1
|
Lee H, Reginald SS, Sravan JS, Lee M, Chang IS. Advanced strategies for enzyme-electrode interfacing in bioelectrocatalytic systems. Trends Biotechnol 2024:S0167-7799(24)00344-5. [PMID: 39674782 DOI: 10.1016/j.tibtech.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/13/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Advances in protein engineering-enabled enzyme immobilization technologies have significantly improved enzyme-electrode wiring in enzymatic electrochemical systems, which harness natural biological machinery to either generate electricity or synthesize biochemicals. In this review, we provide guidelines for designing enzyme-electrodes, focusing on how performance variables change depending on electron transfer (ET) mechanisms. Recent advancements in enzyme immobilization technologies are summarized, highlighting their contributions to extending enzyme-electrode sustainability (up to months), enhancing biosensor sensitivity, improving biofuel cell performance, and setting a new benchmark for turnover frequency in bioelectrocatalysis. We also highlight state-of-the-art protein-engineering approaches that enhance enzyme-electrode interfacing through three key principles: protein-protein, protein-ligand, and protein-inorganic interactions. Finally, we discuss prospective avenues in strategic protein design for real-world applications.
Collapse
Affiliation(s)
- Hyeryeong Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Stacy Simai Reginald
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Professorship for Electrobiotechnology, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing 94315, Germany
| | - J Shanthi Sravan
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mungyu Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - In Seop Chang
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
2
|
Wang Y, Liu J, Cui H, Zhang L, Li Z, Wang X, Wang J, Chen Q, Zhao Y. Triple-transformable dynamic surroundings for programmed transportation of bio-vulnerable mRNA payloads towards systemic treatment of intractable solid tumors. Biomaterials 2024; 311:122677. [PMID: 38917704 DOI: 10.1016/j.biomaterials.2024.122677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/25/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The surface physiochemical properties of nanomedicine play a crucial role in modulating biointerfacial reactions in sequential biological compartments, accordingly accomplishing the desired programmed delivery scenario to intracellular targets. PEGylation, which involves modifying the surface with a layer of poly(ethylene glycol), has been validated as an effective strategy for minimizing adverse biointerfacial interactions. However, it has also been observed to impede cellular uptake and intracellular trafficking activities. To address this dilemma, we propose a dynamic surface chemistry approach that actively prevents non-specific reactions in systemic circulation, while readily facilitating cellular uptake by converting into a highly cytomembrane-adhesive state. Moreover, the surface becomes more adhesive to endolysosomal membranes, enabling translocation into the cytosol. In this study, PEGylated mRNA delivery nanoparticulates were tethered with charge-reversible polymers to create dynamic surroundings through click chemistry. Importantly, the dynamic surroundings exhibited negative charges under physiological conditions (pH 7.4). This property prevented degradation by anionic nucleases and structural disassembly induced by endogenous charged biological species. Consequently, the nanoparticles exhibited appreciable stealth function, effectively managing the first pass effect, leading to prolonged blood retention and improved bioavailabilities at targeted cells. Furthermore, the dynamic surroundings shifted towards relatively positive charges in the tumor microenvironment (pH 6.8). As a result, the nanoparticles were more likely to be taken up by tumors due to their electrostatic affinities towards polyanionic cytomembranes. Eventually, the internalized mRNA nanomedicine transformed responsive to the surrounding microenvironment into highly positive charges within acidic endolysosomes (pH 5.0), exerting explosive disruptive potencies on the endolysosomal structures, thus facilitating translocation of mRNA from the digestive endolysosomes into the targeted cytosol. Notably, the dynamic surroundings also reduced the immunogenicity of naked mRNA due to their stealthy properties and rapid endolysosomal translocation functions. In summary, our proposed unique triple-transformable dynamic surface chemistry provided an intriguing delivery scenario that overcomes sequential biological barriers, contributing to efficient expression of the encapsulated mRNA at targeted tumors.
Collapse
Affiliation(s)
- Yue Wang
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China; Department of Gastric Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China; Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China; China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, Liaoning Province 110122, China
| | - Jun Liu
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China; Jiaxing Qingzhun Pharmaceutical Technology Co., Ltd, Western Kechuang Bay Valley, Tongxiang Town, Jiaxing, Zhejiang, 314500, China
| | - Hongyan Cui
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Liuwei Zhang
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, Liaoning, 116044, China
| | - Xiumei Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jing Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, 200080, China.
| | - Qixian Chen
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China.
| | - Yan Zhao
- Department of Gastric Surgery, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China; Department of Gastric Surgery, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China; Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Liaoning Cancer Hospital & Institute, No. 44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China.
| |
Collapse
|
3
|
Amiri A, Abedanzadeh S, Davaeil B, Shaabani A, Moosavi-Movahedi AA. Protein click chemistry and its potential for medical applications. Q Rev Biophys 2024; 57:e6. [PMID: 38619322 DOI: 10.1017/s0033583524000027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A revolution in chemical biology occurred with the introduction of click chemistry. Click chemistry plays an important role in protein chemistry modifications, providing specific, sensitive, rapid, and easy-to-handle methods. Under physiological conditions, click chemistry often overlaps with bioorthogonal chemistry, defined as reactions that occur rapidly and selectively without interfering with biological processes. Click chemistry is used for the posttranslational modification of proteins based on covalent bond formations. With the contribution of click reactions, selective modification of proteins would be developed, representing an alternative to other technologies in preparing new proteins or enzymes for studying specific protein functions in different biological processes. Click-modified proteins have potential in diverse applications such as imaging, labeling, sensing, drug design, and enzyme technology. Due to the promising role of proteins in disease diagnosis and therapy, this review aims to highlight the growing applications of click strategies in protein chemistry over the last two decades, with a special emphasis on medicinal applications.
Collapse
Affiliation(s)
- Ahmad Amiri
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Bagher Davaeil
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ahmad Shaabani
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
4
|
Zou Z, Ji Y, Schwaneberg U. Empowering Site-Specific Bioconjugations In Vitro and In Vivo: Advances in Sortase Engineering and Sortase-Mediated Ligation. Angew Chem Int Ed Engl 2024; 63:e202310910. [PMID: 38081121 DOI: 10.1002/anie.202310910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Indexed: 12/23/2023]
Abstract
Sortase-mediated ligation (SML) has emerged as a powerful and versatile methodology for site-specific protein conjugation, functionalization/labeling, immobilization, and design of biohybrid molecules and systems. However, the broader application of SML faces several challenges, such as limited activity and stability, dependence on calcium ions, and reversible reactions caused by nucleophilic side-products. Over the past decade, protein engineering campaigns and particularly directed evolution, have been extensively employed to overcome sortase limitations, thereby expanding the potential application of SML in multiple directions, including therapeutics, biorthogonal chemistry, biomaterials, and biosensors. This review provides an overview of achieved advancements in sortase engineering and highlights recent progress in utilizing SML in combination with other state-of-the-art chemical and biological methodologies. The aim is to encourage scientists to employ sortases in their conjugation experiments.
Collapse
Affiliation(s)
- Zhi Zou
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074, Aachen, Germany
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| | - Yu Ji
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074, Aachen, Germany
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
5
|
Pei X, Luo Z, Qiao L, Xiao Q, Zhang P, Wang A, Sheldon RA. Putting precision and elegance in enzyme immobilisation with bio-orthogonal chemistry. Chem Soc Rev 2022; 51:7281-7304. [PMID: 35920313 DOI: 10.1039/d1cs01004b] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The covalent immobilisation of enzymes generally involves the use of highly reactive crosslinkers, such as glutaraldehyde, to couple enzyme molecules to each other or to carriers through, for example, the free amino groups of lysine residues, on the enzyme surface. Unfortunately, such methods suffer from a lack of precision. Random formation of covalent linkages with reactive functional groups in the enzyme leads to disruption of the three dimensional structure and accompanying activity losses. This review focuses on recent advances in the use of bio-orthogonal chemistry in conjunction with rec-DNA to affect highly precise immobilisation of enzymes. In this way, cost-effective combination of production, purification and immobilisation of an enzyme is achieved, in a single unit operation with a high degree of precision. Various bio-orthogonal techniques for putting this precision and elegance into enzyme immobilisation are elaborated. These include, for example, fusing (grafting) peptide or protein tags to the target enzyme that enable its immobilisation in cell lysate or incorporating non-standard amino acids that enable the application of bio-orthogonal chemistry.
Collapse
Affiliation(s)
- Xiaolin Pei
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Zhiyuan Luo
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Li Qiao
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Qinjie Xiao
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Pengfei Zhang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Anming Wang
- College of Materials, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou, 311121, Zhejiang, P. R. China
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050, Johannesburg, South Africa. .,Department of Biotechnology, Section BOC, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
6
|
Salehipour M, Rezaei S, Yazdani M, Mogharabi-Manzari M. Recent advances in preparation of polymer hydrogel composites and their applications in enzyme immobilization. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Dehli F, Stubenrauch C, Southan A. New Gelatin-Based Hydrogel Foams for Improved Substrate Conversion of Immobilized Horseradish Peroxidase. Macromol Biosci 2022; 22:e2200139. [PMID: 35778786 DOI: 10.1002/mabi.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Hydrogel foams provide an aqueous environment that is very attractive for the immobilization of enzymes. To this end, functional polymers are needed that can be converted into hydrogel foams and that enable bioconjugation while maintaining high enzyme activity. The present study demonstrates the potential of biotinylated gelatin methacryloyl (GM10EB) for this purpose. GM10EB is synthesized in a two-step procedure with gelatin methacryloyl (GM10) being the starting point. Successful biotinylation is confirmed by 2,4,6-trinitrobenzene sulfonic acid (TNBS) and 4'-hydroxyazobenzene-2-carboxylic acid (HABA)/Avidin assays. Most importantly, a high methacryloyl group content (DM) is maintained in GM10EB, so that solutions of GM10EB show both a sufficiently low viscosity for microfluidic foaming and a pronounced curing behavior. Thus, foamed and non-foamed GM10EB hydrogels can be prepared via radical cross-linking of the polymer chains. Within both sample types, biotin groups are available for bioconjugation, as is demonstrated by coupling streptavidin-conjugated horseradish peroxidase to the hydrogels. When assessing the substrate conversion rate rA in both foamed and non-foamed hydrogels by enzymatic conversion of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), we observed a value for rA twelve times higher than the value for non-foamed hydrogels of the same mass. In other words, rA can be successfully tailored by the hydrogel morphology. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Friederike Dehli
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Cosima Stubenrauch
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany
| |
Collapse
|
8
|
Abstract
Bioelectrocatalysis using redox enzymes appears as a sustainable way for biosensing, electricity production, or biosynthesis of fine products. Despite advances in the knowledge of parameters that drive the efficiency of enzymatic electrocatalysis, the weak stability of bioelectrodes prevents large scale development of bioelectrocatalysis. In this review, starting from the understanding of the parameters that drive protein instability, we will discuss the main strategies available to improve all enzyme stability, including use of chemicals, protein engineering and immobilization. Considering in a second step the additional requirements for use of redox enzymes, we will evaluate how far these general strategies can be applied to bioelectrocatalysis.
Collapse
|
9
|
Li C, Wu M, Gao X, Zhu Z, Li Y, Lu F, Qin HM. Efficient Biosynthesis of 2'-Fucosyllactose Using an In Vitro Multienzyme Cascade. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10763-10771. [PMID: 32856455 DOI: 10.1021/acs.jafc.0c04221] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
2'-Fucosyllactose (2-FL) is a fucose-containing oligosaccharide that is found in humans and is believed to have potential nutraceutical and pharmaceutical uses. Here, a promising in vitro multienzyme cascade catalysis system (MECCS) was designed to convert L-fucose and lactose to 2-FL. The cascade comprises L-fucokinase/GDP-L-fucose phosphorylase (FKP), α-1,2-fucosyltransferase (FucT), and pyruvate kinase (PK). This MECCS was able to efficiently regenerate ATP or GTP with 5.67-fold improvement of GDP-L-fucose. To address the rate-limiting step in the MECCS, various FucT orthologues were screened, and HpFucT from Helicobacter pylori showed the highest catalytic efficiency, with a (kcat/KM) of 39.28 min-1 mM-1, while TeFucT from Thermosynechococcus elongatus showed the highest thermostability, with a melting temperature (Tm) of 48 °C. The dissociation constant (KD) of TeFucT (1.34 ± 0.41 μM) was 15-fold lower than that of HpFucT (20.24 ± 1.81 μM), suggesting that TeFucT had much higher affinity for GDP. Structural analysis of HpFucT indicated that Arg169 is part of a unique substrate-binding site that interacts with two oxygen atoms from the phosphate group of GDP-L-fucose. The 2-FL productivities of the MECCS in fed-batch reached 0.67 and 0.73 g/L/h with TeFucT and HpFucT, respectively. This research provides an alternative pathway for efficient production of 2-FL.
Collapse
Affiliation(s)
- Chao Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Mian Wu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Xin Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| |
Collapse
|
10
|
Maddock RMA, Pollard GJ, Moreau NG, Perry JJ, Race PR. Enzyme-catalysed polymer cross-linking: Biocatalytic tools for chemical biology, materials science and beyond. Biopolymers 2020; 111:e23390. [PMID: 32640085 DOI: 10.1002/bip.23390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
Intermolecular cross-linking is one of the most important techniques that can be used to fundamentally alter the material properties of a polymer. The introduction of covalent bonds between individual polymer chains creates 3D macromolecular assemblies with enhanced mechanical properties and greater chemical or thermal tolerances. In contrast to many chemical cross-linking reactions, which are the basis of thermoset plastics, enzyme catalysed processes offer a complimentary paradigm for the assembly of cross-linked polymer networks through their predictability and high levels of control. Additionally, enzyme catalysed reactions offer an inherently 'greener' and more biocompatible approach to covalent bond formation, which could include the use of aqueous solvents, ambient temperatures, and heavy metal-free reagents. Here, we review recent progress in the development of biocatalytic methods for polymer cross-linking, with a specific focus on the most promising candidate enzyme classes and their underlying catalytic mechanisms. We also provide exemplars of the use of enzyme catalysed cross-linking reactions in industrially relevant applications, noting the limitations of these approaches and outlining strategies to mitigate reported deficiencies.
Collapse
Affiliation(s)
- Rosie M A Maddock
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK.,BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, Tyndall Avenue University of Bristol, Bristol, UK
| | - Gregory J Pollard
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK
| | - Nicolette G Moreau
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK
| | - Justin J Perry
- Department of Applied Sciences, Northumbria University, Ellison Building, Newcastle upon Tyne, UK
| | - Paul R Race
- School of Biochemistry, University of Bristol, University Walk, Bristol, UK.,BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, Tyndall Avenue University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Vasile C, Pamfil D, Stoleru E, Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020; 25:E1539. [PMID: 32230990 PMCID: PMC7180755 DOI: 10.3390/molecules25071539] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
New trends in biomedical applications of the hybrid polymeric hydrogels, obtained by combining natural polymers with synthetic ones, have been reviewed. Homopolysaccharides, heteropolysaccharides, as well as polypeptides, proteins and nucleic acids, are presented from the point of view of their ability to form hydrogels with synthetic polymers, the preparation procedures for polymeric organic hybrid hydrogels, general physico-chemical properties and main biomedical applications (i.e., tissue engineering, wound dressing, drug delivery, etc.).
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Daniela Pamfil
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Elena Stoleru
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Mihaela Baican
- Pharmaceutical Physics Department, “Grigore T. Popa” Medicine and Pharmacy University, 16, University Str., Iaşi 700115, Romania
| |
Collapse
|
12
|
Zhao M, Rong J, Han J, Zhou Y, Li C, Wang L, Mao Y, Wang Y. Novel Synthesis Strategy for Biocatalyst: Fast Purification and Immobilization of His- and ELP-Tagged Enzyme from Fermentation Broth. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31878-31888. [PMID: 31433163 DOI: 10.1021/acsami.9b09071] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by natural biomineralization process, inorganic phosphates system has been selected as a candidate for the encapsulation of enzyme; however, during the long-term fabrication process, the loss of enzyme activity is unavoidable, and the biomimetic mineralization mechanism is still poorly understood. Meanwhile, the purification process plays a key role in the preparation of immobilized enzyme with high enzyme loading and activity, while the rapid, low-cost, and eco-friendly purification of biocatalyst from crude fermentation broth remains a critical challenge in biochemical engineering. Here, a binary tag composed of elastin-like polypeptide (ELP) and His-tag was presented for the first time to be fused with β-glucosidase (Glu) to construct a recombinant Glu-linker-ELP-His (GLEH) with the aim of developing a fast synthesis strategy combining purification and immobilization processes for a biocatalyst with better stability and recyclability. The purification fold and activity recovery of GLEH reached 18.1 and 95.2%, respectively, once a single inverse transition cycling was conducted at 25 °C for 10 min. Then, efficient biomineralization of hybrid enzyme-Cu3(PO4)2 nanoflowers was realized in 15 min by the action of His-tag and ultrasonic-assisted reaction method. The activity recovery and relative activity reached the maximum at 90.3 and 111.0%, respectively. We demonstrate that the crystal growth process of a hybrid nanoflower involves obvious nucleation, self-assembly, and the Ostwald ripening process, and the enzyme GLEH acts as a "binder" to assemble Cu3(PO4)2 nanoflakes. The immobilized GLEH nanoflowers show outstanding operation stability and recyclability, and their catalytic efficiency is close to that of free Glu.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yanli Mao
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology , Henan University of Urban Construction , Pingdingshan , Henan Province 467036 , China
| | | |
Collapse
|
13
|
Dai X, Böker A, Glebe U. Broadening the scope of sortagging. RSC Adv 2019; 9:4700-4721. [PMID: 35514663 PMCID: PMC9060782 DOI: 10.1039/c8ra06705h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 01/20/2023] Open
Abstract
Sortases are enzymes occurring in the cell wall of Gram-positive bacteria. Sortase A (SrtA), the best studied sortase class, plays a key role in anchoring surface proteins with the recognition sequence LPXTG covalently to oligoglycine units of the bacterial cell wall. This unique transpeptidase activity renders SrtA attractive for various purposes and motivated researchers to study multiple in vivo and in vitro ligations in the last decades. This ligation technique is known as sortase-mediated ligation (SML) or sortagging and developed to a frequently used method in basic research. The advantages are manifold: extremely high substrate specificity, simple access to substrates and enzyme, robust nature and easy handling of sortase A. In addition to the ligation of two proteins or peptides, early studies already included at least one artificial (peptide equipped) substrate into sortagging reactions - which demonstrates the versatility and broad applicability of SML. Thus, SML is not only a biology-related technique, but has found prominence as a major interdisciplinary research tool. In this review, we provide an overview about the use of sortase A in interdisciplinary research, mainly for protein modification, synthesis of protein-polymer conjugates and immobilization of proteins on surfaces.
Collapse
Affiliation(s)
- Xiaolin Dai
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| |
Collapse
|
14
|
Lim S, Jung GA, Muckom RJ, Glover DJ, Clark DS. Engineering bioorthogonal protein-polymer hybrid hydrogel as a functional protein immobilization platform. Chem Commun (Camb) 2019; 55:806-809. [PMID: 30574651 PMCID: PMC6370476 DOI: 10.1039/c8cc08720b] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We demonstrate the synthesis of protein-polymer hybrid hydrogel that can be used as a platform for immobilizing functional proteins. Orthogonal chemistry was employed for cross-linking the hybrid network and conjugating proteins to the gel backbone, allowing for the convenient, one-pot formation of a functionalized hydrogel. The resulting hydrogel had tunable mechanical properties, was stable in solution, and biocompatible.
Collapse
Affiliation(s)
- Samuel Lim
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
15
|
Zhang Y, Park KY, Suazo KF, Distefano MD. Recent progress in enzymatic protein labelling techniques and their applications. Chem Soc Rev 2018; 47:9106-9136. [PMID: 30259933 PMCID: PMC6289631 DOI: 10.1039/c8cs00537k] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-based conjugates are valuable constructs for a variety of applications. Conjugation of proteins to fluorophores is commonly used to study their cellular localization and the protein-protein interactions. Modification of therapeutic proteins with either polymers or cytotoxic moieties greatly enhances their pharmacokinetics or potency. To label a protein of interest, conventional direct chemical reaction with the side-chains of native amino acids often yields heterogeneously modified products. This renders their characterization complicated, requires difficult separation steps and may impact protein function. Although modification can also be achieved via the insertion of unnatural amino acids bearing bioorthogonal functional groups, these methods can have lower protein expression yields, limiting large scale production. As a site-specific modification method, enzymatic protein labelling is highly efficient and robust under mild reaction conditions. Significant progress has been made over the last five years in modifying proteins using enzymatic methods for numerous applications, including the creation of clinically relevant conjugates with polymers, cytotoxins or imaging agents, fluorescent or affinity probes to study complex protein interaction networks, and protein-linked materials for biosensing. This review summarizes developments in enzymatic protein labelling over the last five years for a panel of ten enzymes, including sortase A, subtiligase, microbial transglutaminase, farnesyltransferase, N-myristoyltransferase, phosphopantetheinyl transferases, tubulin tyrosin ligase, lipoic acid ligase, biotin ligase and formylglycine generating enzyme.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
The conjugation of biomolecules can impart materials with the bioactivity necessary to modulate specific cell behaviors. While the biological roles of particular polypeptide, oligonucleotide, and glycan structures have been extensively reviewed, along with the influence of attachment on material structure and function, the key role played by the conjugation strategy in determining activity is often overlooked. In this review, we focus on the chemistry of biomolecule conjugation and provide a comprehensive overview of the key strategies for achieving controlled biomaterial functionalization. No universal method exists to provide optimal attachment, and here we will discuss both the relative advantages and disadvantages of each technique. In doing so, we highlight the importance of carefully considering the impact and suitability of a particular technique during biomaterial design.
Collapse
Affiliation(s)
- Christopher D. Spicer
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
| | - E. Thomas Pashuck
- NJ
Centre for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, New Jersey United States
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London, United Kingdom
| |
Collapse
|
17
|
Trachsel L, Broguiere N, Rosenboom JG, Zenobi-Wong M, Benetti EM. Enzymatically crosslinked poly(2-alkyl-2-oxazoline) networks for 3D cell culture. J Mater Chem B 2018; 6:7568-7572. [DOI: 10.1039/c8tb02382d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cellularized poly(2-alkyl-2-oxazoline) hydrogels fabricated by sortase-mediated crosslinking feature tunable mechanical properties and enable extremely high cell viability.
Collapse
Affiliation(s)
- Lucca Trachsel
- Tissue Engineering + Biofabrication
- Department of Health Sciences and Technology
- ETH Zürich
- Zürich
- Switzerland
| | - Nicolas Broguiere
- Tissue Engineering + Biofabrication
- Department of Health Sciences and Technology
- ETH Zürich
- Zürich
- Switzerland
| | - Jan-Georg Rosenboom
- Institute of Chemical and Bioengineering
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- Zürich
- Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication
- Department of Health Sciences and Technology
- ETH Zürich
- Zürich
- Switzerland
| | - Edmondo M. Benetti
- Polymer Surfaces Group
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- Zürich
| |
Collapse
|
18
|
A Versatile Chemo-Enzymatic Conjugation Approach Yields Homogeneous and Highly Potent Antibody-Drug Conjugates. Int J Mol Sci 2017; 18:ijms18112284. [PMID: 29088062 PMCID: PMC5713254 DOI: 10.3390/ijms18112284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/02/2023] Open
Abstract
The therapeutic efficacy of antibodies can be successfully improved through targeted delivery of potent cytotoxic drugs in the form of antibody-drug conjugates. However, conventional conjugation strategies lead to heterogeneous conjugates with undefined stoichiometry and sites, even with considerable batch-to-batch variability. In this study, we have developed a chemo-enzymatic strategy by equipping the C-terminus of anti-CD20 ofatumumab with a click handle using Sortase A, followed by ligation of the payload based on a strain-promoted azide-alkyne cycloaddition to produce homogeneous conjugates. The resulting antibody-drug conjugates fully retained their antigen binding capability and proved to be internalized and trafficked to the lysosome, which released the payload with a favorable efficacy in vitro and in vivo. Thus, this reported method is a versatile tool with maximum flexibility for development of antibody-drug conjugates and protein modification.
Collapse
|