1
|
Cabrero-Martín A, Santiago S, Serafín V, Pedrero M, Montero-Calle A, Pingarrón JM, Barderas R, Campuzano S. Multifunctional cerium nanolabels in electrochemical immunosensing with improved robustness and performance: determination of TIM-1 in colorectal cancer scenarios as a case study. Mikrochim Acta 2025; 192:243. [PMID: 40107988 DOI: 10.1007/s00604-025-07021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/31/2025] [Indexed: 03/22/2025]
Abstract
A multifunctional cerium oxide nanoparticles (CeO2NPs)-based nanolabel is exploited to implement an electrochemical sandwich-type immunoplatform for the determination of T-cell immunoglobulin and mucin domain 1 (TIM-1) biomarker, a mucin-like class I membrane glycoprotein associated with cancer angiogenesis. The immunoplatform is constructed using screen-printed electrodes where capture antibody is immobilized through the chemistry of diazonium salts. CeO2NPs exhibit robust pseudo-peroxidase activity even at high substrate concentrations. They are covalently functionalized in a simple manner after carboxylation with a detector antibody (dAb), acting dually as a nanozyme and nanocarrier for sensing bioreceptors. This allows the development of immunoplatforms with improved robustness and performance (in terms of a moderate enhancement in sensitivity, a significant expansion in the linear range, and a reduction in the background current) compared with the immunoplatforms prepared using nanolabels also decorated with the natural enzyme (horseradish peroxidase, HRP) or the conventional enzymatic labeling involving the dAb and an HRP-secondary antibody. Under the optimized experimental conditions, the developed electrochemical immunoplatform allows the highly sensitive detection of the TIM-1 glycoprotein, with a detection limit of 9.9 pg mL-1 and a linear working range of 33-600 pg mL-1. This performance permits biomarker quantification within clinically relevant ranges. This innovative configuration enables the precise diagnosis and stratification of colorectal cancer patients by analyzing plasma samples without pretreatment beyond a sample dilution and allows establishment of the first cut-off values reported for this purpose.
Collapse
Affiliation(s)
- Andrea Cabrero-Martín
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - Sara Santiago
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - Verónica Serafín
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - María Pedrero
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220, Madrid, Spain
| | - José M Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Institute of Health Carlos III, Majadahonda, 28220, Madrid, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28046, Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, Pza. de Las Ciencias 2, 28040, Madrid, Spain.
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 28046, Madrid, Spain.
| |
Collapse
|
2
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
3
|
Wang R, Du Y, Fu Y, Guo Y, Gao X, Guo X, Wei J, Yang Y. Ceria-Based Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing. ACS Sens 2023; 8:4442-4467. [PMID: 38091479 DOI: 10.1021/acssensors.3c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In recent years, there has been a notable increase in interest surrounding nanozymes due to their ability to imitate the functions and address the limitations of natural enzymes. The scientific community has been greatly intrigued by the study of nanoceria, primarily because of their distinctive physicochemical characteristics, which include a variety of enzyme-like activities, affordability, exceptional stability, and the ability to easily modify their surfaces. Consequently, nanoceria have found extensive use in various biosensing applications. However, the impact of its redox activity on the enzymatic catalytic mechanism remains a subject of debate, as conflicting findings in the literature have presented both pro-oxidant and antioxidant effects. Herein, we creatively propose a seesaw model to clarify the regulatory mechanism on redox balance and survey possible mechanisms of multienzyme mimetic properties of nanoceria. In addition, this review aims to showcase the latest advancements in this field by systematically discussing over 180 research articles elucidating the significance of ceria-based nanozymes in enhancing, downsizing, and enhancing the efficacy of point-of-care (POC) diagnostics. These advancements align with the ASSURED criteria established by the World Health Organization (WHO). Furthermore, this review also examines potential constraints in order to offer readers a concise overview of the emerging role of nanoceria in the advancement of POC diagnostic systems for future biosensing applications.
Collapse
Affiliation(s)
- Ruixue Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Yuanyuan Du
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Ying Fu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Yingxin Guo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250200, P. R. China
| | - Yanzhao Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250200, P. R. China
| |
Collapse
|
4
|
Huang Y, Zhang M, Jin M, Ma T, Guo J, Zhai X, Du Y. Recent Advances on Cerium Oxide-Based Biomaterials: Toward the Next Generation of Intelligent Theranostics Platforms. Adv Healthc Mater 2023; 12:e2300748. [PMID: 37314429 DOI: 10.1002/adhm.202300748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/24/2023] [Indexed: 06/15/2023]
Abstract
Disease or organ damage due to unhealthy living habits, or accidents, is inevitable. Discovering an efficient strategy to address these problems is urgently needed in the clinic. In recent years, the biological applications of nanotechnology have received extensive attention. Among them, as a widely used rare earth oxide, cerium oxide (CeO2 ) has shown good application prospects in biomedical fields due to its attractive physical and chemical properties. Here, the enzyme-like mechanism of CeO2 is elucidated, and the latest research progress in the biomedical field is reviewed. At the nanoscale, Ce ions in CeO2 can be reversibly converted between +3 and +4. The conversion process is accompanied by the generation and elimination of oxygen vacancies, which give CeO2 the performance of dual redox properties. This property facilitates nano-CeO2 to catalyze the scavenging of excess free radicals in organisms, hence providing a possibility for the treatment of oxidative stress diseases such as diabetic foot, arthritis, degenerative neurological diseases, and cancer. In addition, relying on its excellent catalytic properties, customizable life-signaling factor detectors based on electrochemical techniques are developed. At the end of this review, an outlook on the opportunities and challenges of CeO2 in various fields is provided.
Collapse
Affiliation(s)
- Yongkang Huang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Mengzhen Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Mengdie Jin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tengfei Ma
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Jialiang Guo
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Xinyun Zhai
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
5
|
Xu L, Hu S, Qin D, Wu Y, Luo Z, Deng B. An electrochemiluminescence immunosensor with double co-reaction accelerators based on Ag 3PO 4@EuPO 4-AgNP for detecting squamous cell carcinoma antigen. Mikrochim Acta 2023; 190:223. [PMID: 37184586 DOI: 10.1007/s00604-023-05793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
This study aimed to design a sandwich electrochemiluminescence (ECL) immunosensor with double co-reaction accelerators for sensitively detecting squamous cell carcinoma antigen (SCCA). First, silver orthophosphate (Ag3PO4) nanoparticles were modified on the surface of EuPO4 nanowires to improve their poor dispersibility/solubility. At the same time, EuPO4 was used as a co-reaction accelerator to catalyze S2O82- to produce more intermediates (SO4•-), significantly enhancing the ECL signal of Ag3PO4. Ag nanoparticles (AgNP) modified on Ag3PO4@EuPO4 composite nanomaterials were used not only as linkers of luminescence groups and biomarkers but also as a co-reaction accelerator to effectively enhance ECL signal. The designed ECL immunosensor displayed several advantages, including good stability and reproducibility. Under the optimal conditions, its linear range in detecting SCCA was 0.0001-50 ng·mL-1, the detection limit was 25 fg·mL-1 (S/N = 3), the recovery was 96.6-100.4%, and the relative standard deviation was less than 4.8%. It was successfully applied to detect SCCA in human serum.
Collapse
Affiliation(s)
- Lixin Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shenglan Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zhi Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
6
|
Kayani FB, Rafique S, Akram R, Hussain M, Bashir S, Nasir R, Khan JS. A simple, sensitive, label-free electrochemical immunosensor based on the chitosan-coated silver/cerium oxide (CS@Ag/CeO 2) nanocomposites for the detection of alpha-fetoprotein (AFP). NANOTECHNOLOGY 2023; 34:265501. [PMID: 36996770 DOI: 10.1088/1361-6528/acc8d8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Metal oxide-based sensors have the benefit of inexpensive, quick response, and high sensitivity in detecting specific biological species. In this article, a simple electrochemical immunosensor was fabricated using antibody-chitosan coated silver/cerium oxide (Ab-CS@Ag/CeO2) nanocomposites on a gold electrode for sensitive alpha-fetoprotein (AFP) diagnosis in human serum samples. Successfully synthesis of AFP antibody-CS@Ag/CeO2conjugates was confirmed through Fourier transform infrared spectra of the prototype. The amine coupling bond chemistry was then used to immobilize the resultant conjugate on a gold electrode surface. It was observed that the interaction of the synthesized Ab-CS@Ag/CeO2nanocomposites with AFP prevented an electron transfer and reduced the voltammetric Fe(CN)63-/4-peak current, which was proportional to the amount of AFP. The linear ranges of AFP concentration were found from 10-12-10-6g.ml-1. The limit of detection was calculated using the calibration curve and came out to be 0.57 pg.ml-1. The designed label-free immunosensor successfully detected AFP in human serum samples. As a result, the resulting immunosensor is a promising sensor plate form for AFP detection and could be used in clinical bioanalysis.
Collapse
Affiliation(s)
| | - Saima Rafique
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| | - Rizwan Akram
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| | - Mozaffar Hussain
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| | - Shazia Bashir
- Department of Physics & Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| | - Rubina Nasir
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| | - Jan Sher Khan
- Department of Physics, Air University, PAF Complex, E-9, Islamabad 44000, Pakistan
| |
Collapse
|
7
|
Jiang Y, Yang M, Yu M, Huang L, Ke Y, Yang L. β-Cyclodextrin-functionalized Ti 3C 2T x MXene nanohybrids as innovative signal amplifiers for the electrochemical sandwich-like immunosensing of squamous cell carcinoma antigen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1336-1344. [PMID: 36810629 DOI: 10.1039/d2ay01716d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, a simple and highly sensitive electrochemical sandwich-like immunosensor for the squamous cell carcinoma antigen (SCCA) was constructed using gold nanoparticle/graphene nanosheet (Au/GN) nanohybrids as a sensing platform and β-cyclodextrin/Ti3C2Tx MXenes (β-CD/Ti3C2Tx) as a signal amplifier. The good biocompatibility and large surface area as well as the high conductivity of Au/GN allow the platform to load primary antibodies (Ab1) and facilitate electron transport. In the case of the β-CD/Ti3C2Tx nanohybrids, the β-CD molecule is dedicated to binding secondary antibodies (Ab2) through host-guest interactions, thus inducing the formation of the sandwich-like structure Ab2-β-CD/Ti3C2Tx/SCCA/Ab1/Au/GN in the presence of SCCA. Interestingly, Cu2+ can be adsorbed and self-reduced on the surface of the sandwich-like structure to form Cu0 since Ti3C2Tx MXenes can exhibit superior adsorption and reduction capabilities towards Cu2+, and a prominent current signal of Cu0 can be observed via differential pulse voltammetry. Based on this principle, an innovative signal amplification strategy has been proposed for SCCA detection, which avoids the process of labeling the probe and the specific immobilization step of catalytic components on the surface of amplification markers. After the optimization of various conditions, a wide linear range from 0.05 pg mL-1 to 20.0 ng mL-1, coupled with a low detection limit of 0.01 pg mL-1, was obtained for SCCA analysis. The proposed method for SCCA detection was also applied in real human serum samples and the observed results are satisfactory. This work opens up new pathways for constructing electrochemical sandwich-like immunosensors for SCCA and other targets.
Collapse
Affiliation(s)
- Yuling Jiang
- Department of Stomatology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441053, PR China
| | - Miao Yang
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, PR China.
| | - Mingyao Yu
- Department of Oral Medicine, Xiangyang Polytechnic, Xiangyang, 441006, PR China
| | - Lingling Huang
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, PR China.
| | - Yue Ke
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, PR China.
| | - Lei Yang
- Department of Stomatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441000, PR China.
| |
Collapse
|
8
|
Yan Q, Zhao G, Wang B, Wang N, Duolihong B, Xia X. Construction of an electrochemical immunosensor based on the OER signal of Au@CoFe-(oxy)hydroxide for ultrasensitive detection of CEA. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
Bifunctional nanomaterial with antibody-like and electrocatalytic activity to facilitate electrochemical biosensor of Escherichia coli. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
10
|
Arivazhagan M, Kannan P, Maduraiveeran G. Gold Nanoclusters Dispersed on Gold Dendrite-Based Carbon Fibre Microelectrodes for the Sensitive Detection of Nitric Oxide in Human Serum. BIOSENSORS 2022; 12:bios12121128. [PMID: 36551095 PMCID: PMC9776376 DOI: 10.3390/bios12121128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 05/31/2023]
Abstract
Herein, gold nanoclusters (Au NC) dispersed on gold dendrite (Au DS)-based flexible carbon fibre (AuNC@AuDS|CF) microelectrodes are developed using a one-step electrochemical approach. The as-fabricated AuNC@AuDS|CF microelectrodes work as the prospective electrode materials for the sensitive detection of nitric oxide (NO) in a 0.1 M phosphate buffer (PB) solution. Carbon microfibre acts as an efficient matrix for the direct growth of AuNC@AuDS without any binder/extra reductant. The AuNC@AuDS|CF microelectrodes exhibit outstanding electrocatalytic activity towards NO oxidation, which is ascribed to their large electrochemical active surface area (ECSA), high electrical conductivity, and high dispersion of Au nanoclusters. As a result, the AuNC@AuDS|CF microelectrodes attain a rapid response time (3 s), a low limit of detection (LOD) (0.11 nM), high sensitivity (66.32 µA µM cm-2), a wide linear range (2 nM-7.7 µM), long-term stability, good reproducibility, and a strong anti-interference capability. Moreover, the present microsensor successfully tested for the discriminating detection of NO in real human serum samples, revealing its potential practicability.
Collapse
Affiliation(s)
- Mani Arivazhagan
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| |
Collapse
|
11
|
Huang J, Xie Z, Li M, Luo S, Deng X, Xie L, Fan Q, Zeng T, Zhang Y, Zhang M, Wang S, Xie Z, Li D. An Enzyme-Free Sandwich Amperometry-Type Immunosensor Based on Au/Pt Nanoparticle-Functionalized Graphene for the Rapid Detection of Avian Influenza Virus H9 Subtype. NANOSCALE RESEARCH LETTERS 2022; 17:110. [PMID: 36404373 PMCID: PMC9676155 DOI: 10.1186/s11671-022-03747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Avian influenza virus H9 subtype (AIV H9) has contributed to enormous economic losses. Effective diagnosis is key to controlling the spread of AIV H9. In this study, a nonenzymatic highly electrocatalytic material was prepared using chitosan (Chi)-modified graphene sheet (GS)-functionalized Au/Pt nanoparticles (GS-Chi-Au/Pt), followed by the construction of a novel enzyme-free sandwich electrochemical immunosensor for the detection of AIV H9 using GS-Chi-Au/Pt and graphene-chitosan (GS-Chi) nanocomposites as a nonenzymatic highly electrocatalytic material and a substrate material to immobilize capture antibodies (avian influenza virus H9-monoclonal antibody, AIV H9/MAb), respectively. GS, which has a large specific surface area and many accessible active sites, permitted multiple Au/Pt nanoparticles to be attached to its surface, resulting in substantially improved conductivity and catalytic ability. Au/Pt nanoparticles can provide modified active sites for avian influenza virus H9-polyclonal antibody (AIV H9/PAb) immobilization as signal labels. Upon establishing the electrocatalytic activity of Au/Pt nanoparticles on graphene towards hydrogen peroxide (H2O2) reduction for signal amplification and optimizing the experimental parameters, we developed an AIV H9 electrochemical immunosensor, which showed a wide linear range from 101.37 EID50 mL-1 to 106.37 EID50 mL-1 and a detection limit of 100.82 EID50 mL-1. This sandwich electrochemical immunosensor also exhibited high selectivity, reproducibility and stability.
Collapse
Affiliation(s)
- Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China.
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Xianwen Deng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| | - Dan Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, 51 You Ai North Road, Nanning, 530001, Guangxi, China
| |
Collapse
|
12
|
Zhang M, Guo X. Gold/platinum bimetallic nanomaterials for immunoassay and immunosensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Li SS, Wang AJ, Yuan PX, Mei LP, Zhang L, Feng JJ. Heterometallic nanomaterials: activity modulation, sensing, imaging and therapy. Chem Sci 2022; 13:5505-5530. [PMID: 35694355 PMCID: PMC9116289 DOI: 10.1039/d2sc00460g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Heterometallic nanomaterials (HMNMs) display superior physicochemical properties and stability to monometallic counterparts, accompanied by wider applications in the fields of catalysis, sensing, imaging, and therapy due to synergistic effects between multi-metals in HMNMs. So far, most reviews have mainly concentrated on introduction of their preparation approaches, morphology control and applications in catalysis, assay of heavy metal ions, and antimicrobial activity. Therefore, it is very important to summarize the latest investigations of activity modulation of HMNMs and their recent applications in sensing, imaging and therapy. Taking the above into consideration, we briefly underline appealing chemical/physical properties of HMNMs chiefly tailored through the sizes, shapes, compositions, structures and surface modification. Then, we particularly emphasize their widespread applications in sensing of targets (e.g. metal ions, small molecules, proteins, nucleic acids, and cancer cells), imaging (frequently involving photoluminescence, fluorescence, Raman, electrochemiluminescence, magnetic resonance, X-ray computed tomography, photoacoustic imaging, etc.), and therapy (e.g. radiotherapy, chemotherapy, photothermal therapy, photodynamic therapy, and chemodynamic therapy). Finally, we present an outlook on their forthcoming directions. This timely review would be of great significance for attracting researchers from different disciplines in developing novel HMNMs.
Collapse
Affiliation(s)
- Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
14
|
Wang X, Dong S, Wei H. Recent advances on nanozyme‐based electrochemical biosensors. ELECTROANAL 2022. [DOI: 10.1002/elan.202100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Feng N, Liu Y, Dai X, Wang Y, Guo Q, Li Q. Advanced applications of cerium oxide based nanozymes in cancer. RSC Adv 2022; 12:1486-1493. [PMID: 35425183 PMCID: PMC8979138 DOI: 10.1039/d1ra05407d] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cerium oxide nanozymes have emerged as a new type of bio-antioxidants in recent years. CeO2 nanozymes possess enzyme mimetic activities with outstanding free radical scavenging activity, facile synthesis conditions, and excellent biocompatibility. Based on these extraordinary properties, use of CeO2 nanozymes has been demonstrated to be a highly versatile therapeutic method for many diseases, such as for inflammation, rheumatoid arthritis, hepatic ischemia-reperfusion injury and Alzheimer's disease. In addition to that, CeO2 nanozymes have been widely used in the diagnosis and treatment of cancer. Many examples can be found in the literature, such as magnetic resonance detection, tumour marker detection, chemotherapy, radiotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT). This review systematically summarises the latest applications of CeO2-based nanozymes in cancer research and treatment. We believe that this paper will help develop value-added CeO2 nanozymes, offering great potential in the biotechnology industry and with great significance for the diagnosis and treatment of a wide range of malignancies.
Collapse
Affiliation(s)
- Na Feng
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Ying Liu
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Xianglin Dai
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Yingying Wang
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Qiong Guo
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Qing Li
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
16
|
Huang H, Wang J, Zhang J, Cai J, Pi J, Xu JF. Inspirations of Cobalt Oxide Nanoparticle Based Anticancer Therapeutics. Pharmaceutics 2021; 13:pharmaceutics13101599. [PMID: 34683892 PMCID: PMC8538820 DOI: 10.3390/pharmaceutics13101599] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Cobalt is essential to the metabolism of all animals due to its key role in cobalamin, also known as vitamin B12, the primary biological reservoir of cobalt as an ultra-trace element. Current cancer treatment strategies, including chemotherapy and radiotherapy, have been seriously restricted by their side effects and low efficiency for a long time, which urges us to develop new technologies for more effective and much safer anticancer therapies. Novel nanotechnologies, based on different kinds of functional nanomaterials, have been proved to act as effective and promising strategies for anticancer treatment. Based on the important biological roles of cobalt, cobalt oxide nanoparticles (NPs) have been widely developed for their attractive biomedical applications, especially their potential for anticancer treatments due to their selective inhibition of cancer cells. Thus, more and more attention has been attracted to the preparation, characterization and anticancer investigation of cobalt oxide nanoparticles in recent years, which is expected to introduce novel anticancer treatment strategies. In this review, we summarize the synthesis methods of cobalt oxide nanoparticles to discuss the advantages and restrictions for their preparation. Moreover, we emphatically discuss the anticancer functions of cobalt oxide nanoparticles as well as their underlying mechanisms to promote the development of cobalt oxide nanoparticles for anticancer treatments, which might finally benefit the current anticancer therapeutics based on functional cobalt oxide nanoparticles.
Collapse
Affiliation(s)
- Huanshao Huang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
| | - Jiajun Wang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
| | - Junai Zhang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou 510632, China;
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; (H.H.); (J.W.); (J.Z.)
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
17
|
Hartati YW, Topkaya SN, Gaffar S, Bahti HH, Cetin AE. Synthesis and characterization of nanoceria for electrochemical sensing applications. RSC Adv 2021; 11:16216-16235. [PMID: 35479153 PMCID: PMC9031634 DOI: 10.1039/d1ra00637a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/24/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Nanoceria (cerium oxide nanoparticles: CeO2-NPs) has received significant attention due to its biocompatibility, good conductivity, and the ability to transfer oxygen. Nanoceria has been widely used to develop electrochemical sensors and biosensors as it could increase response time, sensitivity, and stability of the sensor. In this review, we discussed synthesis methods, and the recent applications employing CeO2-NPs for electrochemical detection of various analytes reported in the most recent four years.
Collapse
Affiliation(s)
- Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University Turkey
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Husein H Bahti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Arif E Cetin
- Izmir Biomedicine and Genome Center Izmir Turkey
| |
Collapse
|
18
|
Chanarsa S, Jakmunee J, Ounnunkad K. A Bifunctional Nanosilver-Reduced Graphene Oxide Nanocomposite for Label-Free Electrochemical Immunosensing. Front Chem 2021; 9:631571. [PMID: 33996742 PMCID: PMC8113703 DOI: 10.3389/fchem.2021.631571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
A bi-functional material based on silver nanoparticles (AgNPs)-reduced graphene oxide (rGO) composite for both electrode modification and signal generation is successfully synthesized for use in the construction of a label-free electrochemical immunosensor. An AgNPs/rGO nanocomposite is prepared by a one-pot wet chemical process. The AgNPs/rGO composite dispersion is simply cast on a screen-printed carbon electrode (SPCE) to fabricate the electrochemical immunosensor. It possesses a sufficient conductivity/electroreactivity and improves the electrode reactivity of SPCE. Moreover, the material can generate an analytical response due to the formation of immunocomplexes for detection of human immunoglobulin G (IgG), a model biomarker. Based on electrochemical stripping of AgNPs, the material reveals signal amplification without external redox molecules/probes. Under optimized conditions, the square wave voltammetric peak current is responded to the logarithm of IgG concentration in two wide linear ranges from 1 to 50 pg.ml-1 and 0.05 to 50 ng.ml-1, and the limit of detection (LOD) is estimated to be 0.86 pg.ml-1. The proposed immunosensor displays satisfactory sensitivity and selectivity. Importantly, detection of IgG in human serum using the immunosensor shows satisfactory accuracy, suggesting that the immunosensor possesses a huge potential for further development in clinical diagnosis.
Collapse
Affiliation(s)
- Supakeit Chanarsa
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- The Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products From Northern Resources, Chiang Mai University, Chiang Mai, Thailand
| | - Kontad Ounnunkad
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center on Chemistry for Development of Health Promoting Products From Northern Resources, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
19
|
He S, Huang Q, Zhang Y, Zhang H, Xu H, Li X, Ma X. Magnetic beads-based multicolor colorimetric immunoassay for ultrasensitive detection of aflatoxin B1. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Zhao C, Ma C, Li W, Song Y, Hong C, Qi Y. Differences in Performance of Immunosensors Constructed Based on CeO2-Simulating Auxiliary Enzymes. ACS Biomater Sci Eng 2021; 7:1058-1064. [DOI: 10.1021/acsbiomaterials.0c01680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Chulei Zhao
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, No. 221, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Chaoyun Ma
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, No. 221, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Wenjun Li
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, No. 221, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Yiju Song
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, No. 221, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, No. 221, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| | - Yu Qi
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, No. 221, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832000, China
| |
Collapse
|
21
|
Fu C, Sun Y, Huang C, Wang F, Li N, Zhang L, Ge S, Yu J. Ultrasensitive sandwich-like electrochemical biosensor based on core-shell Pt@CeO2 as signal tags and double molecular recognition for cerebral dopamine detection. Talanta 2021; 223:121719. [DOI: 10.1016/j.talanta.2020.121719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
|
22
|
Zhang F, Huang F, Gong W, Tian F, Wu H, Ding S, Li S, Luo R. Multi-branched PdPt nanodendrites decorated amino-rich Fe-based metal-organic framework as signal amplifier for ultrasensitive electrochemical detection of prolactin. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2556. [PMID: 33352731 PMCID: PMC7766190 DOI: 10.3390/nano10122556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Multifunctional nanomaterials, defined as those able to achieve a combined effect or more than one function through their multiple functionalization or combination with other materials, are gaining increasing attention in the last years in many relevant fields, including cargo targeted delivery, tissue engineering, in vitro and/or in vivo diseases imaging and therapy, as well as in the development of electrochemical (bio)sensors and (bio)sensing strategies with improved performance. This review article aims to provide an updated overview of the important advances and future opportunities exhibited by electrochemical biosensing in connection to multifunctional nanomaterials. Accordingly, representative aspects of recent approaches involving metal, carbon, and silica-based multifunctional nanomaterials are selected and critically discussed, as they are the most widely used multifunctional nanomaterials imparting unique capabilities in (bio)electroanalysis. A brief overview of the main remaining challenges and future perspectives in the field is also provided.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | | - Susana Campuzano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | |
Collapse
|
24
|
Mahmudunnabi RG, Farhana FZ, Kashaninejad N, Firoz SH, Shim YB, Shiddiky MJA. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 2020; 145:4398-4420. [PMID: 32436931 DOI: 10.1039/d0an00558d] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, a new group of nanomaterials named nanozymes that exhibit enzyme-mimicking catalytic activity has emerged as a promising alternative to natural enzymes. Nanozymes can address some of the intrinsic limitations of natural enzymes such as high cost, low stability, difficulty in storage, and specific working conditions (i.e., narrow substrate, temperature and pH ranges). Thus, synthesis and applications of hybrid and stimuli-responsive advanced nanozymes could revolutionize the current practice in life sciences and biosensor applications. On the other hand, electrochemical biosensors have long been used as an efficient way for quantitative detection of analytes (biomarkers) of interest. As such, the use of nanozymes in electrochemical biosensors is particularly important to achieve low cost and stable biosensors for prognostics, diagnostics, and therapeutic monitoring of diseases. Herein, we summarize the recent advances in the synthesis and classification of common nanozymes and their application in electrochemical biosensor development. After briefly overviewing the applications of nanozymes in non-electrochemical-based biomolecular sensing systems, we thoroughly discuss the state-of-the-art advances in nanozyme-based electrochemical biosensors, including genosensors, immunosensors, cytosensors and aptasensors. The applications of nanozymes in microfluidic-based assays are also discussed separately. We also highlight the challenges of nanozyme-based electrochemical biosensors and provide some possible strategies to address these limitations. Finally, future perspectives on the development of nanozyme-based electrochemical biosensors for disease biomarker detection are presented. We envisage that standardization of nanozymes and their fabrication process may bring a paradigm shift in biomolecular sensing by fabricating highly specific, multi-enzyme mimicking nanozymes for highly sensitive, selective, and low-biofouling electrochemical biosensors.
Collapse
Affiliation(s)
- Rabbee G Mahmudunnabi
- Institute of BioPhysio-Sensor Technology, Pusan National University, Busan 46241, South Korea
| | | | | | | | | | | |
Collapse
|
25
|
Synergistic amplification effect for electrochemiluminescence immunoassay based on dual coreactants coupling with resonance energy transfer. Talanta 2020; 212:120798. [DOI: 10.1016/j.talanta.2020.120798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/18/2020] [Accepted: 01/29/2020] [Indexed: 11/23/2022]
|
26
|
Electrocatalytic activity of Co3O4 quantum dots supported on aminated carbon nanotubes and their application for sensitive electrochemical immunosensing of prostate-specific antigen. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Hartati YW, Letelay LK, Gaffar S, Wyantuti S, Bahti HH. Cerium oxide-monoclonal antibody bioconjugate for electrochemical immunosensing of HER2 as a breast cancer biomarker. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2019.100316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
28
|
Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta 2020; 206:120210. [DOI: 10.1016/j.talanta.2019.120210] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
|
29
|
Abbas Z, Soomro RA, Kalwar NH, Tunesi M, Willander M, Karakuş S, Kilislioğlu A. In Situ Growth of CuWO 4 Nanospheres over Graphene Oxide for Photoelectrochemical (PEC) Immunosensing of Clinical Biomarker. SENSORS 2019; 20:s20010148. [PMID: 31881686 PMCID: PMC6983212 DOI: 10.3390/s20010148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/29/2022]
Abstract
Procalcitonin (PCT) protein has recently been identified as a clinical marker for bacterial infections based on its better sepsis sensitivity. Thus, an increased level of PCT could be linked with disease diagnosis and therapeutics. In this study, we describe the construction of the photoelectrochemical (PEC) PCT immunosensing platform based on it situ grown photo-active CuWO4 nanospheres over reduced graphene oxide layers (CuWO4@rGO). The in situ growth strategy enabled the formation of small nanospheres (diameter of 200 nm), primarily composed of tiny self-assembled CuWO4 nanoparticles (2–5 nm). The synergic coupling of CuWO4 with rGO layers constructed an excellent photo-active heterojunction for photoelectrochemical (PEC) sensing. The platform was then considered for electrocatalytic (EC) mechanism-based detection of PCT, where inhibition of the photocatalytic oxidation signal of ascorbic acid (AA), subsequent to the antibody–antigen interaction, was recorded as the primary signal response. This inhibition detection approach enabled sensitive detection of PCT in a concentration range of 10 pg·mL−1 to 50 ng.mL−1 with signal sensitivity achievable up to 0.15 pg·mL−1. The proposed PEC hybrid (CuWO4@rGO) could further be engineered to detect other clinically important species.
Collapse
Affiliation(s)
- Zaheer Abbas
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Razium Ali Soomro
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China;
- Correspondence: (R.A.S); (M.W.)
| | - Nazar Hussain Kalwar
- Institute of Chemistry, Shah Abdul Latif University Khairpur, Khairpur 66020, Pakistan;
| | - Mawada Tunesi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Magnus Willander
- Department of Science and Technology, Campus Norrkoping, Linkoping University, SE-60174 Norrkoping, Sweden
- Correspondence: (R.A.S); (M.W.)
| | - Selcan Karakuş
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcılar, Istanbul 34320, Turkey; (S.K.); (A.K.)
| | - Ayben Kilislioğlu
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcılar, Istanbul 34320, Turkey; (S.K.); (A.K.)
| |
Collapse
|
30
|
Nanoparticles as Emerging Labels in Electrochemical Immunosensors. SENSORS 2019; 19:s19235137. [PMID: 31771201 PMCID: PMC6928605 DOI: 10.3390/s19235137] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
This review shows recent trends in the use of nanoparticles as labels for electrochemical immunosensing applications. Some general considerations on the principles of both the direct detection based on redox properties and indirect detection through electrocatalytic properties, before focusing on the applications for mainly proteins detection, are given. Emerging use as blocking tags in nanochannels-based immunosensing systems is also covered in this review. Finally, aspects related to the analytical performance of the developed devices together with prospects for future improvements and applications are discussed.
Collapse
|
31
|
Yu L, Zhao J, Tricard S, Wang Q, Fang J. Efficient detection of ascorbic acid utilizing molybdenum Oxide@Prussian Blue/Graphite felt composite electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134712] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Dendritic core-shell rhodium@platinum-cobalt nanocrystals for ultrasensitive electrochemical immunoassay of squamous cell carcinoma antigen. J Colloid Interface Sci 2019; 555:647-654. [DOI: 10.1016/j.jcis.2019.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 12/14/2022]
|
33
|
Ionic liquid and spatially confined gold nanoparticles enhanced photoelectrochemical response of zinc-metal organic frameworks and immunosensing squamous cell carcinoma antigen. Biosens Bioelectron 2019; 142:111540. [DOI: 10.1016/j.bios.2019.111540] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023]
|
34
|
Abstract
It is well-known that electrochemical immunosensors have many advantages, including but not limited to high sensitivity, simplicity in application, low-cost production, automated control and potential miniaturization. Due to specific antigen–antibody recognition, electrochemical immunosensors also have provided exceptional possibilities for real-time trace detection of analytical biotargets, which consists of small molecules (such as natural toxins and haptens), macromolecules, cells, bacteria, pathogens or viruses. Recently, the advances in the development of electrochemical immunosensors can be classified into the following directions: the first is using electrochemical detection techniques (voltammetric, amperometric, impedance spectroscopic, potentiometric, piezoelectric, conductometric and alternating current voltammetric) to achieve high sensitivity regarding the electrochemical change of electrochemical signal transduction; the second direction is developing sensor configurations (microfluidic and paper-based platforms, microelectrodes and electrode arrays) for simultaneous multiplex high-throughput analyses; and the last is designing nanostructured materials serving as sensing interfaces to improve sensor sensitivity and selectivity. This chapter introduces the working principle and summarizes the state-of-the-art of electrochemical immunosensors during the past few years with practically relevant details for: (a) metal nanoparticle- and quantum dot-labeled immunosensors; (b) enzyme-labeled immunosensors; and (c) magnetoimmunosensors. The importance of various types of nanomaterials is also thoroughly reviewed to obtain an insight into understanding the theoretical basis and practical orientation for the next generation of diagnostic devices.
Collapse
Affiliation(s)
- Hoang Vinh Tran
- School of Chemical Engineering, Hanoi University of Science and Technology (HUST) 1 Dai Co Viet Road Hanoi 100000 Vietnam
| | - Tran Dai Lam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
| |
Collapse
|
35
|
A convenient signal amplification strategy for the carcinoembryonic antigen determination based on the self-polymerization of dopamine. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04325-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Facile and clean synthesis of dihydroxylatopillar[5]arene-stabilized gold nanoparticles integrated Pd/MnO2 nanocomposites for robust and ultrasensitive detection of cardiac troponin I. Biosens Bioelectron 2019; 130:214-224. [DOI: 10.1016/j.bios.2019.01.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022]
|
37
|
Fan D, Bao C, Liu X, Feng J, Wu D, Ma H, Wang H, Wei Q, Du B. Facile fabrication of visible light photoelectrochemical immunosensor for SCCA detection based on BiOBr/Bi 2S 3 heterostructures via self-sacrificial synthesis method. Talanta 2019; 198:417-423. [PMID: 30876581 DOI: 10.1016/j.talanta.2019.02.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/01/2019] [Accepted: 02/09/2019] [Indexed: 12/11/2022]
Abstract
A novel visible light photoelectrochemical immunosensor based on BiOBr/Bi2S3 heterostructures was fabricated to detect squamous cell carcinoma antigen (SCCA). Bi2S3 nanoparticles formed on the BiOBr microflowers by the self-sacrificial synthesis method based on the facile reaction between BiOBr and S2- ions. The BiOBr/Bi2S3 composites exhibited excellent visible light photoelectrochemical activity, when ascorbic acid (AA) was employed as a perfect electron donor. The photocurrent intensity of BiOBr/Bi2S3 modified ITO electrode arrived at around 20 µA, which was approximately 30 times than that of pure BiOBr. Dopamine formed easily polydopamine film via self-polymerization on the surface of BiOBr/Bi2S3 composites to immobilize SCCA antibody. Under the optimal condition, this photoelectrochemical immunosensor realized the ultrasensitive determination of SCCA. With the logarithm of SCCA concentration in the range of 0.001-75 ng mL-1, the specific binding between SCCA and antibody led to the linearly decrease of photocurrent signal with a low detection limit of 0.3 pg mL-1 (S/N = 3). This facilely constructed photoelectrochemical immunosensor maybe have promising practical application in photocatalysis, analytical detection and biosensor, etc.
Collapse
Affiliation(s)
- Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Chunzhu Bao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xin Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jinhui Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
38
|
Yan Q, Cao L, Dong H, Tan Z, Hu Y, Liu Q, Liu H, Zhao P, Chen L, Liu Y, Li Y, Dong Y. Label-free immunosensors based on a novel multi-amplification signal strategy of TiO2-NGO/Au@Pd hetero-nanostructures. Biosens Bioelectron 2019; 127:174-180. [DOI: 10.1016/j.bios.2018.12.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
|
39
|
Sun P, Xiong WW, Zhu D, Dong Z, Jin X, Liu B, Zhang Y, Bao B, Yao W, Zhang L, Cheng FF. An ultrasensitive electrochemical cytosensor for highly specific detection of HL-60 cancer cells based on metal ion functionalized titanium phosphate nanospheres. Analyst 2018; 143:5170-5175. [PMID: 30259917 DOI: 10.1039/c8an01327f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Facile and sensitive detection methods of cancer cells in the early stage are beneficial for monitoring cancers and treating patients in time to reduce the death rate. In this work, an ultrasensitive cytosensor was constructed using aptamers as cell capturers and metal ion-exchanged titanium phosphate nanospheres as electrochemical probes. KH1C12 can specifically recognize HL-60 cells and distinguish them from other cell lines, K562 and CCRF-CEM, to obtain high selectivity. Cadmium ion functionalized titanium phosphate nanospheres show large quantities of electroactive cadmium ion output and a highly sensitive electrochemical signal. This proposed cytosensor showed a wide dynamic linear range from 102 cells per mL to 107 cells per mL with a low detection limit of 35 cells per mL, providing a new, simple and ultrasensitive platform for cancer diagnosis in biomedical and clinical research.
Collapse
Affiliation(s)
- Panpan Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhu F, Zhao G, Dou W. Electrochemical sandwich immunoassay for Escherichia coli O157:H7 based on the use of magnetic nanoparticles and graphene functionalized with electrocatalytically active Au@Pt core/shell nanoparticles. Mikrochim Acta 2018; 185:455. [PMID: 30215173 DOI: 10.1007/s00604-018-2984-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
A highly sensitive electrochemical sandwich immunoassay is described for determination of Escherichia coli O157:H7 (E. coli O157:H7). Silica coated magnetite nanoparticles (Fe3O4) were modified with primary antibody to capture E. coli O157:H7. Gold-platinum core/shell nanoparticles (Au@Pt NPs) with different Pt shell thicknesses were prepared via changing the molar ratio of H2PtCl6 to HAuCl4 in the precursor solution. The optimized Au@Pt NPs exhibit enhanced activity in the electrocatalytic reduction of hydrogen peroxide (H2O2). The Au@Pt NPs were modified with graphene that was functionalized with Neutral Red, and then used as an electrochemical label for secondary antibodies and horseradish peroxidase (HRP). The sandwich immunocomplexes were magnetically absorbed on a 4-channel screen printed carbon electrode. Due to the catalysis of the Au@Pt NPs and HRP, the signal is strongly amplified in the presence of H2O2 when using thionine as the electron mediator. Under optimal conditions, the immunoassay has a linear response in the 4.0 × 102 to 4.0 × 108 CFU·mL-1 concentration range, with a limit of detection of 91 CFU·mL-1 (at an S/N ratio of 3). Graphical abstract Preparation of Au@Pt core/shell nanoparticles with different Pt shell thickness (A), rGO-NR (B), rGO-NR-Au@Pt-Ab2-HRP (C) and the preparation and the detection process of the immunoassay (D). rGO: reduced graphene oxide, GO: graphene oxide, NR: Neutral Red, HRP: horseradish peroxidase, AuNPs: gold nanoparticles, Fe3O4@SiO2: Silica coated magnetite nanoparticles, 4-SPCE: 4-channel screen printed carbon electrode.
Collapse
Affiliation(s)
- Fanjun Zhu
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
41
|
Zhu F, Zhao G, Dou W. A non-enzymatic electrochemical immunoassay for quantitative detection of Escherichia coli O157:H7 using Au@Pt and graphene. Anal Biochem 2018; 559:34-43. [PMID: 30144412 DOI: 10.1016/j.ab.2018.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 10/28/2022]
Abstract
Herein, a non-enzymatic sandwich-type electrochemical immunoassay was fabricated for quantitative monitoring of Escherichia coli O157:H7 (E. coli O157:H7). Silica coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) were modified with mouse anti-E. coli O157:H7 monoclonal antibody (Ab1) to act as capture probes to reduce detection time and increase the sensitivity of the immunoassay. The Au@Pt nanoparticles were loaded on neutral red (NR) functionalized graphene to form composite complex rGO-NR-Au@Pt. rGO-NR-Au@Pt has high specific surface area and good biocompatibility. rGO-NR-Au@Pt was used as the carriers of detection antibodies (Ab2). Au@Pt catalyzed the reduction of hydrogen peroxide (H2O2) to detection of E. coli O157:H7 with the thionine (TH) as electron mediator to effectually amply the current signal. Under the optimized conditions, a linear relationship between the reduction peak current change (ΔIpc) and the logarithm of the E. coli O157:H7 concentration is obtained in the range from 4.0 × 103 to 4.0 × 108 CFU mL-1 and the limit of detection (LOD) is 4.5 × 102 CFU mL-1 at a signal-to-noise ratio of 3. The immunoassay exhibits acceptable specificity, reproducibility and stability on the detection of E. coli O157:H7. Furthermore, the immunoassay showed good performance in pork and milk samples. The results suggest that this immunoassay will be promising in the food safety area.
Collapse
Affiliation(s)
- Fanjun Zhu
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
42
|
Recent Advances in Enhancement Strategies for Electrochemical ELISA-Based Immunoassays for Cancer Biomarker Detection. SENSORS 2018; 18:s18072010. [PMID: 29932161 PMCID: PMC6069457 DOI: 10.3390/s18072010] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022]
Abstract
Electrochemical enzyme-linked immunosorbent assay (ELISA)-based immunoassays for cancer biomarker detection have recently attracted much interest owing to their higher sensitivity, amplification of signal, ease of handling, potential for automation and combination with miniaturized analytical systems, low cost and comparative simplicity for mass production. Their developments have considerably improved the sensitivity required for detection of low concentrations of cancer biomarkers present in bodily fluids in the early stages of the disease. Recently, various attempts have been made in their development and several methods and processes have been described for their development, amplification strategies and testing. The present review mainly focuses on the development of ELISA-based electrochemical immunosensors that may be utilized for cancer diagnosis, prognosis and therapy monitoring. Various fabrication methods and signal enhancement strategies utilized during the last few years for the development of ELISA-based electrochemical immunosensors are described.
Collapse
|
43
|
Zhang Z, Dong S, Ge D, Zhu N, Wang K, Zhu G, Xu W, Xu H. An ultrasensitive competitive immunosensor using silica nanoparticles as an enzyme carrier for simultaneous impedimetric detection of tetrabromobisphenol A bis(2-hydroxyethyl) ether and tetrabromobisphenol A mono(hydroxyethyl) ether. Biosens Bioelectron 2018; 105:77-80. [DOI: 10.1016/j.bios.2018.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 01/06/2023]
|
44
|
Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 2018; 103:113-129. [DOI: 10.1016/j.bios.2017.12.031] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022]
|
45
|
Wu J, He J, Zhang C, Chen J, Niu Y, Yuan Q, Yu C. PdPt nanoparticles anchored on the N-G with the integration of PANI nanohybrids as novel redox probe and catalyst for the detection of rs1801177. Biosens Bioelectron 2018; 102:403-410. [DOI: 10.1016/j.bios.2017.11.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/11/2017] [Accepted: 11/17/2017] [Indexed: 01/12/2023]
|
46
|
Li Y, He J, Chen J, Niu Y, Zhao Y, Zhang Y, Yu C. A dual-type responsive electrochemical immunosensor for quantitative detection of PCSK9 based on n-C60-PdPt/N-GNRs and Pt-poly (methylene blue) nanocomposites. Biosens Bioelectron 2018; 101:7-13. [DOI: 10.1016/j.bios.2017.09.043] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023]
|
47
|
Sun X, Wang H, Jian Y, Lan F, Zhang L, Liu H, Ge S, Yu J. Ultrasensitive microfluidic paper-based electrochemical/visual biosensor based on spherical-like cerium dioxide catalyst for miR-21 detection. Biosens Bioelectron 2018; 105:218-225. [PMID: 29412946 DOI: 10.1016/j.bios.2018.01.025] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/04/2018] [Accepted: 01/11/2018] [Indexed: 12/22/2022]
Abstract
In this work, an electrochemical biosensor based on Au nanorods (NRs) modified microfluidic paper-based analytical devices (μPADs) were constructed for sensitive detection of microRNA (miRNA) by using cerium dioxide - Au@glucose oxidase (CeO2-Au@GOx) as an electrochemical probe for signal amplification. Au NRs were synthesized by in-situ growth method in μPADs surface to enhance the conductivity and modified hairpin probe through Au-S bonds. The construction of "the signal transducer layer" was carried out by GOx catalyzing glucose to produce H2O2, which was further electrocatalyzed by CeO2. After the biosensor was constructed, an obvious electrochemical signal was observed from the reduction of H2O2. In order to make the detection more convincing, the visual detection was performed based on the oxidation of 3,3',5,5'-tetramethylbenzidine by H2O2 with the help of Exonuclease I. The electrochemical biosensor provided a wide linear range of 1.0fM to 1000fM with a relatively low detection limit of 0.434fM by the electrochemical measurement. Linear range of 10fM to 1000fM with a relatively low detection limit of 7.382fM was obtained by visual detection. The results indicated the proposed platform has potential utility for detection of miRNA.
Collapse
Affiliation(s)
- Xiaolu Sun
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - He Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - Yannan Jian
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - Feifei Lan
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, PR China
| | - Haiyun Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China.
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China; Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, PR China.
| | - Jinghua Yu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
48
|
Bao C, Wang C, Fan D, Ma H, Hu L, Fan Y, Wei Q. A novel sandwich-type photoelectrochemical sensor for SCCA detection based on Ag2S-sensitized BiOI matrix and AucorePdshell nanoflower label for signal amplification. NEW J CHEM 2018. [DOI: 10.1039/c8nj03628d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Signal amplification was fulfilled for the interaction between BiOI/Ag2S and AucPds.
Collapse
Affiliation(s)
- Chunzhu Bao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Chuanlei Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Lihua Hu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yingju Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
49
|
Alizadeh N, Hallaj R, Salimi A. Dual Amplified Electrochemical Immunosensor for Hepatitis B Virus Surface Antigen Detection Using Hemin/G-Quadruplex Immobilized onto Fe3
O4
-AuNPs or (Hemin-Amino-rGO-Au) Nanohybrid. ELECTROANAL 2017. [DOI: 10.1002/elan.201700727] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Negar Alizadeh
- Department of Chemistry; University of Kurdistan; 66177-15175 Sanandaj- Iran
| | - Rahman Hallaj
- Department of Chemistry; University of Kurdistan; 66177-15175 Sanandaj- Iran
- Research Center for Nanotechnology; University of Kurdistan; 66177-15175 Sanandaj- Iran
| | - Abdollah Salimi
- Department of Chemistry; University of Kurdistan; 66177-15175 Sanandaj- Iran
- Research Center for Nanotechnology; University of Kurdistan; 66177-15175 Sanandaj- Iran
| |
Collapse
|
50
|
Yan Q, Yang Y, Tan Z, Liu Q, Liu H, Wang P, Chen L, Zhang D, Li Y, Dong Y. A label-free electrochemical immunosensor based on the novel signal amplification system of AuPdCu ternary nanoparticles functionalized polymer nanospheres. Biosens Bioelectron 2017; 103:151-157. [PMID: 29291595 DOI: 10.1016/j.bios.2017.12.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 12/23/2022]
Abstract
A sensitive label-free electrochemical immunosensor was designed using a novel signal amplification system for quantitative detecting hepatitis B surface antigen (HBsAg). Nitrogen-doped graphene quantum dots (N-GQDs) supported surfactant-free AuPdCu ternary nanoparticles (AuPdCu/N-GQDs), which featured with good conductivity and excellent catalytic properties for the reduction of hydrogen peroxide (H2O2), was synthesized by a simple and benign hydrothermal procedure. At the same time, the electroactive polymer nanospheres (PS) was synthesized by infinite coordination polymers of ferrocenedicarboxylic acid, which could play as carrier and electronic mediator to load AuPdCu/N-GQDs. The PS not only improved the ability to load antibodies because of the good biocompatibility, but also accelerated electron transport of the electrode interface attribute to plentiful ferrocene unit. Thus, the prepared AuPdCu/N-GQDs@PS has abilities of good biocompatibility, catalytic activity and electrical conductivity to be applied as transducing materials to amplify electrochemical signal in detection of HBsAg. Under optimal conditions, the fabricated immunosensor exhibited high sensitivity and stability in the detection of HBsAg. A linear relationship between current signals and the concentrations of HBsAg was obtained in the range from 10fg/mL to 50ng/mL and the detection limit of HBsAg was 3.3fg/mL (signal-to-noise ratio of 3). Moreover, the designed immunosensor with excellent selectivity, reproducibility and stability shows excellent performance in detection of human serum samples. Furthermore, this label-free electrochemical immunosensor has promising application in clinical diagnosis of HBsAg.
Collapse
Affiliation(s)
- Qin Yan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yuying Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhaoling Tan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Lei Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| |
Collapse
|