Moruno C. Antimicrobial Peptides: Powerful Biorecognition Elements to Detect Bacteria in Biosensing Technologies. Molecules 2018; 23:molecules23071683. [PMID: 29996565 PMCID: PMC6100210 DOI: 10.3390/molecules23071683] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 11/25/2022] Open
Abstract
Bacterial infections represent a serious threat in modern medicine. In particular, biofilm treatment in clinical settings is challenging, as biofilms are very resistant to conventional antibiotic therapy and may spread infecting other tissues. To address this problem, biosensing technologies are emerging as a powerful solution to detect and identify bacterial pathogens at the very early stages of the infection, thus allowing rapid and effective treatments before biofilms are formed. Biosensors typically consist of two main parts, a biorecognition moiety that interacts with the target (i.e., bacteria) and a platform that transduces such interaction into a measurable signal. This review will focus on the development of impedimetric biosensors using antimicrobial peptides (AMPs) as biorecognition elements. AMPs belong to the innate immune system of living organisms and are very effective in interacting with bacterial membranes. They offer unique advantages compared to other classical bioreceptor molecules such as enzymes or antibodies. Moreover, impedance-based sensors allow the development of label-free, rapid, sensitive, specific and cost-effective sensing platforms. In summary, AMPs and impedimetric transducers combine excellent properties to produce robust biosensors for the early detection of bacterial infections.
Collapse
Affiliation(s)
- Mireia Hoyos-Nogués
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.
| | - F J Gil
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Universitat Internacional de Catalunya (UIC), 08195 Sant Cugat del Vallès, Spain.
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.
| |
Collapse
|
50
|
Bui MN, Brockgreitens J, Abbas A. Gold Nanoplate-Enhanced Chemiluminescence and Macromolecular Shielding for Rapid Microbial Diagnostics. Adv Healthc Mater 2018; 7:e1701506. [PMID: 29611632 DOI: 10.1002/adhm.201701506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/14/2018] [Indexed: 11/09/2022]
Abstract
With the global rise of antimicrobial resistance, rapid screening and identification of low concentrations of microorganisms in less than 1 h becomes an urgent technological need for evidence-based antibiotic therapy. Although many commercially available techniques are labeled for rapid microbial detection, they often require 24-48 h of cell enrichment to reach detectable levels. Here, it is shown that the widely used reducing agent tris(2-carboxyethyl)phosphine (TCEP) can also act as a powerful oxidant on gold nanoplates and subsequently lead to a strong catalysis of luminol chemiluminescence. The catalytic reaction results in up to 100-fold signal enhancement and unprecedented stable luminescence for up to 10 min. However, when TCEP is exposed to microorganisms, it is oxidized by the microbial surface proteins and loses its catalytic properties, leading to a decrease in chemiluminescence. The competitive interaction of TCEP with Au nanoplates and microorganisms is used to introduce a homogenous rapid detection method that allows microbial screening in less than 10 min with a limit of detection down to 100 cfu mL-1 . Furthermore, the concept of microbial macromolecular shielding using antibody-conjugated polymers is introduced. The combination of TCEP redox activity and macromolecular shielding enables specific microbial identification within 1 h, without preconcentration, cell enrichment, or heavy equipment other than a hand-held luminometer. The technique is demonstrated by specific detection of methicillin-resistant Staphylococcus aureus in environmental and urine samples containing a mixture of microorganisms.
Collapse
Affiliation(s)
- Minh‐Phuong Ngoc Bui
- Department of Bioproducts and Biosystems Engineering University of Minnesota Twin Cities MN 55108‐6005 USA
| | - John Brockgreitens
- Department of Bioproducts and Biosystems Engineering University of Minnesota Twin Cities MN 55108‐6005 USA
| | - Abdennour Abbas
- Department of Bioproducts and Biosystems Engineering University of Minnesota Twin Cities MN 55108‐6005 USA
- Department of Bioproducts and Biosystems Engineering 2004 Folwell Avenue Saint Paul MN 5511 USA
| |
Collapse
|