1
|
Caldas NM, de Faria LV, Batista AG, Alves AO, de Souza CC, Borges PHS, Nossol E, Matos RC, Rocha DP, Semaan FS, Dornellas RM. Lab-created conductive filament based on nickel and graphite particles: An attractive material for the additive manufacture of enhanced electrochemical sensors for non-enzymatic and selective glucose sensing. Talanta 2025; 287:127686. [PMID: 39919471 DOI: 10.1016/j.talanta.2025.127686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
Developing tailor-made conductive filaments has emerged as a promising niche for producing affordable and high-performance 3D-printed electrochemical sensors. In this context, we propose a novel conductive filament based on graphite, nickel, and polylactic acid (G/Ni/PLA) for the fabrication of non-enzymatic electrochemical sensors aimed at glucose (GLU) determination, a key biomarker in diabetes diagnosis. The materials were thoroughly characterized using morphological, structural, elemental, and electrochemical techniques, which confirmed the effective incorporation of G and Ni into the thermoplastic matrix. Special emphasis was placed on the electrochemical conversion of Ni2⁺ in an alkaline medium (0.1 mol L⁻1 NaOH) into redox-active species (Ni(OH)₂ and NiOOH), which mediate the electrocatalytic oxidation of GLU. Additionally, the influence of varying nickel contents (7.5 %, 10 %, and 12.5 % wt.) on the electrochemical response towards GLU was systematically investigated, with the best performance observed at the highest nickel loading. The innovative 3D-printed G/Ni/PLA sensor was integrated with a batch injection analysis (BIA) system for rapid and sensitive amperometric detection of GLU in artificial biological fluids. The sensor demonstrated a wide linear range (50-1500 μmol L⁻1), a low detection limit (2.6 μmol L⁻1), excellent repeatability (RSD < 9.0 %), and high selectivity, even in the presence of potential interferents such as urea, uric acid, and ascorbic acid. Furthermore, the method was successfully applied to analyze synthetic saliva (a non-invasive sample matrix) and blood plasma under normal and abnormal GLU levels, achieving satisfactory recovery rates ranging from 93 % to 100 %. Therefore, the proposed analytical approach is simple, selective, precise, and accurate, making it highly suitable for non-enzymatic GLU sensing in clinical samples, contributing to the effective diagnosis of diabetes.
Collapse
Affiliation(s)
- Natalia M Caldas
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Lucas V de Faria
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Amanda G Batista
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Anderson O Alves
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Cassiano C de Souza
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Pedro H S Borges
- Instituto de Química, Universidade Federal de Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Edson Nossol
- Instituto de Química, Universidade Federal de Uberlândia, 38408-100, Uberlândia, MG, Brazil
| | - Renato C Matos
- Departamento de Química, Universidade Federal de Juiz de Fora, 36026-900, Juiz de Fora, MG, Brazil
| | - Diego P Rocha
- Departamento de Química, Instituto Federal do Paraná, Pitanga, PR, 85200-000, Brazil
| | - Felipe S Semaan
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Rafael M Dornellas
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| |
Collapse
|
2
|
Zhang F, Zhang H, Zhao Y, Li J, Guan C, Li J, Wang X, Mu Y, Zan WY, Zhu S. Partial thermal atomization of residual Ni NPs in single-walled carbon nanotubes for efficient CO 2 electroreduction. Chem Sci 2024; 15:20565-20572. [PMID: 39600498 PMCID: PMC11587534 DOI: 10.1039/d4sc07291j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
CO2 electroreduction (CO2RR) is an important solution for converting inert CO2 into high value-added fuels and chemicals under mild conditions. The decisive factor lies in the rational design and preparation of cost-effective and high-performance electrocatalysts. Herein, we first prepare a novel f-SWNTs-650 catalyst via a facile partial thermal atomization strategy, where the residual Ni particles in single-walled carbon nanotubes (SWNTs) are partially converted into atomically dispersed NiN4 species. CO2RR results show that the competitive evolution hydrogen reaction (HER) predominates on pristine SWNTs, while f-SWNTs-650 switches the CO2 reduction product to CO, achieving a CO faradaic efficiency (FECO) of 97.9% and a CO partial current density (j CO) of -15.6 mA cm-2 at -0.92 V vs. RHE. Moreover, FECO is higher than 95% and j CO remains at -10.0 mA cm-2 at -0.82 V vs. RHE after 48 h potentiostatic electrolysis. Combined with systematic characterization and density functional theory (DFT) calculations, the superior catalytic performance of f-SWNTs-650 is attributed to the synergistic effect between the NiN4 sites and adjacent Ni NPs, that is, Ni NPs inject electrons into NiN4 sites to form electron-enriched Ni centers and reduce the energy barrier for CO2 activation to generate the rate-limiting *COOH intermediate, thus implementing the efficient electroreduction of CO2.
Collapse
Affiliation(s)
- Fengwei Zhang
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Han Zhang
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Yang Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 Liaoning P. R. China
| | - Jingjing Li
- Address Research Institute of Resource-based Economy Transformation and Development, Shanxi University of Finance and Economics Taiyuan 030006 P. R. China
| | - Chong Guan
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Jijie Li
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Xuran Wang
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Yuewen Mu
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Wen-Yan Zan
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
| | - Sheng Zhu
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University Taiyuan 030006 P. R. China
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU) Taiyuan 030012 P. R. China
| |
Collapse
|
3
|
Uzumer TY, Cete S, Tekeli Y, Altuner EE. Development of an amperometric biosensor that can determine the amount of glucose in the blood using the glucose oxidase enzyme: Preparation of polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film. Biotechnol Appl Biochem 2024; 71:1440-1452. [PMID: 39113217 DOI: 10.1002/bab.2640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/06/2024] [Indexed: 12/09/2024]
Abstract
In this study, a new amperometric biosensor was developed for glucose determination. For this purpose, polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film was prepared by electropolymerization of aniline and pyrrole with poly(sodium-4-styrenesulfonate) on a platinum plate. The best working conditions of the polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film were determined. The glucose oxidase enzyme was immobilized by the entrapment method in polyaniline-polypyrrole-poly(sodium-4-styrenesulfonate) film. Glucose determination was made based on the oxidation of hydrogen peroxide, which is formed as a result of the enzymatic reaction on the surface of the prepared biosensor at +0.40 V. The working range for the glucose determination of the biosensor was determined. The effects of pH and temperature on the response of the glucose biosensor were investigated. The reusability and shelf life of the biosensor were determined. The effects of interference in biological environments on the response of the biosensor were investigated. Glucose determination was made in the biological fluid (blood) with the prepared biosensor. This study has a feature that sheds light on biosensor studies to be developed for the detection of substances in the human body, such as glucose, uric acid, and urea. This article will set an example for future scientific research on the development of a sensor for other biological fluids in the human body, such as the sensor developed for blood samples. In addition, this developed sensor provides an innovation that improves the quality of life of patients by allowing them to constantly monitor their glucose levels and intervene when necessary.
Collapse
Affiliation(s)
- Tugce Yagmur Uzumer
- Department of Chemistry, Institute of Science, Gazi University, Ankara, Turkey
| | - Servet Cete
- Department of Chemistry, Institute of Science, Gazi University, Ankara, Turkey
| | - Yener Tekeli
- Pharmacy Faculty, Adiyaman University, Adiyaman, Turkey
| | - Elif Esra Altuner
- Medical Laboratory Technology, Department of Medical Sciences & Technology, Avrupa Vocational School, Kocaeli Health and Technology University, Golcuk, Kocaeli, Turkey
| |
Collapse
|
4
|
Xu S, Zhang G, Zhang J, Liu W, Wang Y, Fu X. Advances in Brain Tumor Therapy Based on the Magnetic Nanoparticles. Int J Nanomedicine 2023; 18:7803-7823. [PMID: 38144513 PMCID: PMC10749175 DOI: 10.2147/ijn.s444319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023] Open
Abstract
Brain tumors, including primary gliomas and brain metastases, are one of the deadliest tumors because effective macromolecular antitumor drugs cannot easily penetrate the blood-brain barrier (BBB) and blood-brain tumor barrier (BTB). Magnetic nanoparticles (MNPs) are considered the most suitable nanocarriers for the delivery of brain tumor drugs because of their unique properties compared to other nanoparticles. Numerous preclinical and clinical studies have demonstrated the potential of these nanoparticles in magnetic targeting, nuclear magnetic resonance, magnetic thermal therapy, and ultrasonic hyperthermia. To further develop and optimize MNPs for the diagnosis and treatment of brain tumors, we attempt to outline recent advances in the use of MNPs to deliver drugs, with a particular focus on their efficacy in the delivery of anti-brain tumor drugs based on magnetic targeting and low-intensity focused ultrasound, magnetic resonance imaging for surgical real-time guidance, and magnetothermal and ultrasonic hyperthermia therapy. Furthermore, we summarize recent findings on the clinical application of MNPs and the research limitations that need to be addressed in clinical translation.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, Department of Obstetrics, Obstetrics and Gynaecology Center, the First Hospital Jilin University, Changchun, People’s Republic of China
| | - Guangxin Zhang
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiaomei Zhang
- Department of Neurosurgery, Department of Obstetrics, Obstetrics and Gynaecology Center, the First Hospital Jilin University, Changchun, People’s Republic of China
| | - Wei Liu
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yicun Wang
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiying Fu
- Department of Endocrinology, Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, Department of Thoracic Surgery, the Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
5
|
Yuwen T, Shu D, Zou H, Yang X, Wang S, Zhang S, Liu Q, Wang X, Wang G, Zhang Y, Zang G. Carbon nanotubes: a powerful bridge for conductivity and flexibility in electrochemical glucose sensors. J Nanobiotechnology 2023; 21:320. [PMID: 37679841 PMCID: PMC10483845 DOI: 10.1186/s12951-023-02088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
The utilization of nanomaterials in the biosensor field has garnered substantial attention in recent years. Initially, the emphasis was on enhancing the sensor current rather than material interactions. However, carbon nanotubes (CNTs) have gained prominence in glucose sensors due to their high aspect ratio, remarkable chemical stability, and notable optical and electronic attributes. The diverse nanostructures and metal surface designs of CNTs, coupled with their exceptional physical and chemical properties, have led to diverse applications in electrochemical glucose sensor research. Substantial progress has been achieved, particularly in constructing flexible interfaces based on CNTs. This review focuses on CNT-based sensor design, manufacturing advancements, material synergy effects, and minimally invasive/noninvasive glucose monitoring devices. The review also discusses the trend toward simultaneous detection of multiple markers in glucose sensors and the pivotal role played by CNTs in this trend. Furthermore, the latest applications of CNTs in electrochemical glucose sensors are explored, accompanied by an overview of the current status, challenges, and future prospects of CNT-based sensors and their potential applications.
Collapse
Affiliation(s)
- Tianyi Yuwen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Danting Shu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Hanyan Zou
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Xinrui Yang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shijun Wang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shuheng Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qichen Liu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| | - Yuchan Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Guangchao Zang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
6
|
Dong L, Ren S, Zhang X, Yang Y, Wu Q, Lei T. In-situ synthesis of Pt nanoparticles/reduced graphene oxide/cellulose nanohybrid for nonenzymatic glucose sensing. Carbohydr Polym 2023; 303:120463. [PMID: 36657845 DOI: 10.1016/j.carbpol.2022.120463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
In recent years, nanocellulose-based bioinorganic nanohybrids have been exploited in numerous applications due to their unique nanostructure, excellent catalytic properties, and good biocompatibility. To the best of our knowledge, this is the first report on the simple and effective synthesis of graphene/cellulose (RGO/CNC) matrix-supported platinum nanoparticles (Pt NPs) for nonenzymatic electrochemical glucose sensing. The Pt/RGO/CNC nanohybrid presented a porous network structure, in which Pt NPs, RGO, and CNCs were integrated well. Here, cellulose nanocrystals act as a biocompatible framework for wrapped RGO and monodispersed Pt nanoparticles, effectively preventing the restacking of graphene during reduction. The superior glucose sensing performance of Pt/RGO/CNC modified glass carbon electrode (GCE) was achieved with a linear concentration range from 0.005 to 8.5 mM and a low detection limit of 2.1 μM. Moreover, the Pt/RGO/CNC/GCE showed remarkable sensitivity, selectivity, durability, and reproducibility. The obtained results indicate that the CNCs-based bioinorganic nanohybrids could be a promising electrode material in electrochemical biosensors.
Collapse
Affiliation(s)
- Lili Dong
- Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Suxia Ren
- Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Xiuqiang Zhang
- Henan Key Laboratory of Biomass Energy, Zhengzhou 450008, China
| | - Yantao Yang
- Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA 70803, USA
| | - Tingzhou Lei
- Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
7
|
He Q, Wang B, Liu J, Li G, Long Y, Zhang G, Liu H. Nickel/nitrogen-doped carbon nanocomposites: Synthesis and electrochemical sensor for determination of p-nitrophenol in local environment. ENVIRONMENTAL RESEARCH 2022; 214:114007. [PMID: 35934146 DOI: 10.1016/j.envres.2022.114007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A novel electrochemical sensor was prepared using N-doped carbon mesoporous materials supported with nickel nanoparticles (Ni-NCs) for environmental p-nitrophenol (p-NP) detection in a specific geographical area. These as-prepared Ni-NCs were dispersed in polyethyleneimine (PEI) solution and modified onto a glassy carbon electrode (GCE) for electrocatalytic reduction of p-NP. The Ni-NCs-PEI/GCE showed a high Faraday current at -0.302 V during p-NP reduction, because of the synergistic effect between Ni-NCs and PEI. Under ideal conditions, the Ni-NCs-PEI/GCE was used in the voltametric determination of p-NP, with high sensitivity. The linear ranges for p-NP are 0.06-10 μM and 10-100 μM with low detection limit (4.0 nM) and high sensitivity (1.465 μA μM-1 cm-2). In the presence of other phenolic compounds, this sensor showed good selectivity for p-NP detection. The Ni-NCs-PEI/GCE was also used to determine p-NP in environmental water samples of a specific geographical area, with recoveries ranging from 95.9% to 109.4%, and an RSD of less than 3.6%. Therefore, this novel Ni-NCs-PEI/GCE provides a good example for the design of other carbon-based nanocomposite materials, for electrochemical detection of trace p-NP in a specific geographical area.
Collapse
Affiliation(s)
- Quanguo He
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Bing Wang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jun Liu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Guangli Li
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yaohang Long
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Gongyou Zhang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Hongmei Liu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China; Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
8
|
Lian Q, Zheng X, Peng G, Liu Z, Chen L, Wu S. Oxidase mimicking of CuMnO2 nanoflowers and the application in colorimetric detection of ascorbic acid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Farmand M, Jahanpeyma F, Gholaminejad A, Azimzadeh M, Malaei F, Shoaie N. Carbon nanostructures: a comprehensive review of potential applications and toxic effects. 3 Biotech 2022; 12:159. [PMID: 35814038 PMCID: PMC9259781 DOI: 10.1007/s13205-022-03175-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/25/2022] [Indexed: 12/17/2022] Open
Abstract
There is no doubt that nanotechnology has revolutionized our life since the 1970s when it was first introduced. Nanomaterials have helped us to improve the current products and services we use. Among the different types of nanomaterials, the application of carbon-based nanomaterials in every aspect of our lives has rapidly grown over recent decades. This review discusses recent advances of those applications in distinct categories, including medical, industrial, and environmental applications. The first main section introduces nanomaterials, especially carbon-based nanomaterials. In the first section, we discussed medical applications, including medical biosensors, drug and gene delivery, cell and tissue labeling and imaging, tissue engineering, and the fight against bacterial and fungal infections. The next section discusses industrial applications, including agriculture, plastic, electronic, energy, and food industries. In addition, the environmental applications, including detection of air and water pollutions and removal of environmental pollutants, were vastly reviewed in the last section. In the conclusion section, we discussed challenges and future perspectives.
Collapse
Affiliation(s)
- Maryam Farmand
- Department of Biology, Tehran University, PO Box: 14155-6619, Tehran, Iran
| | - Fatemeh Jahanpeyma
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, PO Box: 73461-81746, Isfahan, Iran
| | - Mostafa Azimzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, PO Box: 89195-999, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, PO Box: 8916188635, Yazd, Iran
| | - Fatemeh Malaei
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| | - Nahid Shoaie
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
10
|
Khizar S, Elaissari A, Al-Dossary AA, Zine N, Jaffrezic-Renault N, Errachid A. Advancement in Nanoparticle-Based Biosensors for Point-of-Care In Vitro Diagnostics. Curr Top Med Chem 2022; 22:807-833. [DOI: 10.2174/1568026622666220401160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Recently, there has been great progress in the field of extremely sensitive and precise detection of bioanalytes. The importance of the utilization of nanoparticles in biosensors has been recognized due to their unique properties. Specifically, nanoparticles of gold, silver, and magnetic plus graphene, quantum dots, and nanotubes of carbon are being keenly considered for utilizations within biosensors to detect nucleic acids, glucose, or pathogens (bacteria as well as a virus). Taking advantage of nanoparticles, faster and sensitive biosensors can be developed. Here we review the nanoparticles' contribution to the biosensors field and their potential applications.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | - Amal Ali Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| |
Collapse
|
11
|
Chang AS, Tahira A, Solangi ZA, Solangi AG, Ibupoto MH, Chang F, Medany SS, Nafady A, Kasry A, Willander M, Ibupoto ZH. Pd-Co3O4-based nanostructures for the development of enzyme-free glucose sensor. BULLETIN OF MATERIALS SCIENCE 2022; 45:62. [DOI: 10.1007/s12034-021-02642-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/23/2021] [Indexed: 07/11/2023]
|
12
|
Arikan K, Burhan H, Sahin E, Sen F. A sensitive, fast, selective, and reusable enzyme-free glucose sensor based on monodisperse AuNi alloy nanoparticles on activated carbon support. CHEMOSPHERE 2022; 291:132718. [PMID: 34756949 DOI: 10.1016/j.chemosphere.2021.132718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
In this study, a glucose sensor modified with activated carbon supported gold-nickel (AuNi@AC) metal nanoparticles was prepared for the early diagnosis of diabetes. Electrochemical tests were carried out by determining the optimum working conditions of the prepared glucose sensor. The characterization analyses of the designed glucose sensor were performed by Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy. It was determined that the average particle size of the nanoparticles in the AuNi alloy structure was 2.03 ± 0.37 nm. The determined detection limit of the AuNi@AC nanosensor was calculated as 0.41 μM as a result of the high linear range provided up to 1.7 mM. In addition, the sensitivity of AuNi@AC nanosensor to glucose, which has a high sensitivity value of 1955 μA mM-1 cm-2, was determined.
Collapse
Affiliation(s)
- Kubilay Arikan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Hakan Burhan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Elif Sahin
- Department of Chemistry, Faculty of Sciences, Dokuz Eylul University, Buca, İzmir, Turkey.
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey.
| |
Collapse
|
13
|
Pullano SA, Greco M, Bianco MG, Foti D, Brunetti A, Fiorillo AS. Glucose biosensors in clinical practice: principles, limits and perspectives of currently used devices. Theranostics 2022; 12:493-511. [PMID: 34976197 PMCID: PMC8692922 DOI: 10.7150/thno.64035] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022] Open
Abstract
The demand of glucose monitoring devices and even of updated guidelines for the management of diabetic patients is dramatically increasing due to the progressive rise in the prevalence of diabetes mellitus and the need to prevent its complications. Even though the introduction of the first glucose sensor occurred decades ago, important advances both from the technological and clinical point of view have contributed to a substantial improvement in quality healthcare. This review aims to bring together purely technological and clinical aspects of interest in the field of glucose devices by proposing a roadmap in glucose monitoring and management of patients with diabetes. Also, it prospects other biological fluids to be examined as further options in diabetes care, and suggests, throughout the technology innovation process, future directions to improve the follow-up, treatment, and clinical outcomes of patients.
Collapse
Affiliation(s)
| | - Marta Greco
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Maria Giovanna Bianco
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Daniela Foti
- Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Antonino S. Fiorillo
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| |
Collapse
|
14
|
Amara U, Mahmood K, Riaz S, Nasir M, Hayat A, Hanif M, Yaqub M, Han D, Niu L, Nawaz MH. Self-assembled perylene-tetracarboxylic acid/multi-walled carbon nanotube adducts based modification of screen-printed interface for efficient enzyme immobilization towards glucose biosensing. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Ahmad MW, Verma S, Yang DJ, Islam MU, Choudhury A. Synthesis of silver nanoparticles-decorated poly(m-aminophenol) nanofibers and their application in a non-enzymatic glucose biosensor. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1886585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Md. Wasi Ahmad
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Sultanate of Oman
| | - Sushil Verma
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi, India
| | - Duck-Joo Yang
- Department of Chemistry and the Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, Texas, USA
| | - Mazhar Ul Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah, Sultanate of Oman
| | - Arup Choudhury
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi, India
| |
Collapse
|
16
|
Yang L, Wang J, Lü H, Hui N. Electrochemical sensor based on Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays for hydrogen peroxide and microRNA detection. Mikrochim Acta 2021; 188:25. [PMID: 33404773 DOI: 10.1007/s00604-020-04673-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
A dual-sensing platform is proposed based on multi-walled carbon nanotubes/Prussian blue-functionalized polypyrrole nanowire array (PPY/MWCNTs/PB). Highly aligned PPY nanowire arrays were electrochemically prepared on the surface of glassy carbon electrodes, which were doped with MWCNTs/PB nanocomposites. The nanomaterial combines the characteristics of the PPY nanowires (high conductivity and large specific surface area) and MWCNTs/PB (excellent catalytic performance and intrinsic redox activity). Owing to the nanowire microstructure and outstanding electrical properties, the PPY/MWCNTs/PB nanowire arrays show excellent electrocatalysis of the reduction of hydrogen peroxide and facilitate the construction of a high-performance biosensing platform for microRNA (miRNA). A linear relationship between analytical signal and concentration of hydrogen peroxide and miRNA was obtained in the range 5 to 503 µM (1.4-5.1 mM) and 0.1 pM to 1 nM, and detection limits of 1.7 μM and 33.4 fM, respectively. This new supersensitive sensing platform has broad application prospects of biomolecule and other analyte determination in drug, biomedical, plant protection, and environmental analysis. Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays (PPY/MWCNTs/PB) were prepared by a facile one-step electrochemical method. PPY/MWCNTs/PB nanowire arrays show excellent electrocatalysis of the reduction of H2O2 and facilitate the construction of a high-performance biosensing platform for microRNA.
Collapse
Affiliation(s)
- Lili Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiasheng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haitao Lü
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ni Hui
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
17
|
A cost-saving preparation of nickel nanoparticles/nitrogen-carbon nanohybrid as effective advanced electrode materials for highly sensitive tryptophan sensor. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Fisher L. Retraction: One-pot synthesis of Hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst. RSC Adv 2021; 11:32706. [PMID: 35503269 PMCID: PMC9042238 DOI: 10.1039/d1ra90151f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022] Open
Abstract
Retraction of ‘One-pot synthesis of Hantzsch dihydropyridines using a highly efficient and stable PdRuNi@GO catalyst’ by Tuna Demirci et al., RSC Adv., 2016, 6, 76948–76956. DOI: 10.1039/C6RA13142E.
Collapse
Affiliation(s)
- Laura Fisher
- Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, UK
| |
Collapse
|
19
|
E S, N K SN, D NR, K C. Enhanced nonlinear absorption and efficient power limiting action of Au/Ag@ graphite core-shell nanostructure synthesized by laser ablation. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abca0f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Here we report a drastic enhancement of nonlinear absorption behaviour and exceptional optical limiting action of two core-shell systems (Au@graphite and Ag@graphite) prepared by adopting a fairly easy way in which we did not use any graphitic substrate. We carried out pulsed laser ablation of Au and Ag targets in toluene, monosubstituted benzene from which graphite layers of nanometer thickness has emerged as a result of photochemical reactions. The prepared samples were characterized and analyzed by UV/Vis spectroscopy, Raman spectroscopy, and TEM. Theoretical simulations of the core-shell nanostructures were done by the finite-difference time-domain method underlined the quenching of SPR in the case of both Au and Ag NPs by the graphitic layers evolved from toluene. Au and/or Ag@graphite core-shell structure exhibited a huge improvement in the nonlinear absorption behaviour and the optical limiting efficiency of these systems is found to be better than that of many benchmark optical limiters. The enhancement in nonlinear absorption property and the limiting actions of these systems were attributed to the enhanced excited-state absorption as well as free-carrier absorption arose as a result of the modification in the electronic structure of graphite on core-shell formation. Moreover, the metallic NPs also enhances nonlinear absorption through free-carrier absorption free-carrier absorption. So we believe these results are quite useful for guiding the characterization, monitoring the synthesis of similar nanostructures and for, the development of nanohybrids with desired properties for nonlinear optical, optoelectronic and photocatalytic applications.
Collapse
|
20
|
Ayranci R. The Rapid and Practical Route to Cu@PCR Sensor: Modification of Copper Nanoparticles Upon Conducting Polymer for a Sensitive Non‐Enzymatic Glucose Sensor. ELECTROANAL 2020. [DOI: 10.1002/elan.202060287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rukiye Ayranci
- Department of Labarotory Technology University of Dumlupinar Simav 43500 Kutahya Turkey
| |
Collapse
|
21
|
A Non-Enzymatic Sensor Based on Fc-CHIT/CNT@Cu Nanohybrids for Electrochemical Detection of Glucose. Polymers (Basel) 2020; 12:polym12102419. [PMID: 33092222 PMCID: PMC7589752 DOI: 10.3390/polym12102419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/26/2022] Open
Abstract
Herein, a composite structure, consisting of Cu nanoparticles (NPs) deposited onto carbon nanotubes and modified with ferrocene-branched chitosan, was prepared in order to develop a nonenzymatic electrochemical glucose biosensor ferrocene-chitosan/carbon nanotube@ Cu (Fc-CHIT/CNT@Cu). The elemental composition of the carbon nanohybrids, morphology and structure were characterized by various techniques. Electrochemical impedance spectroscopy (EIS) was used to study the interfacial properties of the electrodes. Cyclic voltammetry (CV) and chronoamperometry methods in alkaline solution were used to determine glucose biosensing properties. The synergy effect of Cu NPs and Fc on current responses of the developed electrode resulted in good glucose sensitivity, including broad linear detection between 0.2 mM and 22 mM, a low detection limit of 13.52 μM and sensitivity of 1.256 μA mM−1cm−2. Moreover, the modified electrode possessed long-term stability and good selectivity in the presence of ascorbic acid, dopamine and uric acid. The results indicated that this inexpensive electrode had potential application for non-enzymatic electrochemical glucose detection.
Collapse
|
22
|
Rocha RG, Cardoso RM, Zambiazi PJ, Castro SV, Ferraz TV, Aparecido GDO, Bonacin JA, Munoz RA, Richter EM. Production of 3D-printed disposable electrochemical sensors for glucose detection using a conductive filament modified with nickel microparticles. Anal Chim Acta 2020; 1132:1-9. [DOI: 10.1016/j.aca.2020.07.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023]
|
23
|
Mamlayya VB, Maile NC, Fulari VJ. A study on silver nanoleaf-decorated PANI electrodes for improved electrochemical performance. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Significance of nanomaterials in electrochemical glucose sensors: An updated review (2016-2020). Biosens Bioelectron 2020; 159:112165. [DOI: 10.1016/j.bios.2020.112165] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 02/02/2023]
|
25
|
Xu J, Xu K, Han Y, Wang D, Li X, Hu T, Yi H, Ni Z. A 3D porous graphene aerogel@GOx based microfluidic biosensor for electrochemical glucose detection. Analyst 2020; 145:5141-5147. [PMID: 32573601 DOI: 10.1039/d0an00681e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a chronic disease, diabetes may result in serious complications that endanger the health and life of patients. Accurate and real-time detection of blood sugar levels is of great significance for the prevention and treatment of diabetes. In this paper, an enzymatic electrochemical microfluidic biosensor for glucose detection was developed based on a three-dimensional (3D) porous graphene aerogel and glucose oxidase (GOx). A graphene aerogel was prepared by freeze-drying a graphene hydrogel and has a high electrical conductivity, the 3D porous structure provided a good near-biological condition for GOx and the increased specific surface area allowed more GOx to be immobilized on the graphene aerogel. The microfluidic system greatly reduced the consumption of samples during tests. Amperometric measurements were carried out to test glucose concentrations, and the enzyme biosensor showed a linear range from 1 mM to 18 mM (R2 = 0.991). The limit of detection (LOD) was 0.87 mM (S/N = 3) and the sensor showed excellent selectivity and stability. Finally, monitoring glucose in serum samples was achieved by the proposed sensor and good recoveries were obtained. Due to its excellent performance, the proposed biosensor has a favorable application prospect in the prevention and clinical diagnosis of diabetes. Furthermore, our method, which is used to prepare a graphene aerogel modified electrode in a microfluidic chip, can be widely used in various electrochemical sensors.
Collapse
Affiliation(s)
- Jian Xu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Well-dispersed poly(cysteine)-Ni(OH)2 nanocomposites on graphene-modified electrode surface for highly sensitive non-enzymatic glucose detection. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Bimetallic Fe/Mn metal-organic-frameworks and Au nanoparticles anchored carbon nanotubes as a peroxidase-like detection platform with increased active sites and enhanced electron transfer. Talanta 2020; 210:120678. [DOI: 10.1016/j.talanta.2019.120678] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 01/08/2023]
|
28
|
Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J Colloid Interface Sci 2020; 560:208-212. [DOI: 10.1016/j.jcis.2019.10.007] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 11/20/2022]
|
29
|
Multiwalled carbon nanotubes bound beta-galactosidase: It's activity, stability and reusability. Methods Enzymol 2020. [PMID: 31931994 DOI: 10.1016/bs.mie.2019.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Carbon nanotubes (CNTs) based biosensors are recognized to be a next generation building block for ultrasensitive and fast biosensing systems. This article starting with a brief history on CNTs provides an overview on the recent expansion of research in the field of CNT-based biosensors. This is followed by the discussion on structure and properties related to CNTs. Furthermore, the basic and some newly developed synthetic methods of CNTs are summarized. In this chapter, we used polyaniline cobalt multiwalled CNTs to immobilize β-galactosidase, by adopting both noncovalent and covalent strategies. Herein, the methodologies of both techniques have been discussed in detail. The η (effectiveness factor) values for nanocomposite bound β-galactosidase by physical adsorption and covalent method were calculated to be 0.93 and 0.97, respectively. The covalently bound β-galactosidase retained 92% activity even after its 10th successive reuse as compared to the adsorbed enzyme which exhibited only 74% of its initial activity. CNT armored enzymes demonstrated remarkably high catalytic stability at both sides of temperature and pH-optima along with easy recovery from the reaction medium which can be utilized in various biotechnological applications. Lastly, the scientific and technological challenges in the field are discussed at the end of this chapter.
Collapse
|
30
|
Yang B, Qiao J, Yu Y, Yuan L, Hu X. The simple-preparation of Cu–Ni/CuO–NiO using solution plasma for application in a glucose enzyme-free sensor. NEW J CHEM 2020. [DOI: 10.1039/d0nj01464h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The design of composite catalysts with two metals and their oxides for the detection of glucose is a particularly novel method to couple together the advantages of different kinds of metals.
Collapse
Affiliation(s)
- Bingqian Yang
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Jingyuan Qiao
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Yawei Yu
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Lefan Yuan
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| | - Xiulan Hu
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- China
- The Synergetic Innovation Center for Advanced Materials
| |
Collapse
|
31
|
Şavk A, Cellat K, Arıkan K, Tezcan F, Gülbay SK, Kızıldağ S, Işgın EŞ, Şen F. Highly monodisperse Pd-Ni nanoparticles supported on rGO as a rapid, sensitive, reusable and selective enzyme-free glucose sensor. Sci Rep 2019; 9:19228. [PMID: 31848405 PMCID: PMC6917712 DOI: 10.1038/s41598-019-55746-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/02/2019] [Indexed: 11/23/2022] Open
Abstract
In this work, highly monodispersed palladium-nickel (Pd-Ni) nanoparticles supported on reduced graphene oxide (rGO) were synthesized by the microwave-assisted methodology. The synthesized nanoparticles were used for modification of a glassy carbon electrode (GCE) to produce our final product as PdNi@rGO/GCE, which were utilized for non-enzymatic detecting of glucose. In the present study, electrochemical impedance spectroscopy (EIS), chronoamperometry (CA) and, cyclic voltammetry (CV) methods were implemented to investigate the sensing performance of the developed glucose electrode. The modified electrode, PdNi@rGO/GCE, exhibited very noticeable results with a linear working range of 0.05-1.1 mM. Moreover, an ultralow detection limit of 0.15 μM was achieved. According to the results of amperometric signals of the electrodes, no significant change was observed, even after 250 h of operation period. In addition, the highly monodisperse PdNi@rGO/GCE was utilized to electrochemical detection of glucose in real serum samples. In light of the results, PdNi@rGO/GCE has shown an excellent sensing performance and can be used successfully in serum samples for glucose detection and it is suitable for practical and clinical applications.
Collapse
Affiliation(s)
- Aysun Şavk
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Kemal Cellat
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Kubilay Arıkan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Fatih Tezcan
- Mersin University, Science and Letters Faculty, Chemistry Department, 33343, Mersin, Turkey
| | - Senem Karahan Gülbay
- Department of Chemistry, Faculty of Sciences, Dokuz Eylul University, Buca, İzmir, Turkey
| | - Servet Kızıldağ
- College of Vocational School of Health Services, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Elif Şahin Işgın
- Department of Chemistry, Faculty of Sciences, Dokuz Eylul University, Buca, İzmir, Turkey.
| | - Fatih Şen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey.
| |
Collapse
|
32
|
Hou L, Bi S, Lan B, Zhao H, Zhu L, Xu Y, Lu Y. A novel and ultrasensitive nonenzymatic glucose sensor based on pulsed laser scribed carbon paper decorated with nanoporous nickel network. Anal Chim Acta 2019; 1082:165-175. [DOI: 10.1016/j.aca.2019.07.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/21/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
|
33
|
Adabi M, Adabi M. Electrodeposition of nickel on electrospun carbon nanofiber mat electrode for electrochemical sensing of glucose. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1678483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mohsen Adabi
- Department of Metallurgy and Materials Engineering, Faculty of Engineering, Roudehen Branch, Islamic Azad University , Roudehen , Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
34
|
Kiani A, Ghaffarinejad A, Abolfazl Seyedsadjadi S, Mansouri A. Glucose Electro‐oxidation on Graphite Electrode Modified with Nickel/Chromium Nanoparticles. ELECTROANAL 2019. [DOI: 10.1002/elan.201900250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Azadeh Kiani
- Faculty of ChemistryIran University of Science and Technology Tehran 1684613114 Iran
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of ChemistryIran University of Science and Technology Tehran 1684613114 Iran
- Electroanalytical Chemistry Research CenterIran University of Science and Technology Tehran 1684613114 Iran
| | | | - Atiyeh Mansouri
- Research Laboratory of Real Samples Analysis, Faculty of ChemistryIran University of Science and Technology Tehran 1684613114 Iran
| |
Collapse
|
35
|
Karimi-Maleh H, Fakude CT, Mabuba N, Peleyeju GM, Arotiba OA. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J Colloid Interface Sci 2019; 554:603-610. [DOI: 10.1016/j.jcis.2019.07.047] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
|
36
|
Olejnik A, Siuzdak K, Karczewski J, Grochowska K. A Flexible Nafion Coated Enzyme‐free Glucose Sensor Based on Au‐dimpled Ti Structures. ELECTROANAL 2019. [DOI: 10.1002/elan.201900455] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Adrian Olejnik
- Faculty of ChemistryGdańsk University of Technology Narutowicza 11/12 St. 80-233 Gdańsk Poland
| | - Katarzyna Siuzdak
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow MachineryPolish Academy of Sciences Fiszera 14 St. 80-231 Gdańsk Poland
| | - Jakub Karczewski
- Faculty of Applied Physics and MathematicsGdańsk University of Technology Narutowicza 11/12 St. 80-233 Gdańsk Poland
| | - Katarzyna Grochowska
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow MachineryPolish Academy of Sciences Fiszera 14 St. 80-231 Gdańsk Poland
| |
Collapse
|
37
|
Controllable synthesis of six corner star-like Cu2O/PEDOT-MWCNT composites and their performance toward electrochemical glucose sensing. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
Jahandari S, Taher MA, Karimi-Maleh H, Mansouri G. Simultaneous voltammetric determination of glutathione, doxorubicin and tyrosine based on the electrocatalytic effect of a nickel(II) complex and of Pt:Co nanoparticles as a conductive mediator. Mikrochim Acta 2019; 186:493. [DOI: 10.1007/s00604-019-3598-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/10/2019] [Indexed: 12/28/2022]
|
39
|
Li X, Li N, Hu G, Lin W, Li H. Fabrication of ordered polydopamine-coated carbon nanotube arrays and their electrocatalytic activities towards synergistically enhanced oxidation of ascorbate-monosaccharides and reduction of oxygen. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
40
|
Use of the monodisperse Pt/Ni@rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:951-956. [DOI: 10.1016/j.msec.2019.02.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 11/19/2022]
|
41
|
Dehghan G, Shaghaghi M, Alizadeh P. A novel ultrasensitive and non-enzymatic "turn-on-off" fluorescence nanosensor for direct determination of glucose in the serum: As an alternative approach to the other optical and electrochemical methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:459-468. [PMID: 30807944 DOI: 10.1016/j.saa.2019.02.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/16/2018] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
A new, simple, rapid, highly sensitive and selective and non-enzymatic fluorometric method for direct determination of glucose in real samples was developed. The method was based on the inhibition of fluorescence resonance energy transfer (FRET) process between terbium (III)-1, 10-phenanthroline (Tb-phen) complex and silver nanoparticles (AgNPs). Upon the addition of glucose, the quenched FRET-based fluorescence of Tb-phen complex was gradually recovered by glucose via its strong adsorption on the surface of AgNPs and removal of Tb-phen complex from AgNPs surface. Therefore the fluorescence of Tb-phen complex switched to "turn-on" state. Under the optimum conditions, a linear relationship was obtained between the enhanced fluorescence intensity and glucose concentration in the range of (5-900) × 10-8 M with the detection limit of 1.94 × 10-8 M. The proposed sensing system was successfully applied to determine glucose in the spiked normal and diabetic patient serum samples after deproteinization with acetonitrile. Analytical recoveries from treated serum samples were in the range of 99.97-104.80% and 92.14-105.43%, respectively. The common interfering species, such as ascorbic acid, fructose and galactose did not cause interior interference due to unique emission properties of Tb-phen complex probe. Also the interaction of the Tb-phen complex with AgNPs, which led to the fluorescence intensity quenching of the complex, was further examined by FTIR technique. In short, as compared to most of the existing methods, the newly proposed method, provides some advantages and makes it promising for the direct rapid screening of glucose residues of real samples in clinical diagnosis of diabetes, as an alternative approach to the other exiting optical and electrochemical methods.
Collapse
Affiliation(s)
- Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Masoomeh Shaghaghi
- Department of Chemistry, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran.
| | - Pari Alizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
42
|
Afzali M, Mostafavi A, Nekooie R, Jahromi Z. A novel voltammetric sensor based on palladium nanoparticles/carbon nanofibers/ionic liquid modified carbon paste electrode for sensitive determination of anti-cancer drug pemetrexed. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Determination of ferulic acid in the presence of butylated hydroxytoluene as two phenolic antioxidants using a highly conductive food nanostructure electrochemical sensor. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00793-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
|
45
|
Demirbas O, Calimli MH, Kuyuldar E, Alma MH, Nas MS, Sen F. Equilibrium, Kinetics, and Thermodynamic of Adsorption of Enzymes on Diatomite Clay Materials. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00615-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
46
|
Hierarchical nanosheets based on zinc-doped nickel hydroxide attached 3D framework as free-standing nonenzymatic sensor for sensitive glucose detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Investigation of Asymmetric Dimethylarginine, Adiponectin, Zn, and Cu Levels in Obese Subjects. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-018-0591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Savk A, Özdil B, Demirkan B, Nas MS, Calimli MH, Alma MH, Inamuddin, Asiri AM, Şen F. Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:248-254. [PMID: 30889697 DOI: 10.1016/j.msec.2019.01.113] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 10/27/2022]
Abstract
A novel multiwalled carbon nanotube (MWCNT) based sensor was fabricated as a highly precise and stable electrochemical sensor. The synthesized sensor which consists of ZnNi bimetallic nanoalloy called the ZnNi NPs@f-MWCNT sensor, have been used for the simultaneous detection of uric acid (UA), dopamine (DA) and ascorbic acid (AA). The ZnNi NPs@f-MWCNT sensor obtained based on the microwave irradiation process, and its characterization was performed by using several physical techniques such as XRD, XPS, TEM, Raman, etc. The characterization showed that this sensor has excellent properties such as rich pore channels, excellent structural durability, and large surface area. These properties facilitated mass transfer and electron conductions. It was observed that the obtained sensor gave high electrochemical activity and wide linear responses (0.3-1.1 mM AA, 0.2-1.2 mM DA, 0.2-1.1 mM UA) in the detection of uric acid (UA), dopamine (DA) and ascorbic acid (AA). In addition to these properties, it has been found that the sensor has excellent anti-interferents properties towards AlCl3, KCl3, glucose, etc. and ZnNi NPs@f-MWCNT sensor was further applied to determine uric acid (UA), dopamine (DA) and ascorbic acid (AA) in real samples.
Collapse
Affiliation(s)
- Aysun Savk
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Turkey
| | - Buse Özdil
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Turkey
| | - Buse Demirkan
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Turkey
| | - Mehmet Salih Nas
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Turkey; Department of Environmental Engineering, Faculty of Engineering, University of Igdir, Igdir, Turkey
| | - Mehmet Harbi Calimli
- Department of Environmental Engineering, Faculty of Engineering, University of Igdir, Igdir, Turkey
| | - Mehmet Hakkı Alma
- Department of Environmental Engineering, Faculty of Engineering, University of Igdir, Igdir, Turkey
| | - Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatih Şen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Turkey.
| |
Collapse
|
49
|
Xu Q, Li W, Ding L, Yang W, Xiao H, Ong WJ. Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. NANOSCALE 2019; 11:1475-1504. [PMID: 30620019 DOI: 10.1039/c8nr08738e] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metal-free carbonaceous nanomaterials have witnessed a renaissance of interest due to the surge in the realm of nanotechnology. Among myriads of carbon-based nanostructures with versatile dimensionality, one-dimensional (1D) carbon nanotubes (CNTs) and zero-dimensional (0D) carbon dots (CDs) have grown into a research frontier in the past few decades. With extraordinary mechanical, thermal, electrical and optical properties, CNTs are utilized in transparent displays, quantum wires, field emission transistors, aerospace materials, etc. Although CNTs possess diverse characteristics, their most attractive property is their unique photoluminescence. On the other hand, another growing family of carbonaceous nanomaterials, which is CDs, has drawn much research attention due to its cost-effectiveness, low toxicity, environmental friendliness, fluorescence, luminescence and simplicity to be synthesized and functionalized with surface passivation. Benefiting from these unprecedented properties, CDs have been widely employed in biosensing, bioimaging, nanomedicine, and catalysis. Herein, we have systematically presented the fascinating properties, preparation methods and multitudinous applications of CNTs and CDs (including graphene quantum dots). We will discuss how CNTs and CDs have emerged as auspicious nanomaterials for potential applications, especially in electronics, sensors, bioimaging, wearable devices, batteries, supercapacitors, catalysis and light-emitting diodes (LEDs). Last but not least, this review is concluded with a summary, outlook and invigorating perspectives for future research horizons in this emerging platform of carbonaceous nanomaterials.
Collapse
Affiliation(s)
- Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, 102249, China.
| | | | | | | | | | | |
Collapse
|
50
|
Balasubramanian P, Balamurugan TST, Chen SM, Chen TW. Simplistic synthesis of ultrafine CoMnO 3 nanosheets: An excellent electrocatalyst for highly sensitive detection of toxic 4-nitrophenol in environmental water samples. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:123-133. [PMID: 30176410 DOI: 10.1016/j.jhazmat.2018.08.070] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Design and fabrication of cost effective analytical tools to monitor toxic organic emissions in eco system is of a great necessity. Nitrophenols are a class of widespread toxic organic pollutant lead to serious adverse effects in biosphere on its consumption. This article reports a high sensitive, cost effective, robust electrochemical sensor for 4-nitrophenol (4-NP) in environmental water samples. A novel sheet like CoMnO3 (CMO Ns) nanocatalyst was synthesized via oxalic acid assisted co-precipitation technique and employed as electrocatalyst for the high sensitive detection of 4-NP. The physiochemical properties of CMO Ns are studied in detail via XRD, FTIR, TEM, TGA, and XPS. TEM results reviled the protocol is an excellent way for synthesis of a uniformly distributed CMO Ns with lathery surface. Evident to the surface and other physiochemical studies the CMO Ns based sensor holds superior electrocatalytic activity towards 4-NP detection with excellent sensitivity (2.458 μA μM-1 cm-2) coupled with nanomolar detection (10 nm) limits. Moreover, the constructed sensor holds reliable long-term durability, good reproducibility, and excellent working stability. The practical applicability of the developed sensor was evaluated by determination of 4-NP in samples acquired from water resources with RSD ± 3.3%.
Collapse
Affiliation(s)
- Paramasivam Balasubramanian
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - T S T Balamurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC; Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC.
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei, 106, Taiwan, ROC
| |
Collapse
|