1
|
Zito G, Siciliano G, Seifalinezhad A, Miranda B, Lanzio V, Schwartzberg A, Gigli G, Turco A, Rendina I, Mocella V, Primiceri E, Romano S. Molecularly Imprinted Polymer Sensor Empowered by Bound States in the Continuum for Selective Trace-Detection of TGF-beta. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401843. [PMID: 39236340 PMCID: PMC11538715 DOI: 10.1002/advs.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Indexed: 09/07/2024]
Abstract
The integration of advanced materials and photonic nanostructures can lead to enhanced biodetection capabilities, crucial in clinical scenarios and point-of-care diagnostics, where simplified strategies are essential. Herein, a molecularly imprinted polymer (MIP) photonic nanostructure is demonstrated, which selectively binding to transforming growth factor-beta (TGF-β), in which the sensing transduction is enhanced by bound states in the continuum (BICs). The MIP operating as a synthetic antibody matrix and coupled with BIC resonance, enhances the optical response to TGF-β at imprinted sites, leading to an augmented detection capability, thoroughly evaluated through spectral shift and optical lever analogue readout. The validation underscores the MIP-BIC sensor capability to detect TGF-β in spiked saliva, achieving a limit of detection of 10 fM and a resolution of 0.5 pM at physiological concentrations, with a precision of two orders of magnitude above discrimination threshold in patients. The MIP tailored selectivity is highlighted by an imprinting factor of 52, showcasing the sensor resistance to interference from other analytes. The MIP-BIC sensor architecture streamlines the detection process eliminating the need for complex sandwich immunoassays and demonstrates the potential for high-precision quantification. This positions the system as a robust tool for biomarker detection, especially in real-world diagnostic scenarios.
Collapse
Affiliation(s)
- Gianluigi Zito
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Giulia Siciliano
- Institute of NanotechnologyNational Research Councilc/o Campus Ecotekne, Via MonteroniLecce73100Italy
| | - Aida Seifalinezhad
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
- Department of EngineeringUniversità degli Studi di Napoli ParthenopeCentro Direzionale di Napoli, Isola C4Naples80143Italy
| | - Bruno Miranda
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Vittorino Lanzio
- Molecular FoundryLawrence Berkeley National Laboratory1 Cyclotron RdBerkeleyCA94720USA
| | - Adam Schwartzberg
- Molecular FoundryLawrence Berkeley National Laboratory1 Cyclotron RdBerkeleyCA94720USA
| | - Giuseppe Gigli
- Institute of NanotechnologyNational Research Councilc/o Campus Ecotekne, Via MonteroniLecce73100Italy
| | - Antonio Turco
- Institute of NanotechnologyNational Research Councilc/o Campus Ecotekne, Via MonteroniLecce73100Italy
| | - Ivo Rendina
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Vito Mocella
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| | - Elisabetta Primiceri
- Institute of NanotechnologyNational Research Councilc/o Campus Ecotekne, Via MonteroniLecce73100Italy
| | - Silvia Romano
- Institute of Applied Sciences and Intelligent SystemsNational Research CouncilVia Pietro Castellino 111Napoli80131Italy
| |
Collapse
|
2
|
Gaba S, Jain U. Advanced biosensors for nanomaterial-based detection of transforming growth factor alpha and beta, a class of major polypeptide regulators. Int J Biol Macromol 2024; 257:128622. [PMID: 38065462 DOI: 10.1016/j.ijbiomac.2023.128622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Transforming growth factors (TGFs) regulate several cellular processes including, differentiation, growth, migration, extracellular matrix production, and apoptosis. TGF alpha (TGF-α) is a heterogeneous molecule containing 160 amino acid residues. It is a potent angiogenesis promoter that is activated by JAK-STAT signaling. Whereas TGF beta (TGF-β) consists of 390-412 amino acids. Smad and non-Smad signaling both occur in TGF beta. It is linked to immune cell activation, differentiation, and proliferation. It also triggers pre-apoptotic responses and inhibits cell proliferation. Both growth factors have a promising role in the development and homeostasis of tissues. Defects such as autoimmune diseases and cancer develop mechanisms to modulate checkpoints of the immune system resulting in altered growth factors profile. An accurate amount of these growth factors is essential for normal functioning, but an exceed or fall behind the normal level is alarming as it is linked to several disorders. This demands techniques for TGF-α and TGF-β profiling to effectively diagnose diseases, monitor their progression, and assess the efficacy of immunotherapeutic drugs. Quantitative detection techniques including the emergence of biosensing technology seem to accomplish the purpose. Until the present time, few biosensors have been designed in the context of TGF-α and TGF-β for disease detection, analyzing receptor binding, and interaction with carriers. In this paper, we have reviewed the physiology of transforming growth factor alpha and beta, including the types, structure, function, latent/active forms, signaling, and defects caused. It involves the description of biosensors on TGF-α and TGF-β, advances in technology, and future perspectives.
Collapse
Affiliation(s)
- Smriti Gaba
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India.
| |
Collapse
|
3
|
Irimeș MB, Tertiș M, Oprean R, Cristea C. Unrevealing the connection between real sample analysis and analytical method. The case of cytokines. Med Res Rev 2024; 44:23-65. [PMID: 37246889 DOI: 10.1002/med.21978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 03/21/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Cytokines are compounds that belong to a special class of signaling biomolecules that are responsible for several functions in the human body, being involved in cell growth, inflammatory, and neoplastic processes. Thus, they represent valuable biomarkers for diagnosing and drug therapy monitoring certain medical conditions. Because cytokines are secreted in the human body, they can be detected in both conventional samples, such as blood or urine, but also in samples less used in medical practice such as sweat or saliva. As the importance of cytokines was identified, various analytical methods for their determination in biological fluids were reported. The gold standard in cytokine detection is considered the enzyme-linked immunosorbent assay method and the most recent ones have been considered and compared in this study. It is known that the conventional methods are accompanied by a few disadvantages that new methods of analysis, especially electrochemical sensors, are trying to overcome. Electrochemical sensors proved to be suited for the elaboration of integrated, portable, and wearable sensing devices, which could also facilitate cytokines determination in medical practice.
Collapse
Affiliation(s)
- Maria-Bianca Irimeș
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Tertiș
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Oprean
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Siciliano G, Chiriacò MS, Ferrara F, Turco A, Velardi L, Signore MA, Esposito M, Gigli G, Primiceri E. Development of an MIP based electrochemical sensor for TGF-β1 detection and its application in liquid biopsy. Analyst 2023; 148:4447-4455. [PMID: 37599598 DOI: 10.1039/d3an00958k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Oral cancer is one of the most common types of cancer in Europe and its large diffusion requires, together with prevention, the development of low-cost and reliable portable platforms for its diagnosis, with features of high selectivity and sensitivity. In this study, the development and characterization of a molecularly imprinted polymer (MIP)-based electrochemical sensor for TGF-β1 detection are reported. The optimized biosensor is a potential tool for the early screening of oral cancer. A biomimetic surface has been obtained by electropolymerization of o-phenylenediamine (o-PD) on platinum electrodes, in the presence of TGF-β1 as a template molecule. MIP synthesis, template removal and TGF-β1 rebinding have been monitored by Differential Pulse Voltammetry (DPV). Atomic Force Microscopy (AFM) has been performed to investigate and characterize the surface morphology and the influence of the washing step on MIP and NIP (non-imprinted polymer as the control) while the thickness of the polymer layer has been measured by Scanning Transmission Electron Microscopy (STEM) analysis. The MIP sensor performance has been tested in both buffer solution and saliva samples with TGF-β1, showing a linear response in the considered range (from 20 ng ml-1 down to 0.5 ng ml-1), an outstanding LOD of 0.09 ng mL-1 and affinity and selectivity to TGF-β1 also in the presence of interfering molecules. The sensor was used also for the detection of target molecules in spiked saliva samples with good recovery results suggesting the possibility of the use of the proposed system for large scale fast screening in oral cancer diagnosis.
Collapse
Affiliation(s)
- Giulia Siciliano
- Institute of Nanotechnology, CNR-Nanotec, via per Monteroni, 73100, Lecce, Italy.
| | | | - Francesco Ferrara
- Institute of Nanotechnology, CNR-Nanotec, via per Monteroni, 73100, Lecce, Italy.
| | - Antonio Turco
- Institute of Nanotechnology, CNR-Nanotec, via per Monteroni, 73100, Lecce, Italy.
| | - Luciano Velardi
- Institute for Microelectronics and Microsystems, CNR-IMM, via per Monteroni, 73100, Lecce, Italy
| | - Maria Assunta Signore
- Institute for Microelectronics and Microsystems, CNR-IMM, via per Monteroni, 73100, Lecce, Italy
| | - Marco Esposito
- Institute of Nanotechnology, CNR-Nanotec, via per Monteroni, 73100, Lecce, Italy.
| | - Giuseppe Gigli
- Institute of Nanotechnology, CNR-Nanotec, via per Monteroni, 73100, Lecce, Italy.
| | - Elisabetta Primiceri
- Institute of Nanotechnology, CNR-Nanotec, via per Monteroni, 73100, Lecce, Italy.
| |
Collapse
|
5
|
Lohcharoenkal W, Abbas Z, Rojanasakul Y. Advances in Nanotechnology-Based Biosensing of Immunoregulatory Cytokines. BIOSENSORS 2021; 11:364. [PMID: 34677320 PMCID: PMC8533878 DOI: 10.3390/bios11100364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/13/2022]
Abstract
Cytokines are a large group of small proteins secreted by immune and non-immune cells in response to external stimuli. Much attention has been given to the application of cytokines' detection in early disease diagnosis/monitoring and therapeutic response assessment. To date, a wide range of assays are available for cytokines detection. However, in specific applications, multiplexed or continuous measurements of cytokines with wearable biosensing devices are highly desirable. For such efforts, various nanomaterials have been extensively investigated due to their extraordinary properties, such as high surface area and controllable particle size and shape, which leads to their tunable optical emission, electrical, and magnetic properties. Different types of nanomaterials such as noble metal, metal oxide, and carbon nanoparticles have been explored for various biosensing applications. Advances in nanomaterial synthesis and device development have led to significant progress in pushing the limit of cytokine detection. This article reviews currently used methods for cytokines detection and new nanotechnology-based biosensors for ultrasensitive cytokine detection.
Collapse
Affiliation(s)
| | - Zareen Abbas
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, SE-412 96 Gothenburg, Sweden
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
6
|
Liu G, Jiang C, Lin X, Yang Y. Point-of-care detection of cytokines in cytokine storm management and beyond: Significance and challenges. VIEW 2021; 2:20210003. [PMID: 34766163 PMCID: PMC8242812 DOI: 10.1002/viw.20210003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cytokines are signaling molecules between cells in immune system. Cytokine storm, due to the sudden acute increase in levels of pro-inflammatory circulating cytokines, can result in disease severity and major-organ damage. Thus, there is urgent need to develop rapid, sensitive, and specific methods for monitoring of cytokines in biology and medicine. Undoubtedly, point-of-care testing (POCT) will provide clinical significance in disease early diagnosis, management, and prevention. This review aims to summarize and discuss the latest technologies for detection of cytokines with a focus on POCT. The overview of diseases resulting from imbalanced cytokine levels, such as COVID-19, sepsis and other cytokine release syndromes are presented. The clinical cut-off levels of cytokine as biomarkers for different diseases are summarized. The challenges and perspectives on the development of cytokine POCT devices are also proposed and discussed. Cytokine POCT devices are expected to be the ongoing spotlight of disease management and prevention during COVID-19 pandemic and also the post COVID-19 pandemic era.
Collapse
Affiliation(s)
- Guozhen Liu
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P.R. China
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Cheng Jiang
- Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DUUnited Kingdom
| | - Xiaoting Lin
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Yang Yang
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P.R. China
| |
Collapse
|
7
|
Dutta N, Lillehoj PB, Estrela P, Dutta G. Electrochemical Biosensors for Cytokine Profiling: Recent Advancements and Possibilities in the Near Future. BIOSENSORS 2021; 11:94. [PMID: 33806879 PMCID: PMC8004910 DOI: 10.3390/bios11030094] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Cytokines are soluble proteins secreted by immune cells that act as molecular messengers relaying instructions and mediating various functions performed by the cellular counterparts of the immune system, by means of a synchronized cascade of signaling pathways. Aberrant expression of cytokines can be indicative of anomalous behavior of the immunoregulatory system, as seen in various illnesses and conditions, such as cancer, autoimmunity, neurodegeneration and other physiological disorders. Cancer and autoimmune diseases are particularly adept at developing mechanisms to escape and modulate the immune system checkpoints, reflected by an altered cytokine profile. Cytokine profiling can provide valuable information for diagnosing such diseases and monitoring their progression, as well as assessing the efficacy of immunotherapeutic regiments. Toward this goal, there has been immense interest in the development of ultrasensitive quantitative detection techniques for cytokines, which involves technologies from various scientific disciplines, such as immunology, electrochemistry, photometry, nanotechnology and electronics. This review focusses on one aspect of this collective effort: electrochemical biosensors. Among the various types of biosensors available, electrochemical biosensors are one of the most reliable, user-friendly, easy to manufacture, cost-effective and versatile technologies that can yield results within a short period of time, making it extremely promising for routine clinical testing.
Collapse
Affiliation(s)
- Nirmita Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Peter B. Lillehoj
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA;
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic & Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Gorachand Dutta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| |
Collapse
|
8
|
Revisiting Electrochemical Biosensing in the 21st Century Society for Inflammatory Cytokines Involved in Autoimmune, Neurodegenerative, Cardiac, Viral and Cancer Diseases. SENSORS 2020; 21:s21010189. [PMID: 33396710 PMCID: PMC7795835 DOI: 10.3390/s21010189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022]
Abstract
The multifaceted key roles of cytokines in immunity and inflammatory processes have led to a high clinical interest for the determination of these biomolecules to be used as a tool in the diagnosis, prognosis, monitoring and treatment of several diseases of great current relevance (autoimmune, neurodegenerative, cardiac, viral and cancer diseases, hypercholesterolemia and diabetes). Therefore, the rapid and accurate determination of cytokine biomarkers in body fluids, cells and tissues has attracted considerable attention. However, many currently available techniques used for this purpose, although sensitive and selective, require expensive equipment and advanced human skills and do not meet the demands of today’s clinic in terms of test time, simplicity and point-of-care applicability. In the course of ongoing pursuit of new analytical methodologies, electrochemical biosensing is steadily gaining ground as a strategy suitable to develop simple, low-cost methods, with the ability for multiplexed and multiomics determinations in a short time and requiring a small amount of sample. This review article puts forward electrochemical biosensing methods reported in the last five years for the determination of cytokines, summarizes recent developments and trends through a comprehensive discussion of selected strategies, and highlights the challenges to solve in this field. Considering the key role demonstrated in the last years by different materials (with nano or micrometric size and with or without magnetic properties), in the design of analytical performance-enhanced electrochemical biosensing strategies, special attention is paid to the methods exploiting these approaches.
Collapse
|
9
|
Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2556. [PMID: 33352731 PMCID: PMC7766190 DOI: 10.3390/nano10122556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Multifunctional nanomaterials, defined as those able to achieve a combined effect or more than one function through their multiple functionalization or combination with other materials, are gaining increasing attention in the last years in many relevant fields, including cargo targeted delivery, tissue engineering, in vitro and/or in vivo diseases imaging and therapy, as well as in the development of electrochemical (bio)sensors and (bio)sensing strategies with improved performance. This review article aims to provide an updated overview of the important advances and future opportunities exhibited by electrochemical biosensing in connection to multifunctional nanomaterials. Accordingly, representative aspects of recent approaches involving metal, carbon, and silica-based multifunctional nanomaterials are selected and critically discussed, as they are the most widely used multifunctional nanomaterials imparting unique capabilities in (bio)electroanalysis. A brief overview of the main remaining challenges and future perspectives in the field is also provided.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | | - Susana Campuzano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | |
Collapse
|
10
|
Mobed A, Shakouri SK, Dolati S. Biosensors: A novel approach to and recent discovery in detection of cytokines. Cytokine 2020; 136:155272. [PMID: 32916473 DOI: 10.1016/j.cyto.2020.155272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
Cytokines in tissues and physiological fluids can function as potentially suitable biomarkers. Cytokines are involved in stimulating different body responses including inflammatory response to external pathogens, regulating cell-to-cell communication, and maintaining tissue homeostasis. Consequently, cytokines are extensively used to monitor and predict disease progression and to track the outcome of patient treatment. The critical diagnosis of cytokine and chemokine biomarkers has been the focus of attention and it has been continuously directing the trajectory of related research to developing a novel sensing platform. Given the major challenges and constraints of the older identification methods including their high costs, low sensitivity, and high specificity, the development of biosensor technology as a simple and inexpensive tool with high sensitivity is quite attractive and interesting. The fundamental aim of this study is to present the state-of-the-art biosensor systems in order to detect different types of cytokines and to emphasize the role of these systems in the prevention, monitoring, and treatment of various cytokine-associated diseases.
Collapse
Affiliation(s)
- Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Iran; Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Kazem Shakouri
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Iran; Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Pilan L. Tailoring the performance of electrochemical biosensors based on carbon nanomaterials via aryldiazonium electrografting. Bioelectrochemistry 2020; 138:107697. [PMID: 33486222 DOI: 10.1016/j.bioelechem.2020.107697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
Carbon nanomaterials (CNs) offer some of the most valuable properties for electrochemical biosensing applications, such as good electrical conductivity, wide electrochemical stability, high specific surface area, and biocompatibility. Regardless the envisioned sensing application, endowing CNs with specific functions through controlled chemical functionalization is fundamental for promoting the specific binding of the analyte. As a versatile and straightforward method of surface functionalization, aryldiazonium chemistry have been successfully used to accommodate in a stable and reproducible way different functionalities, while the electrochemical route has become the favourite choice since the deposition conditions can be readily controlled and adapted to the substrate. In particular, the modification of CNs by electrochemical reduction of aryl diazonium salts is established as a powerful tool which allows tailoring the chemical and electronic properties of the sensing platform. By outlining the stimulating results disclosed in the last years, this article provides not only a comprehensively review, but also a rational assessment on contribution of aryldiazonium electrografting in developing CNs-based electrochemical biosensors. Furthermore, some of the emerging challenges to be surpassed to effectively implement this methodology for in vivo and point of care analysis are also highlighted.
Collapse
Affiliation(s)
- Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
12
|
Murphy M, Manoj D, Saravanakumar D, Thenmozhi K, Senthilkumar S. Water insoluble, self-binding viologen functionalized ionic liquid for simultaneous electrochemical detection of nitrophenol isomers. Anal Chim Acta 2020; 1138:89-98. [DOI: 10.1016/j.aca.2020.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/19/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
|
13
|
Cajigas S, Orozco J. Nanobioconjugates for Signal Amplification in Electrochemical Biosensing. Molecules 2020; 25:molecules25153542. [PMID: 32756410 PMCID: PMC7436128 DOI: 10.3390/molecules25153542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Nanobioconjugates are hybrid materials that result from the coalescence of biomolecules and nanomaterials. They have emerged as a strategy to amplify the signal response in the biosensor field with the potential to enhance the sensitivity and detection limits of analytical assays. This critical review collects a myriad of strategies for the development of nanobioconjugates based on the conjugation of proteins, antibodies, carbohydrates, and DNA/RNA with noble metals, quantum dots, carbon- and magnetic-based nanomaterials, polymers, and complexes. It first discusses nanobioconjugates assembly and characterization to focus on the strategies to amplify a biorecognition event in biosensing, including molecular-, enzymatic-, and electroactive complex-based approaches. It provides some examples, current challenges, and future perspectives of nanobioconjugates for the amplification of signals in electrochemical biosensing.
Collapse
|
14
|
Hetemi D, Noël V, Pinson J. Grafting of Diazonium Salts on Surfaces: Application to Biosensors. BIOSENSORS-BASEL 2020; 10:bios10010004. [PMID: 31952195 PMCID: PMC7168266 DOI: 10.3390/bios10010004] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/31/2023]
Abstract
This review is divided into two parts; the first one summarizes the main features of surface modification by diazonium salts with a focus on most recent advances, while the second part deals with diazonium-based biosensors including small molecules of biological interest, proteins, and nucleic acids.
Collapse
Affiliation(s)
- Dardan Hetemi
- Pharmacy Department, Medical Faculty, University of Prishtina, “Hasan Prishtina”, Rr. “Dëshmorët e Kombit” p.n., 10000 Prishtina, Kosovo;
| | - Vincent Noël
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France;
| | - Jean Pinson
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France;
- Correspondence:
| |
Collapse
|
15
|
Serafín V, Valverde A, Garranzo-Asensio M, Barderas R, Campuzano S, Yáñez-Sedeño P, Pingarrón JM. Simultaneous amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 by using grafted screen-printed electrodes and a composite prepared from quantum dots and carbon nanotubes for signal amplification. Mikrochim Acta 2019; 186:411. [DOI: 10.1007/s00604-019-3531-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
|
16
|
Yáñez-Sedeño P, Campuzano S, Pingarrón JM. Pushing the limits of electrochemistry toward challenging applications in clinical diagnosis, prognosis, and therapeutic action. Chem Commun (Camb) 2019; 55:2563-2592. [PMID: 30688320 DOI: 10.1039/c8cc08815b] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Constant progress in the identification of biomarkers at different molecular levels in samples of different natures, and the need to conduct routine analyses, even in limited-resource settings involving simple and short protocols, are examples of the growing current clinical demands not satisfied by conventional available techniques. In this context, the unique features offered by electrochemical biosensors, including affordability, real-time and reagentless monitoring, simple handling and portability, and versatility, make them especially interesting for adaptation to the increasingly challenging requirements of current clinical and point-of-care (POC) diagnostics. This has allowed the continuous development of strategies with improved performance in the clinical field that were unthinkable just a few years ago. After a brief introduction to the types and characteristics of clinically relevant biomarkers/samples, requirements for their analysis, and currently available methodologies, this review article provides a critical discussion of the most important developments and relevant applications involving electrochemical biosensors reported in the last five years in response to the demands of current diagnostic, prognostic, and therapeutic actions related to high prevalence and high mortality diseases and disorders. Special attention is paid to the rational design of surface chemistry and the use/modification of state-of-the-art nanomaterials to construct electrochemical bioscaffolds with antifouling properties that can be applied to the single or multiplex determination of biomarkers of accepted or emerging clinical relevance in particularly complex clinical samples, such as undiluted liquid biopsies, whole cells, and paraffin-embedded tissues, which have scarcely been explored using conventional techniques or electrochemical biosensing. Key points guiding future development, challenges to be addressed to further push the limits of electrochemical biosensors towards new challenging applications, and their introduction to the market are also discussed.
Collapse
Affiliation(s)
- P Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | | | | |
Collapse
|
17
|
Liu X, Jiang H. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2805. [PMID: 29207528 PMCID: PMC5750678 DOI: 10.3390/s17122805] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China.
| | - Hui Jiang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|