1
|
Tukur F, Mabe T, Liu M, Tukur P, Wei J. A Plasmonic Nanoledge Array Sensor for Selective Detection of Cardiovascular Disease Biomarkers in Human Whole Blood. ACS APPLIED NANO MATERIALS 2024; 7:20024-20033. [PMID: 39296866 PMCID: PMC11406491 DOI: 10.1021/acsanm.4c02524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
Optical sensors face challenges when detecting ultralow amounts of analytes in whole blood, including signal quenching due to optical absorption and false positives due to nonspecific binding. This study introduces gold nanoscale array features termed nanoledges (NLs), which interact with incident white light to produce a transmitted surface plasmon resonance (tSPR) signal. This extraordinary optical transmission (EOT) spectrum occurs in the near-infrared (NIR) region, thereby minimizing signal quenching caused by visible-light absorption from blood proteins and pigments. To develop a sensitive, selective, and label-free optical biosensor for detecting various levels of cardiac troponin I (cTnI) in very small volumes of whole blood samples, DNA aptamers are tethered to the NL surface, specifically binding to the cTnI biomarker. This biological binding activity alters the refractive index at the NL surface, causing a peak shift in the EOT spectrum and enabling quantification of cTnI levels. The NL array chip demonstrated high sensitivity for cTnI detection in buffer, human serum (HS), and human whole blood (HB), with detection limits of 0.079, 0.084, and 0.097 ng/mL, respectively. Control measurements using blank target mediums and those containing up to 125 ng/mL of other proteins, such as myoglobin, creatine kinase, and heparin, showed minimal interference and high specificity. The NL plasmonic array's performance in biosensing underscores its promise for clinical analysis and its potential development as a point-of-care platform for early cardiovascular disease (CVD) diagnostics.
Collapse
Affiliation(s)
- Frank Tukur
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Taylor Mabe
- 3i Nanotech, Inc., 2901 E. Gate City Blvd, Greensboro, North Carolina 27401, United States
| | - Mengxin Liu
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Panesun Tukur
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
- 3i Nanotech, Inc., 2901 E. Gate City Blvd, Greensboro, North Carolina 27401, United States
| |
Collapse
|
2
|
Anbuselvam B, Gunasekaran BM, Srinivasan S, Ezhilan M, Rajagopal V, Nesakumar N. Wearable biosensors in cardiovascular disease. Clin Chim Acta 2024; 561:119766. [PMID: 38857672 DOI: 10.1016/j.cca.2024.119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
This review provides a comprehensive overview of the latest advancements in wearable biosensors, emphasizing their applications in cardiovascular disease monitoring. Initially, the key sensing signals and biomarkers crucial for cardiovascular health, such as electrocardiogram, phonocardiography, pulse wave velocity, blood pressure, and specific biomarkers, are highlighted. Following this, advanced sensing techniques for cardiovascular disease monitoring are examined, including wearable electrophysiology devices, optical fibers, electrochemical sensors, and implantable cardiac devices. The review also delves into hydrogel-based wearable electrochemical biosensors, which detect biomarkers in sweat, interstitial fluids, saliva, and tears. Further attention is given to flexible electronics-based biosensors, including resistive, capacitive, and piezoelectric force sensors, as well as resistive and pyroelectric temperature sensors, flexible biochemical sensors, and sensor arrays. Moreover, the discussion extends to polymer-based wearable sensors, focusing on innovations in contact lens, textile-type, patch-type, and tattoo-type sensors. Finally, the review addresses the challenges associated with recent wearable biosensing technologies and explores future perspectives, highlighting potential groundbreaking avenues for transforming wearable sensing devices into advanced diagnostic tools with multifunctional capabilities for cardiovascular disease monitoring and other healthcare applications.
Collapse
Affiliation(s)
- Bhavadharani Anbuselvam
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Balu Mahendran Gunasekaran
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Soorya Srinivasan
- Department of Mechanical Engineering, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Madeshwari Ezhilan
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science and Technology, Vel Nagar, Avadi, Chennai 600062, Tamil Nadu, India.
| | - Venkatachalam Rajagopal
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, STEM College, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Noel Nesakumar
- School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India; Center for Nanotechnology & Advanced Biomaterials (CENTAB), SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
3
|
Cao S, Chen R, Yang Q, He X, Chiavaioli F, Ran Y, Guan BO. Point-of-care diagnosis of pre-eclampsia based on microfiber Bragg grating biosensor. Biosens Bioelectron 2024; 249:116014. [PMID: 38219469 DOI: 10.1016/j.bios.2024.116014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Pre-eclampsia is a serious multi-organ complication that severely threatens the safety of pregnant women and infants. To accurate and timely diagnose pre-eclampsia, point-of-care (POC) biosensing of the specific biomarkers is urgently required. However, one of the key biomarkers of pre-eclampsia, placental growth factor (PlGF), has a reduced level of expression in patients, which challenges the quantification capability and Limit-of-detection (LOD) of biosensors. Herein, we reported a microfiber Bragg grating biosensor for the quantification of PlGF in clinical serum samples. The Bragg grating was inscribed in a unilateral tapered fiber to generate the segmented Fabry-Perot spectrum for improving the capability of detection. Furthermore, a temperature-calibrated Bragg grating was added to enable dual parametric detection of PlGF and temperature simultaneously for removing the crosstalk. Finally, the biosensor was envisaged to be perfectly compatible with microfluidic chips, and thus dramatically reducing the sample consumption to as small as 10 μL. The proposed biosensor can respond to PlGF with concentrations ranging from 5 to 120 pg mL-1, attaining a LOD of 5 pg mL-1 of clinical relevance. More importantly, the biosensor achieved micro volume detection of clinical serum samples from patients, and the ROC curve with an AUC of 0.977 confirmed the viability of the device. Our study paves the way to a new idea for cost-effective and high-precision screening of patients with pre-eclampsia, and hence envisages a promising prospect for point-of-care (POC) diagnosis of patients with pre-eclampsia.
Collapse
Affiliation(s)
- Shifang Cao
- Clinical Laboratory Center, The First Clinical Medical College, Jinan University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Ruiping Chen
- Department of Obstetrics and Gynecology, The First Clinical Medical College, Jinan University, Guangzhou, 510630, China.
| | - Qiaochu Yang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Xin He
- Clinical Laboratory Center, The First Clinical Medical College, Jinan University, Guangzhou, 510630, China.
| | - Francesco Chiavaioli
- National Research Council of Italy (CNR), Institute of Applied Physics "Nello Carrara", Sesto Fiorentino, 50019, Italy
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
4
|
Niu P, Jiang J, Liu K, Zhou X, Wang S, Xu T, Wang T, Li Y, Yang Q, Liu T. Hollow-microsphere-integrated optofluidic immunochip for myocardial infarction biomarker microanalysis. Biosens Bioelectron 2024; 248:115970. [PMID: 38150798 DOI: 10.1016/j.bios.2023.115970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
This work developed an optofluidic immunochip that uses whispering gallery mode with fiber laser enhancement, for the rapid detection of a key biomarker cardiac troponin I for acute myocardial infarction (AMI). The immunochip adopted an innovative design, using perforated hollow glass microspheres (HGMS) as carriers, with antibodies immobilized on the inner surface of the HGMS, thereby achieving ultra-low sample consumption. The performance of the immunochip was improved by fiber laser, including spectral width compression to 0.019 nm, optical signal-to-noise ratio amplification to 63.17 dB, and an enhancement in the limit of detection to 5 pg/mL. Moreover, this immunochip can provide results within 15 min, making it highly suitable for early AMI risk management. Compared to the standard electrochemiluminescence detection method, although some differences exist in the results of the immunochip due to the principle of detection and differences in antibody affinity, its positive reference value can be calculated as 0.0754 ng/mL, with a successful recognition rate of 88% for positive patients. The immunosensor is integrated on a polydimethylsiloxane substrate, with a compact size suitable for use in point-of-care devices and AMI self-screening, as well as rapid disease screening and microanalysis of various biomarkers, offering new possibilities for applications in these fields.
Collapse
Affiliation(s)
- Panpan Niu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Junfeng Jiang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China.
| | - Kun Liu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China.
| | - Xin Zhou
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shuang Wang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Tianhua Xu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China; School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Tong Wang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Yongle Li
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qing Yang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Tiegen Liu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Shen C, Huang Z, Chen X, Wang Z, Zhou J, Wang Z, Liu D, Li C, Zhao T, Zhang Y, Xu S, Zhou W, Peng W. Rapid ultra-sensitive nucleic acid detection using plasmonic fiber-optic spectral combs and gold nanoparticle-tagged targets. Biosens Bioelectron 2023; 242:115719. [PMID: 37797532 DOI: 10.1016/j.bios.2023.115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/24/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Nucleic acid (NA) is a widely-used biomarker for viruses. Accurate quantification of NA can provide a reliable basis for point-of-care diagnosis and treatment. Here, we propose a tilted fiber Bragg grating (TFBG)-based plasmonic fiber-optic spectral comb for fast response and ultralow limit NA detection. The TFBG is coated with a gold film which enables excitation of surface plasmon resonance (SPR), and single-stranded probe NAs with known base sequences are assembled on the gold film. To enhance sensitivity of refractive index (RI) for sensing a chosen combination of probe and target NAs around the TFBG surface, gold nanoparticles (AuNPs) are bonded to the target NA molecules as "RI-labels". The NA combination-induced aggregation of AuNPs induces significant spectral responses in the TFBG that would be below the detection threshold for the NAs in the absence of the AuNPs. The proposed TFBG-SPR NA sensor shows a fast response time of 30 s and an ultra-wide NA detection range from 1 × 10-18 mol/L to 1 × 10-7 mol/L. In the NA concentration range of 1 × 10-12 mol/L (1 pM) to 105 pM, an ultra-high sensitivity of 1.534 dB/lg(pM) is obtained. The sensor achieves an ultra-low limit of detection down to 1.0 × 10-18 mol/L (1 aM), which is more than an order of magnitude lower than the previous reports. The proposed sensor not only shows potentials in practical applications of NA detection, but also provides a new way for TFBG-SPR biochemical sensors to achieve higher RI sensitivity.
Collapse
Affiliation(s)
- Changyu Shen
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| | - Zhenlin Huang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Xiaoman Chen
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Zhihao Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Jun Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Zhaokun Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Dejun Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chenxia Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Tianqi Zhao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Yang Zhang
- School of Physics, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Shiqing Xu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Wenjun Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Wei Peng
- School of Physics, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
6
|
Song E, Long X, Yang Q, Jin F, Yue X, Li Z, Liang L, Ran Y, Guan BO. Near-infrared microfiber Bragg grating for sensitive measurement of tension and bending. OPTICS EXPRESS 2023; 31:15674-15681. [PMID: 37157662 DOI: 10.1364/oe.487533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fiber-optic devices working in the visible and near-infrared windows are attracting attention due to the rapid development of biomedicine that involves optics. In this work, we have successfully realized the fabrication of near-infrared microfiber Bragg grating (NIR-µFBG), which was operated at the wavelength of 785 nm, by harnessing the fourth harmonic order of Bragg resonance. The NIR-µFBG provided the maximum sensitivity of axial tension and bending to 211 nm/N and 0.18 nm/deg, respectively. By conferring the considerably lower cross-sensitivity, such as response to temperature or ambient refractive index, the NIR-µFBG can be potentially implemented as the highly sensitive tensile force and curve sensor.
Collapse
|
7
|
Tang L, Yang J, Wang Y, Deng R. Recent Advances in Cardiovascular Disease Biosensors and Monitoring Technologies. ACS Sens 2023; 8:956-973. [PMID: 36892106 DOI: 10.1021/acssensors.2c02311] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Cardiovascular disease (CVD) causes significant mortality and remains the leading cause of death globally. Thus, to reduce mortality, early diagnosis by measurement of cardiac biomarkers and heartbeat signals presents fundamental importance. Traditional CVD examination requires bulky hospital instruments to conduct electrocardiography recording and immunoassay analysis, which are both time-consuming and inconvenient. Recently, development of biosensing technologies for rapid CVD marker screening attracted great attention. Thanks to the advancement in nanotechnology and bioelectronics, novel biosensor platforms are developed to achieve rapid detection, accurate quantification, and continuous monitoring throughout disease progression. A variety of sensing methodologies using chemical, electrochemical, optical, and electromechanical means are explored. This review first discusses the prevalence and common categories of CVD. Then, heartbeat signals and cardiac blood-based biomarkers that are widely employed in clinic, as well as their utilizations for disease prognosis, are summarized. Emerging CVD wearable and implantable biosensors and monitoring bioelectronics, allowing these cardiac markers to be continuously measured are introduced. Finally, comparisons of the pros and cons of these biosensing devices along with perspectives on future CVD biosensor research are presented.
Collapse
Affiliation(s)
- Lichao Tang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, 60208, Illinois, United States
| | - Jiyuan Yang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47906, Indiana, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
8
|
Rohan R, Venkadeshwaran K, Ranjan P. Recent advancements of fiber Bragg grating sensors in biomedical application: a review. JOURNAL OF OPTICS 2023. [PMCID: PMC9976692 DOI: 10.1007/s12596-023-01134-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/09/2023] [Indexed: 10/20/2023]
Abstract
Due to attractive application in the medical field, fiber Bragg grating sensor has become increasing attractive from past few decades for various strain sensing applications. FBG sensor has been used in many applications such as different surgical devices, vital sign detection devices, invasive surgery, heart rate, dental applications and biosensing application as wearable sensing devices. This paper reviews the 55 recent research articles published on fiber Bragg grating sensor for biomedical application used the qualitative, quantitative and experimental method to identify the recent advancement and challenges. In this study, particular focus is placed on applications for biomechanical devices, temperature monitors, respiratory monitors, and biosensing applications. Critical things, demands, and emerging trends for these sensing devices are also discussed in order to determine what will be needed for the next generation.
Collapse
Affiliation(s)
- R. Rohan
- Department of Mechanical, Faculty of Engineering and Technology, JAIN (Deemed to Be-University), Bangalore, India
| | - K. Venkadeshwaran
- Department of Mechanical, Faculty of Engineering and Technology, JAIN (Deemed to Be-University), Bangalore, India
| | - Prakash Ranjan
- Department of Mechanical, Faculty of Engineering and Technology, JAIN (Deemed to Be-University), Bangalore, India
| |
Collapse
|
9
|
Yuan Y, Jia H, Xu D, Wang J. Novel method in emerging environmental contaminants detection: Fiber optic sensors based on microfluidic chips. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159563. [PMID: 36265627 DOI: 10.1016/j.scitotenv.2022.159563] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Recently, human industrial practices and certain activities have caused the widespread spread of emerging contaminants throughout the environmental matrix, even in trace amounts, which constitute a serious threat to human health and environmental ecology, and have therefore attracted the attention of research scholars. Different traditional techniques are used to monitor water pollutants, However, they still have some disadvantages such as high costs, ecological problems and treatment times, and require technicians and researchers to operate them effectively. There is therefore an urgent need to develop simple, inexpensive and highly sensitive methods to sense and detect these toxic environmental contaminants. Optical fiber microfluidic coupled sensors offer different advantages over other detection technologies, allowing manipulation of light through controlled microfluidics, precise detection results and good stability, and have therefore become a logical device for screening and identifying environmental contaminants. This paper reviews the application of fiber optic microfluidic sensors in emerging environmental contaminant detection, focusing on the characteristics of different emerging contaminant types, different types of fiber optic microfluidic sensors, methodological principles of detection, and specific emerging contaminant detection applications. The optical detection methods in fiber optic microfluidic chips and their respective advantages and disadvantages are analyzed in the discussion. The applications of fiber optic biochemical sensors in microfluidic chips, especially for the detection of emerging contaminants in the aqueous environment, such as personal care products, endocrine disruptors, and perfluorinated compounds, are reviewed. Finally, the prospects of fiber optic microfluidic coupled sensors in environmental detection and related fields are foreseen.
Collapse
Affiliation(s)
- Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - DanYu Xu
- Tianjin Academy of Eco-enviromental Sciences, Tianjin 300191, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
10
|
Saha B, Goswami N, Saha A. Wave-theory-based analysis of a fiber optic bio-sensor illuminated by radially polarized Bessel-Gauss beam: an approach for early diagnosis of breast cancer with a high-resolution wavelength-interrogation technique. APPLIED OPTICS 2022; 61:10408-10417. [PMID: 36607099 DOI: 10.1364/ao.471283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
With the establishment of validity using authoritative experimental results, an analytical investigation of an SPR-based fiber optic sensor, employing a wave-theory-based technique for determining breast cancer by shining a radially polarized Bessel-Gauss (RPBG) beam, is proposed. First, by using a radially polarized Gaussian (RPG) beam, the observed sensitivity is 9404.61 dB/RIU, where the acquired results are in good concurrence with the experimental data reported by Yan et al. [Chin. Opt. Lett.7, 909 (2009)COLHBT1671-7694]. Thus, the proposed theory has been validated with the reported experimental data. This theoretical analysis is further extended by utilizing an RPBG beam, where the observed sensitivity is 21,699.26 dB/RIU and 5846 nm/RIU, with a resolution of 4.61×10-7, which is 2.5 times superior to the reported results to date. By using an RPBG beam, the proposed method, to our best knowledge, is the first to achieve much higher sensitivity in the area of fiber optic breast cancer detection. The higher sensitivity achieved at lower concentrations of an HER2 biomarker has led to the idea of early diagnosis of breast cancer by optically assessing it at its earlier stage using a high-resolution wavelength-interrogation technique.
Collapse
|
11
|
Shaimerdenova M, Ayupova T, Bekmurzayeva A, Sypabekova M, Ashikbayeva Z, Tosi D. Spatial-Division Multiplexing Approach for Simultaneous Detection of Fiber-Optic Ball Resonator Sensors: Applications for Refractometers and Biosensors. BIOSENSORS 2022; 12:1007. [PMID: 36421126 PMCID: PMC9688048 DOI: 10.3390/bios12111007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Fiber-optic ball resonators are an attractive technology for refractive index (RI) sensing and optical biosensing, as they have good sensitivity and allow for a rapid and repeatable manufacturing process. An important feature for modern biosensing devices is the multiplexing capacity, which allows for interrogating multiple sensors (potentially, with different functionalization methods) simultaneously, by a single analyzer. In this work, we report a multiplexing method for ball resonators, which is based on a spatial-division multiplexing approach. The method is validated on four ball resonator devices, experimentally evaluating both the cross-talk and the spectral shape influence of one sensor on another. We show that the multiplexing approach is highly efficient and that a sensing network with an arbitrary number of ball resonators can be designed with reasonable penalties for the sensing capabilities. Furthermore, we validate this concept in a four-sensor multiplexing configuration, for the simultaneous detection of two different cancer biomarkers across a widespread range of concentrations.
Collapse
Affiliation(s)
- Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
- Department of Bioengineering and Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aliya Bekmurzayeva
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| | - Marzhan Sypabekova
- School of Engineering and Computer Science, Baylor University, Waco, TX 76798, USA
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| |
Collapse
|
12
|
Leitão C, Pereira SO, Marques C, Cennamo N, Zeni L, Shaimerdenova M, Ayupova T, Tosi D. Cost-Effective Fiber Optic Solutions for Biosensing. BIOSENSORS 2022; 12:575. [PMID: 36004971 PMCID: PMC9405647 DOI: 10.3390/bios12080575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 05/13/2023]
Abstract
In the last years, optical fiber sensors have proven to be a reliable and versatile biosensing tool. Optical fiber biosensors (OFBs) are analytical devices that use optical fibers as transducers, with the advantages of being easily coated and biofunctionalized, allowing the monitorization of all functionalization and detection in real-time, as well as being small in size and geometrically flexible, thus allowing device miniaturization and portability for point-of-care (POC) testing. Knowing the potential of such biosensing tools, this paper reviews the reported OFBs which are, at the moment, the most cost-effective. Different fiber configurations are highlighted, namely, end-face reflected, unclad, D- and U-shaped, tips, ball resonators, tapered, light-diffusing, and specialty fibers. Packaging techniques to enhance OFBs' application in the medical field, namely for implementing in subcutaneous, percutaneous, and endoscopic operations as well as in wearable structures, are presented and discussed. Interrogation approaches of OFBs using smartphones' hardware are a great way to obtain cost-effective sensing approaches. In this review paper, different architectures of such interrogation methods and their respective applications are presented. Finally, the application of OFBs in monitoring three crucial fields of human life and wellbeing are reported: detection of cancer biomarkers, detection of cardiovascular biomarkers, and environmental monitoring.
Collapse
Affiliation(s)
- Cátia Leitão
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Sónia O. Pereira
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Carlos Marques
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
13
|
Niu P, Jiang J, Liu K, Wang S, Wang T, Liu Y, Zhang X, Ding Z, Liu T. High-sensitive and disposable myocardial infarction biomarker immunosensor with optofluidic microtubule lasing. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3351-3364. [PMID: 39635554 PMCID: PMC11501927 DOI: 10.1515/nanoph-2022-0208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/07/2024]
Abstract
The early diagnosis of myocardial infarction can significantly improve the survival rate in emergency treatment, which is mainly implemented by the immunoassay for myocardial infarction biomarkers such as cardiac troponins in blood. In this work, a disposable optofluidic microtubule whispering gallery mode (WGM) immunosensor for label-free cardiac troponin I-C (cTnI-C) complex detection has been proposed and demonstrated with active interrogation enhancement. The disposable microtubule is simply fabricated by a silica capillary with pressurized tapering technology for thin-wall, and the cTnI antibodies are immobilized on the inner wall surface of the microtubule through the self-adherent polydopamine substrate. By configuring the two coupling microfibers, the double-fiber-coupled microtubule cavity can serve as a tunable filter for the mutual-coupled polarimetric fiber ring laser (FRL), whose output laser wavelength is determined by the cTnI-C concentration in the optofluidic microtubule with inherent microfluidic channel. Due to the cyclic-cumulative gain of the FRL, the characteristic resonant peak of optical sensing signal is enhanced in the spectral width compression and the optical signal-to-noise ratio improvement, and therefore the optical immunosensor for cTnI-C can be achieved by tracking the output laser wavelength of the FRL conveniently. The dynamic binding and unbinding process of cTnI-C antigen-antibody is illustrated by monitoring the lasing peak wavelength continuously. Our all-fiber immunosensor demonstrated here has the advantages of fast label-free detection, real-time monitor, high sensitivity and disposable sensing element, which can be an innovative detecting tool in early diagnosis of myocardial infarction.
Collapse
Affiliation(s)
- Panpan Niu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin300072, China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin300072, China
| | - Junfeng Jiang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin300072, China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin300072, China
| | - Kun Liu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin300072, China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin300072, China
| | - Shuang Wang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin300072, China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin300072, China
| | - Tong Wang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin300072, China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin300072, China
| | - Yize Liu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin300072, China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin300072, China
| | - Xuezhi Zhang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin300072, China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin300072, China
| | - Zhenyang Ding
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin300072, China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin300072, China
| | - Tiegen Liu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin300072, China
- Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin300072, China
| |
Collapse
|
14
|
Niu P, Jiang J, Liu K, Wang S, Xu T, Wang Z, Wang T, Zhang X, Ding Z, Liu Y, Liu T. Prefab Hollow Glass Microsphere-Based Immunosensor with Liquid Crystal Sensitization for Acute Myocardial Infarction Biomarker Detection. BIOSENSORS 2022; 12:439. [PMID: 35884242 PMCID: PMC9312929 DOI: 10.3390/bios12070439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
Quantitative detection of cardiac troponin biomarkers in blood is an important method for clinical diagnosis of acute myocardial infarction (AMI). In this work, a whispering gallery mode (WGM) microcavity immunosensor based on a prefab hollow glass microsphere (HGMS) with liquid crystal (LC) sensitization was proposed and experimentally demonstrated for label-free cardiac troponin I-C (cTnI-C) complex detection. The proposed fiber-optic immunosensor has a simple structure; the tiny modified HGMS serves as the key sensing element and the microsample reservoir simultaneously. A sensitive LC layer with cTnI-C recognition ability was deposited on the inner wall of the HGMS microcavity. The arrangement of LC molecules is affected by the cTnI-C antigen-antibody binding in the HGMS, and the small change of the surface refractive index caused by the binding can be amplified owing to the birefringence property of LC. Using the annular waveguide of the HGMS, the WGMs were easily excited by the coupling scanning laser with a microfiber, and an all-fiber cTnI-C immunosensor can be achieved by measuring the resonant wavelength shift of the WGM spectrum. Moreover, the dynamic processes of the cTnI-C antigen-antibody binding and unbinding was revealed by monitoring the wavelength shift continuously. The proposed immunosensor with a spherical microcavity can be a cost-effective tool for AMI diagnosis.
Collapse
Affiliation(s)
- Panpan Niu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Junfeng Jiang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Kun Liu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Shuang Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tianhua Xu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Ziyihui Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tong Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Xuezhi Zhang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Zhenyang Ding
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Yize Liu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| | - Tiegen Liu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; (P.N.); (K.L.); (S.W.); (T.X.); (Z.W.); (T.W.); (X.Z.); (Z.D.); (Y.L.); (T.L.)
- Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Key Laboratory of Micro Opto-Electro Mechanical System Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China
| |
Collapse
|
15
|
Beliaev LY, Stounbjerg PG, Finco G, Bunea AI, Malureanu R, Lindvold LR, Takayama O, Andersen PE, Lavrinenko AV. Pedestal High-Contrast Gratings for Biosensing. NANOMATERIALS 2022; 12:nano12101748. [PMID: 35630973 PMCID: PMC9145707 DOI: 10.3390/nano12101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022]
Abstract
High-contrast gratings (HCG) are an excellent candidate for label-free detection of various kinds of biomarkers because they exhibit sharp and sensitive optical resonances. In this work, we experimentally show the performance of pedestal HCG (PHCG), which is significantly enhanced in comparison with that of conventional HCG. PCHGs were found to provide a 11.2% improvement in bulk refractive index sensitivity, from 482 nm/RIU for the conventional design to 536 nm/RIU. The observed resonance was narrower, resulting in a higher Q-factor and figure of merit. By depositing Al2O3, HfO2, and TiO2 of different thicknesses as model analyte layers, surface sensitivity values were estimated to be 10.5% better for PHCG. To evaluate the operation of the sensor in solution, avidin was employed as a model analyte. For avidin detection, the surface of the HCG was first silanized and subsequently functionalized with biotin, which is well known for its ability to bind selectively to avidin. A consistent red shift was observed with the addition of each of the functional layers, and the analysis of the spectral shift for various concentrations of avidin made it possible to calculate the limit of detection (LoD) and limit of quantification (LoQ) for the structures. PHCG showed a LoD of 2.1 ng/mL and LoQ of 85 ng/mL, significantly better than the values 3.2 ng/mL and 213 ng/mL respectively, obtained with the conventional HCG. These results demonstrate that the proposed PHCG have great potential for biosensing applications, particularly for detecting and quantifying low analyte concentrations.
Collapse
Affiliation(s)
- Leonid Yu. Beliaev
- DTU Fotonik–Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 345A, DK-2800 Kongens Lyngby, Denmark; (G.F.); (R.M.); (O.T.); (A.V.L.)
- Correspondence:
| | - Peter Groth Stounbjerg
- DTU Health–Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kongens Lyngby, Denmark; (P.G.S.); (L.R.L.); (P.E.A.)
| | - Giovanni Finco
- DTU Fotonik–Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 345A, DK-2800 Kongens Lyngby, Denmark; (G.F.); (R.M.); (O.T.); (A.V.L.)
- Optical Nanomaterial Group, Department of Physics, Institute for Quantum Electronics, ETH Zürich, Auguste-Piccard-Hof 1, HPT D5, 8093 Zürich, Switzerland
| | - Ada-Ioana Bunea
- DTU Nanolab–National Centre for Nano Fabrication and Characterization, Technical University of Denmark, Ørsteds Plads, Building 347, DK-2800 Kongens Lyngby, Denmark;
| | - Radu Malureanu
- DTU Fotonik–Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 345A, DK-2800 Kongens Lyngby, Denmark; (G.F.); (R.M.); (O.T.); (A.V.L.)
| | - Lars René Lindvold
- DTU Health–Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kongens Lyngby, Denmark; (P.G.S.); (L.R.L.); (P.E.A.)
| | - Osamu Takayama
- DTU Fotonik–Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 345A, DK-2800 Kongens Lyngby, Denmark; (G.F.); (R.M.); (O.T.); (A.V.L.)
| | - Peter E. Andersen
- DTU Health–Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 345C, DK-2800 Kongens Lyngby, Denmark; (P.G.S.); (L.R.L.); (P.E.A.)
| | - Andrei V. Lavrinenko
- DTU Fotonik–Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads, Building 345A, DK-2800 Kongens Lyngby, Denmark; (G.F.); (R.M.); (O.T.); (A.V.L.)
| |
Collapse
|
16
|
Yang Q, Hao Y, Long X, Wu Y, Yue X, Cai J, Xu Z, Ran Y, Jin L, Guan BO. Third harmonic phase-shifted Bragg grating sensor. OPTICS LETTERS 2022; 47:1941-1944. [PMID: 35427306 DOI: 10.1364/ol.457540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Improving sensitivity is critical for the higher-order harmonic fiber Bragg grating sensors. To this aim, in this work, we have successfully introduced the phase-shift into the third harmonic fiber Bragg grating for tailoring a double-dip spectrum with a high finesse notch. The dual dips showed reversed responses for the intensity regarding the change of the temperature or axial strain, enabling a highly sensitive measuring regime using the intensity contrast between the two dips. Deduced from the sinusoidal responding curves, the highest temperature and the axial strain sensitivity could reach 0.964 dB/°C, and 0.0257 dB/μ ε, three-fold times the other intensity-based fiber sensors. This work may promote the higher-order harmonic gratings into applications for enriching wavelength utilization.
Collapse
|
17
|
Niu P, Jiang J, Liu K, Wang S, Jing J, Xu T, Wang T, Liu Y, Liu T. Fiber-integrated WGM optofluidic chip enhanced by microwave photonic analyzer for cardiac biomarker detection with ultra-high resolution. Biosens Bioelectron 2022; 208:114238. [PMID: 35390720 DOI: 10.1016/j.bios.2022.114238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/30/2022]
Abstract
Cardiac troponin I (cTnI) plays an important role in emergency diagnosis of cardiovascular diseases, which exists predominately in the form of cardiac troponin I-C (cTnI-C) complex. We proposed a fiber-integrated optofluidic chip immunosensor with time-delay-dispersion based microwave photonic analyzer (MPA) for cTnI-C detection. The whispering gallery mode (WGM) fiber probe was fabricated by embedding a polydopamine functionalized hollow glass microsphere (HGMS) into the etched capillary-fiber structure, and the WGMs could be excited through the efficient coupling between the thin-wall capillary and the HGMS. The reflective WGM optofluidic chip functioned as a wavelength tuner to construct fiber ring laser cavity, whose laser output wavelength was cTnI-C concentration-dependent. The tiny wavelength variation of sensing laser was converted into a radio-frequency (RF) response, which was retrieved by measuring the change of RF-domain free spectrum range (FSR) in time-delay-dispersion based MPA, and the quantitative detection of cTnI-C complex can be achieved with high resolution. Experimental results show that this immunosensor had a limit of detection (LOD) of 0.59 ng/mL, and a detection resolution of 1.2 fg/mL. The relative resolving power was 102-104-fold higher than that of others optical fiber cTnI biosensors. The proposed fiber-integrated optofluidic chip provides an innovative lab-on-chip diagnostic tool for myocardial damage.
Collapse
Affiliation(s)
- Panpan Niu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Junfeng Jiang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China.
| | - Kun Liu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Shuang Wang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Jianying Jing
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Tianhua Xu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Tong Wang
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Yize Liu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| | - Tiegen Liu
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Opto-electronics Information Technology (Tianjin University), Key Laboratory of Micro Opto-electro Mechanical System Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China; Tianjin Optical Fiber Sensing Engineering Center, Institute of Optical Fiber Sensing of Tianjin University, Tianjin, 300072, China
| |
Collapse
|
18
|
Hengoju S, Shvydkiv O, Tovar M, Roth M, Rosenbaum MA. Advantages of optical fibers for facile and enhanced detection in droplet microfluidics. Biosens Bioelectron 2022; 200:113910. [PMID: 34974260 DOI: 10.1016/j.bios.2021.113910] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
Abstract
Droplet microfluidics offers a unique opportunity for ultrahigh-throughput experimentation with minimal sample consumption and thus has obtained increasing attention, particularly for biological applications. Detection and measurements of analytes or biomarkers in tiny droplets are essential for proper analysis of biological and chemical assays like single-cell studies, cytometry, nucleic acid detection, protein quantification, environmental monitoring, drug discovery, and point-of-care diagnostics. Current detection setups widely use microscopes as a central device and other free-space optical components. However, microscopic setups are bulky, complicated, not flexible, and expensive. Furthermore, they require precise optical alignments, specialized optical and technical knowledge, and cumbersome maintenance. The establishment of efficient, simple, and cheap detection methods is one of the bottlenecks for adopting microfluidic strategies for diverse bioanalytical applications and widespread laboratory use. Together with great advances in optofluidic components, the integration of optical fibers as a light guiding medium into microfluidic chips has recently revolutionized analytical possibilities. Optical fibers embedded in a microfluidic platform provide a simpler, more flexible, lower-cost, and sensitive setup for the detection of several parameters from biological and chemical samples and enable widespread, hands-on application much beyond thriving point-of-care developments. In this review, we examine recent developments in droplet microfluidic systems using optical fiber as a light guiding medium, primarily focusing on different optical detection methods such as fluorescence, absorbance, light scattering, and Raman scattering and the potential applications in biochemistry and biotechnology that are and will be arising from this.
Collapse
Affiliation(s)
- Sundar Hengoju
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany
| | - Oksana Shvydkiv
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany
| | - Miguel Tovar
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany
| | - Martin Roth
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745, Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
19
|
Soares MS, Vidal M, Santos NF, Costa FM, Marques C, Pereira SO, Leitão C. Immunosensing Based on Optical Fiber Technology: Recent Advances. BIOSENSORS-BASEL 2021; 11:bios11090305. [PMID: 34562895 PMCID: PMC8472567 DOI: 10.3390/bios11090305] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
The evolution of optical fiber technology has revolutionized a variety of fields, from optical transmission to environmental monitoring and biomedicine, given their unique properties and versatility. For biosensing purposes, the light guided in the fiber core is exposed to the surrounding media where the analytes of interest are detected by different techniques, according to the optical fiber configuration and biofunctionalization strategy employed. These configurations differ in manufacturing complexity, cost and overall performance. The biofunctionalization strategies can be carried out directly on bare fibers or on coated fibers. The former relies on interactions between the evanescent wave (EW) of the fiber and the analyte of interest, whereas the latter can comprise plasmonic methods such as surface plasmon resonance (SPR) and localized SPR (LSPR), both originating from the interaction between light and metal surface electrons. This review presents the basics of optical fiber immunosensors for a broad audience as well as the more recent research trends on the topic. Several optical fiber configurations used for biosensing applications are highlighted, namely uncladded, U-shape, D-shape, tapered, end-face reflected, fiber gratings and special optical fibers, alongside practical application examples. Furthermore, EW, SPR, LSPR and biofunctionalization strategies, as well as the most recent advances and applications of immunosensors, are also covered. Finally, the main challenges and an outlook over the future direction of the field is presented.
Collapse
|
20
|
Saha B, Goswami N, Saha A. Highly sensitive surface-plasmon-resonance- based fiber optic breast cancer detection by shining a Bessel-Gauss beam: a wave-theory-based approach. APPLIED OPTICS 2021; 60:7027-7035. [PMID: 34613186 DOI: 10.1364/ao.427733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
With experimental validation, an analytical exploration of a surface-plasmon-resonance- and evanescent-wave-based fiber optic biosensor, using Bessel-Gauss beams for early detection of breast cancer, is proposed and designed here. The observed sensitivity is 0.58 nm/ng/mL and 11,928.25 dB/RIU with a resolution of 8.38×10-7, which is 10 times better than the reported ray-theory-based articles reported to date using a Gaussian beam. To analyze more effectively the higher-order modes and to achieve more similarity between the analytical and experimental solutions, the wave-theory-based approach is adopted here. With this approach, for the first time to our knowledge using a Bessel-Gauss beam, higher sensitivity is achieved for fiber optic breast cancer detection. The enhanced sensitivity at lower concentrations of the Human Epidermal Growth Factor Receptor 2 biomarker has conceptualized the idea of early detection of breast cancer by optically quantifying the earlier stage of cancer.
Collapse
|
21
|
Harmonic optical microfiber Bragg grating immunosensor for the accelerative test of cardiac biomarker (cTn-I). Biosens Bioelectron 2021; 179:113081. [PMID: 33588296 DOI: 10.1016/j.bios.2021.113081] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
Fiber-optic biosensor has shown tremendous promise in probing cardiac biomarkers label-free and in-operando. However, temperature cross-sensitivity is ubiquitously found and impedes further advances of the fiber-optic biosensors, especially for the scenario of rapid test at-body. In this study, we exploit a new regime that harnesses the harmonic resonances of a single microfiber Bragg grating to rule out the impact of the thermal noise. The reflections yielded by the harmonics can be engineered simultaneously at the two overriding optical wavebands, i.e., 1 μm and 1.55 μm, promising a remote acquisition of the sensing signals at patient by virtue of the Yb and/or Er-doped fiber amplifiers which are highly commercial. Furthermore, the functionality of the temperature-offset allows for the understanding of the biomolecular stimulating at the body temperature and thus facilitating the acceleration of the cardiac biomarker test. The proposed proof-of-concept enriches the arsenal of tools for fiber biosensors and enables a vista for the instant and in-vivo diagnosis of acute heart diseases.
Collapse
|
22
|
Song B, Jin C, Wang B, Wu J, Liu B, Lin W, Huang W, Duan S, Qiao M. Hydrophobin HGFI assisted immunobiologic sensor based on a cascaded taper integrated ultra-long-period fiber grating. BIOMEDICAL OPTICS EXPRESS 2021; 12:2790-2799. [PMID: 34123504 PMCID: PMC8176812 DOI: 10.1364/boe.425014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
A new type of cascaded taper integrated ultra-long-period fiber grating (ULPFG) based immunobiologic sensor has been developed that benefits from the self-assembled monolayer of class I hydrophobin HGFI. Due to the cascaded arc, discharge tapers constitute an ultra-long-period and circular symmetrical refractive index modulation along fiber axial direction, and by local integration in one period, the mode coupling would generate to the higher harmonic of LP02, LP03 and LP04 modes in the wavelength range from 1300 nm to 1620 nm. The hydrophobic characteristic of the ULPFG surface is modified employing the HGFI, and the antibody molecule probes could be absorbed strongly on the HGFI nano-film, furthermore, the performances of immunobiologic sensing are investigated employing multiple control groups of matched and mismatched antigen molecule targets. The results show that it possesses higher sensing sensitivity of 4.5 nm/(µg/ml), faster response time about of 35 min, lower stability error of 8.8%, and excellent immuno-specificity. Moreover, this proposed ULPFG sensor has the advantages of low cost, simple fabrication and label-free, which is a powerful tool in the trace biomedical detection field.
Collapse
Affiliation(s)
- Binbin Song
- The Key Laboratory of Computer Vision and System of Ministry of Education, Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin, 300071, China
| | - Chang Jin
- The Key Laboratory of Computer Vision and System of Ministry of Education, Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin, 300071, China
| | - Bo Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jixuan Wu
- Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin Key Laboratory of Engneering Technologies for Cell Phamaceutical, College of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China
| | - Bo Liu
- Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Wei Lin
- Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Wei Huang
- The Key Laboratory of Computer Vision and System of Ministry of Education, Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin, 300071, China
| | - Shaoxiang Duan
- Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Mingqiang Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Juste-Dolz A, Delgado-Pinar M, Avella-Oliver M, Fernández E, Pastor D, Andrés MV, Maquieira Á. BIO bragg gratings on microfibers for label-free biosensing. Biosens Bioelectron 2021; 176:112916. [PMID: 33401145 DOI: 10.1016/j.bios.2020.112916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 01/14/2023]
Abstract
Discovering nanoscale phenomena to sense biorecognition events introduces new perspectives to exploit nanoscience and nanotechnology for bioanalytical purposes. Here we present Bio Bragg Gratings (BBGs), a novel biosensing approach that consists of diffractive structures of protein bioreceptors patterned on the surface of optical waveguides, and tailored to transduce the magnitude of biorecognition assays into the intensity of single peaks in the reflection spectrum. This work addresses the design, fabrication, and optimization of this system by both theoretical and experimental studies to explore the fundamental physicochemical parameters involved. Functional biomolecular gratings are fabricated by microcontact printing on the surface of tapered optical microfibers, and their structural features were characterized. The transduction principle is experimentally demonstrated, and its quantitative bioanalytical prospects are assessed in a representative immunoassay, based on patterned protein probes and selective IgG targets, in label-free conditions. This biosensing system involves appealing perspectives to avoid unwanted signal contributions from non-specific binding, herein investigated in human serum samples. The work also proves how the optical response of the system can be easily tuned, and it provides insights into the relevance of this feature to conceive multiplexed BBG systems capable to perform multiple label-free biorecognition assays in a single device.
Collapse
Affiliation(s)
- Augusto Juste-Dolz
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
| | - Martina Delgado-Pinar
- Department of Applied Physics and Electromagnetism-ICMUV, Universitat de València, Burjassot, 46100, Spain
| | - Miquel Avella-Oliver
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain
| | - Daniel Pastor
- Photonics Research Labs, Universitat Politècnica de València, 46021, Valencia, Spain
| | - Miguel V Andrés
- Department of Applied Physics and Electromagnetism-ICMUV, Universitat de València, Burjassot, 46100, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
24
|
Chen P, Huang Y, Bo Y, Liang H, Xiao A, Guan BO. 3D nanointerface enhanced optical microfiber for real-time detection and sizing of single nanoparticles. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 407:127143. [PMID: 33013189 PMCID: PMC7524536 DOI: 10.1016/j.cej.2020.127143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Portable devices, which can detect and characterize the individual nanoparticles in real time, are of insignificant interest for early diagnosis, homeland security, semiconductor manufacturing and environmental monitoring. Optical microfibers present a good potential in this field, however, are restricted by the sensitivity limit. This study reports the development of a 3D plasmonic nanointerface, which is made of a Cu-BTC framework supporting Cu3-xP nanocrystals, enhancing the optical microfiber for real-time detection and sizing of single nanoparticles. The Cu3-xP nanocrystals are successfully embedded in the 3D Cu-BTC framework. The localized-surface plasmon resonance is tuned to coincide with the evanescent field of the optical microfiber. The 3D Cu-BTC framework, as the scaffold of nanocrystals, confines the local resonance field on the microfiber with three dimensions, at which the binding of target nanoparticles occurs. Based on the evanescent field confinement and surface enhancement by the nanointerface, the optical microfiber sensor overcomes its sensitivity limit, and enables the detection and sizing of the individual nanoparticles. The compact size and low optical power supply of the sensor confirm its suitability as a portable device for the real-time single-nanoparticle characterization, especially for the convenient evaluation of the ultrafine particles in the environment. This work opens up an approach to overcome the sensitivity limit of the optical microfibers, as long with stimulating the portable real-time single-nanoparticle detection and sizing.
Collapse
Affiliation(s)
- Pengwei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Yunyun Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Ye Bo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - He Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Aoxiang Xiao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| |
Collapse
|
25
|
Fang F, Li Y, Yang L, Li L, Yan Z, Sun Q. Sensitive and In Situ Hemoglobin Detection Based on a Graphene Oxide Functionalized Microfiber. NANOMATERIALS 2020; 10:nano10122461. [PMID: 33317010 PMCID: PMC7763212 DOI: 10.3390/nano10122461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023]
Abstract
The determination of hemoglobin (Hb) level is indispensable in the pathological study of many blood diseases. Graphene oxide (GO), with its excellent optical properties and great biocompatibility, has attracted significant attention and been widely utilized in biochemical detection. Here, we report an ultrasensitive Hb sensor based on a graphene oxide (GO)-coated microfiber. The GO was utilized as a linking layer deposited on the microfiber surface, which can provide an enhanced local evanescent light field and abundant bonding sites for Hb molecules. The optical microfiber with a compact structure and a strong evanescent light field served as the platform for biosensing. The surface morphology characterized by optical microscope, scanning electron microscope, and Raman spectroscopy offers detailed evidence for the success of GO deposition. The dynamic bonding between GO and target Hb molecules was monitored in real-time through an optical spectrum analyzer. An ultrahigh sensitivity of 6.02 nm/(mg/mL) with a detection limit of 0.17 μg/mL was achieved by tracking the resonant wavelength shift of spectra. It is important to highlight that the detection limit of GO-coated microfiber is 1–2 orders of magnitude lower than other reported fiber optic Hb sensors. Benefiting from high sensitivity, low cost, small size, and fast response, the proposed sensing microfiber coated with GO could be a competitive alternative in the diagnosis of blood diseases and a subject of further research in the medical field.
Collapse
Affiliation(s)
| | | | | | | | | | - Qizhen Sun
- Correspondence: ; Tel.: +86-136-6718-7589
| |
Collapse
|
26
|
Development of a Novel Sensor System Based on Magnetic Microspheres to Detect Cardiac Troponin T. INT J POLYM SCI 2020. [DOI: 10.1155/2020/8855550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute myocardial infarction (AMI) causes irreversible injury to cardiomyocytes in a short time and may result in various complications, severely threatening patient safety. Therefore, it is necessary to predict the possibility of AMI in the prophase. Prognostic detection of biomarkers that specifically reflect myocardial damage in a patient’s blood has become an essential mediating measure to prevent the serious occurrence of AMI. The present study is aimed at exploring a novel sensing system with high specificity and precision based on magnetic microspheres developed to detect cardiac troponin T (cTnT), which is the most specific diagnostic marker for AMI in cardiovascular diseases. Naive human cTnT protein in serum samples and antigens on functional magnetic microspheres will competitively bind with limited specific antibodies. After rapid removal of heterogeneous elements in the sera using a magnetic separator, fluorescein isothiocyanate-labeled immunoglobulin G is added to react with specific antibodies on the magnetic microspheres. Then, a flow cytometer is used to collect signals of different fluorescence intensities. The results show that the method is characterized by economy, high accuracy, and novelty. It can be used for the detection of cTnT in blood at 1.7–106.1 ng/mL, with a detection limit of 0.5 ng/mL. Thus, the proposed sensor improves the accuracy and efficiency of diagnosis before clinical deterioration of AMI.
Collapse
|
27
|
Applications of fiber-optic biochemical sensor in microfluidic chips: A review. Biosens Bioelectron 2020; 166:112447. [DOI: 10.1016/j.bios.2020.112447] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/03/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022]
|
28
|
Hu D, Xu Z, Long J, Xiao P, Liang L, Sun L, Liang H, Ran Y, Guan BO. Label-Free and Reproducible Chemical Sensor Using the Vertical-Fluid-Array Induced Optical Fiber Long Period Grating (VIOLIN). SENSORS (BASEL, SWITZERLAND) 2020; 20:E3415. [PMID: 32560450 PMCID: PMC7349261 DOI: 10.3390/s20123415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Fiber optical refractometers have gained a substantial reputation in biological and chemical sensing domain regarding their label-free and remote-operation working mode. However, the practical breakthrough of the fiber optical bio/chemosensor is impeded by a lack of reconfigurability as well as the explicitness of the determination between bulk and surface refractive indices. In this letter, we further implement the highly flexible and reproducible long period grating called "VIOLIN" in chemical sensing area for the demonstration of moving those obstacles. In this configuration, the liquid is not only leveraged as the chemical carrier but also the periodic modulation of the optical fiber to facilitate the resonant signal. The thiol compound that is adsorbed by the fluidic substrate can be transduced to the pure alteration of the bulk refractive index of the liquid, which can be sensitively perceived by the resonant drift. Taking advantage of its freely dismantled feature, the VIOLIN sensor enables flexible reproduction and high throughput detection, yielding a new vision to the fiber optic biochemical sensing field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China; (D.H.); (Z.X.); (J.L.); (P.X.); (L.L.); (L.S.); (H.L.); (B.-O.G.)
| | | |
Collapse
|
29
|
Xiao P, Sun Z, Huang Y, Lin W, Ge Y, Xiao R, Li K, Li Z, Lu H, Yang M, Liang L, Sun LP, Ran Y, Li J, Guan BO. Development of an optical microfiber immunosensor for prostate specific antigen analysis using a high-order-diffraction long period grating. OPTICS EXPRESS 2020; 28:15783-15793. [PMID: 32549415 DOI: 10.1364/oe.391889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Fiber-optic biosensors are of great interest to many bio/chemical sensing applications. In this study, we demonstrate a high-order-diffraction long period grating (HOD-LPG) for the detection of prostate specific antigen (PSA). A HOD-LPG with a period number of less than ten and an elongated grating pitch could realize a temperature-insensitive and bending-independent biosensor. The bio-functionalized HOD-LPG was capable of detecting PSA in phosphate buffered saline with concentrations ranging from 5 to 500 ng/ml and exhibited excellent specificity. A limit of detection of 9.9 ng/ml was achieved, which is promising for analysis of the prostate specific antigen.
Collapse
|
30
|
Nucleic acid hybridization on a plasmonic nanointerface of optical microfiber enables ultrahigh-sensitive detection and potential photothermal therapy. Biosens Bioelectron 2020; 156:112147. [DOI: 10.1016/j.bios.2020.112147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
|
31
|
Pirzada M, Altintas Z. Recent Progress in Optical Sensors for Biomedical Diagnostics. MICROMACHINES 2020; 11:E356. [PMID: 32235546 PMCID: PMC7231100 DOI: 10.3390/mi11040356] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022]
Abstract
In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
32
|
A surface plasmon resonance biosensor in conjunction with a DNA aptamer-antibody bioreceptor pair for heterogeneous nuclear ribonucleoprotein A1 concentrations in colorectal cancer plasma solutions. Biosens Bioelectron 2020; 154:112065. [PMID: 32056960 DOI: 10.1016/j.bios.2020.112065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
A new DNA aptamer and antibody pair was incorporated into surface plasmon resonance (SPR) sensing platform to detect heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) in plasma at clinically relevant native concentrations for the diagnosis of colorectal cancer (CRC). SPR detection of hnRNP A1 was realized via formation of the surface sandwich complex of aptamer/hnRNP A1/anti-hnRNP A; the specific adsorption of hnRNP A1 onto a gold chip surface modified with a DNA aptamer followed by the adsorption of anti-hnRNP A1. Changes in the refractive unit (RU) with respect to the hnRNP A1 concentration in buffer solutions were monitored at a fixed anti-hnRNP A1 concentration of 90 nM, resulting in a dynamic range of 0.1-10 nM of hnRNP A1. The surface sandwich SPR biosensor was further applied to the direct analysis of undiluted human normal and pooled CRC patient plasma solutions. Our plasma analysis results were compared to those obtained with a commercial enzyme-linked immunosorbent assay kit.
Collapse
|
33
|
Liu R, Ye X, Cui T. Recent Progress of Biomarker Detection Sensors. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7949037. [PMID: 33123683 PMCID: PMC7585038 DOI: 10.34133/2020/7949037] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Early cancer diagnosis and treatment are crucial research fields of human health. One method that has proven efficient is biomarker detection which can provide real-time and accurate biological information for early diagnosis. This review presents several biomarker sensors based on electrochemistry, surface plasmon resonance (SPR), nanowires, other nanostructures, and, most recently, metamaterials which have also shown their mechanisms and prospects in application in recent years. Compared with previous reviews, electrochemistry-based biomarker sensors have been classified into three strategies according to their optimizing methods in this review. This makes it more convenient for researchers to find a specific fabrication method to improve the performance of their sensors. Besides that, as microfabrication technologies have improved and novel materials are explored, some novel biomarker sensors-such as nanowire-based and metamaterial-based biomarker sensors-have also been investigated and summarized in this review, which can exhibit ultrahigh resolution, sensitivity, and limit of detection (LoD) in a more complex detection environment. The purpose of this review is to understand the present by reviewing the past. Researchers can break through bottlenecks of existing biomarker sensors by reviewing previous works and finally meet the various complex detection needs for the early diagnosis of human cancer.
Collapse
Affiliation(s)
- Ruitao Liu
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Xiongying Ye
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
34
|
Xia C, Zhou D, Su Y, Zhou G, Yao L, Sun W, Liu Y. A liquid-crystal-based immunosensor for the detection of cardiac troponin I. Analyst 2020; 145:4569-4575. [DOI: 10.1039/d0an00425a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cardiac troponin I (cTnI) is one of the most sensitive and specific markers of myocardial cell injury. In this study, a label-free biosensor that utilizes the birefringence property of liquid crystal (LC) for the detection of cTnI is demonstrated.
Collapse
Affiliation(s)
- Chunli Xia
- Key Lab of In-fiber Integrated Optics
- Ministry Education of China
- Harbin Engineering University
- Harbin 150001
- China
| | - Dong Zhou
- Key Lab of In-fiber Integrated Optics
- Ministry Education of China
- Harbin Engineering University
- Harbin 150001
- China
| | - Yueming Su
- Key Lab of In-fiber Integrated Optics
- Ministry Education of China
- Harbin Engineering University
- Harbin 150001
- China
| | - Guangkai Zhou
- Department of head and neck surgery
- Affiliated Tumor Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Lishuang Yao
- State Key Laboratory of Applied Optics
- Changchun Institute of Optics
- Fine Mechanics and Physics
- Chinese Academy of Sciences
- Changchun 130033
| | - Weimin Sun
- Key Lab of In-fiber Integrated Optics
- Ministry Education of China
- Harbin Engineering University
- Harbin 150001
- China
| | - Yongjun Liu
- Key Lab of In-fiber Integrated Optics
- Ministry Education of China
- Harbin Engineering University
- Harbin 150001
- China
| |
Collapse
|
35
|
Micro-/Nanofiber Optics: Merging Photonics and Material Science on Nanoscale for Advanced Sensing Technology. iScience 2019; 23:100810. [PMID: 31931430 PMCID: PMC6957875 DOI: 10.1016/j.isci.2019.100810] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/24/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Micro-/nanofibers (MNFs) are optical fibers with diameters close to or below the wavelength of the guided light. These tiny fibers can offer engineerable waveguiding properties including optical confinement, fractional evanescent fields, and surface intensity, which is very attractive to optical sensing on the micro-/nano scale. In this review, we first introduce the basics of MNF optics and MNF optical sensors from physical and chemical to biological applications and review the progress and current status of this field. Then, we review and discuss hybrid MNF structures for advanced optical sensing by merging MNFs with functional structures including chemical indicators, quantum dots, dye molecules, plasmonic nanoparticles, 2-D materials, and optofluidic chips. Thirdly, we introduce the emerging trends in developing MNF-based advanced sensing technology for ultrasensitive, active, and wearable sensors and discuss the future prospects and challenges in this exciting research field. Finally, we end the review with a brief conclusion.
Collapse
|
36
|
Ran Y, Long J, Xu Z, Hu D, Guan BO. Temperature monitorable refractometer of microfiber Bragg grating using a duet of harmonic resonances. OPTICS LETTERS 2019; 44:3186-3189. [PMID: 31259917 DOI: 10.1364/ol.44.003186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
To overcome the temperature cross-sensitivity of the microfiber Bragg grating (m-FBG) refractometer, we propose a novel refractive-index-temperature dual-sensing paradigm involving the third harmonic Bragg resonance that presents distinctive sensing characteristics. Strong resonances are obtained in both 1060 nm and 1550 nm wavebands under the modulation of the UV Talbot pattern. Moreover, higher-order transverse mode coupled resonance is also observed at the third harmonic waveband, supplementing an independent signal for enabling a sensing trio potentially. It is believed that the proposed dual-sensing paradigm would contribute to the m-FBT-based chemoprobes/bioprobes.
Collapse
|
37
|
Cao Y, Wang L, Lu Z, Wang G, Wang X, Ran Y, Feng X, Guan BO. High-speed refractive index sensing system based on Fourier domain mode locked laser. OPTICS EXPRESS 2019; 27:7988-7996. [PMID: 31052624 DOI: 10.1364/oe.27.007988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
A high-speed refractive index sensing system based on the Fourier domain mode locked laser (FDML) and a microfiber Bragg grating (mFBG) is theoretically studied and experimentally demonstrated. Unlike traditional physical parameter sensing systems, which directly use the FDML as the wavelength scanning source and the optical sensor as the spectra shaping component, we inserted an mFBG into the FDML cavity in order to generate time domain pulse signals used for sensing. The wavelength shift in optical frequency domain is converted into time domain pulse drift. The sensitivity of the proposed refractive index (RI) sensing system is improved by two orders of magnitude, compared with the wavelength monitoring method. The scanning speed is as high as 43 kHz. Moreover, the sensitivity curve can be adjusted by tuning the direct current voltage. The nonlinear sensitivity and linear sensitivity with RI can be achieved.
Collapse
|
38
|
Zha Y, Xu Z, Xiao P, Feng F, Ran Y, Guan B. Phase-shifted type-IIa fiber Bragg gratings for high-temperature laser applications. OPTICS EXPRESS 2019; 27:4346-4353. [PMID: 30876051 DOI: 10.1364/oe.27.004346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Phase-shifted Bragg gratings have been extensively implemented in superior in-fiber bandpass filters or wavelength selectors, although high-temperature operation remains a challenge. We propose a phase-shifted type-IIa fiber Bragg grating (PSBG-IIa), which can conduct a notch signal as narrow as 4.8 pm within the stopband. The notch's spectrum and wavelength can be adjusted according to the flexible design of the phase-mask translation. Using the thermal resistance as well as the narrow band notch, the PSBG-IIa is implemented in a distributed Bragg reflector laser structure to demonstrate a single longitudinal mode and single polarization laser output that can stabilize robustly at 500 °C. The results demonstrate that the proposed device qualifies as a high-quality optical regulator, without compromise, in the high-temperature region.
Collapse
|
39
|
Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Regan B, O'Kennedy R, Collins D. Point-of-Care Compatibility of Ultra-Sensitive Detection Techniques for the Cardiac Biomarker Troponin I-Challenges and Potential Value. BIOSENSORS 2018; 8:E114. [PMID: 30469415 PMCID: PMC6316850 DOI: 10.3390/bios8040114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Cardiac biomarkers are frequently measured to provide guidance on the well-being of a patient in relation to cardiac health with many assays having been developed and widely utilised in clinical assessment. Effectively treating and managing cardiovascular disease (CVD) relies on swiftly responding to signs of cardiac symptoms, thus providing a basis for enhanced patient management and an overall better health outcome. Ultra-sensitive cardiac biomarker detection techniques play a pivotal role in improving the diagnostic capacity of an assay and thus enabling a better-informed decision. However, currently, the typical approach taken within healthcare depends on centralised laboratories performing analysis of cardiac biomarkers, thus restricting the roll-out of rapid diagnostics. Point-of-care testing (POCT) involves conducting the diagnostic test in the presence of the patient, with a short turnaround time, requiring small sample volumes without compromising the sensitivity of the assay. This technology is ideal for combatting CVD, thus the formulation of ultra-sensitive assays and the design of biosensors will be critically evaluated, focusing on the feasibility of these techniques for point-of-care (POC) integration. Moreover, there are several key factors, which in combination, contribute to the development of ultra-sensitive techniques, namely the incorporation of nanomaterials for sensitivity enhancement and manipulation of labelling methods. This review will explore the latest developments in cardiac biomarker detection, primarily focusing on the detection of cardiac troponin I (cTnI). Highly sensitive detection of cTnI is of paramount importance regarding the rapid rule-in/rule-out of acute myocardial infarction (AMI). Thus the challenges encountered during cTnI measurements are outlined in detail to assist in demonstrating the drawbacks of current commercial assays and the obstructions to standardisation. Furthermore, the added benefits of introducing multi-biomarker panels are reviewed, several key biomarkers are evaluated and the analytical benefits provided by multimarkers-based methods are highlighted.
Collapse
Affiliation(s)
- Brian Regan
- School of Biotechnology, Dublin City University, 9 Dublin, Ireland.
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, 9 Dublin, Ireland.
- Research Complex, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110 Doha, Qatar.
| | - David Collins
- School of Biotechnology, Dublin City University, 9 Dublin, Ireland.
| |
Collapse
|
41
|
Liang L, Jin L, Ran Y, Sun LP, Guan BO. Fiber Light-Coupled Optofluidic Waveguide (FLOW) Immunosensor for Highly Sensitive Detection of p53 Protein. Anal Chem 2018; 90:10851-10857. [PMID: 30141911 DOI: 10.1021/acs.analchem.8b02123] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Highly sensitive detection of molecular tumor markers is essential for biomarker-based cancer diagnostics. In this work, we showcase the implementation of fiber light-coupled optofluidic waveguide (FLOW) immunosensor for the detection of p53 protein, a typical tumor marker. The FLOW consists of a liquid-core capillary and an accompanying optical fiber, which allows evanescent interaction between light and microfluidic sample. Molecular binding at internal surface of the capillary induces a response in wavelength shift of the transmission spectrum in the optical fiber. To enable highly sensitive molecular detection, the evanescent-wave interaction has been strengthened by enlarging shape factor R via fine geometry control. The proposed FLOW immunosensor works with flowing microfluid, which increases the surface molecular coverage and improves the detection limit. As a result, the FLOW immunosensor presents a log-linear response to the tumor protein at concentrations ranging from 10 fg/mL up to 10 ng/mL. In addition, the nonspecifically adsorbed molecules can be effectively removed by the fluid at an optimal flow rate, which benefits the accuracy of the measurement. Tested in serum samples, the FLOW successfully maintains its sensitivity and specificity on p53 protein, making it suitable for diagnostics applications.
Collapse
Affiliation(s)
- Lili Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China
| | - Long Jin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China
| | - Yang Ran
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China.,Department of Biomedical Engineering , Duke University , Durham , 27708 , United States
| | - Li-Peng Sun
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
42
|
Micro/Nanofibre Optical Sensors: Challenges and Prospects. SENSORS 2018; 18:s18030903. [PMID: 30720780 PMCID: PMC5876663 DOI: 10.3390/s18030903] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/24/2023]
Abstract
Micro/nanofibres (MNFs) are optical fibres with diameters close to or below the vacuum wavelength of visible or near-infrared light. Due to its wavelength- or sub-wavelength scale diameter and relatively large index contrast between the core and cladding, an MNF can offer engineerable waveguiding properties including optical confinement, fractional evanescent fields and surface intensity, which is very attractive to optical sensing on the micro and nanometer scale. In particular, the waveguided low-loss tightly confined large fractional evanescent fields, enabled by atomic level surface roughness and extraordinary geometric and material uniformity in a glass MNF, is one of its most prominent merits in realizing optical sensing with high sensitivity and great versatility. Meanwhile, the mesoporous matrix and small diameter of a polymer MNF, make it an excellent host fibre for functional materials for fast-response optical sensing. In this tutorial, we first introduce the basics of MNF optics and MNF optical sensors, and review the progress and current status of this field. Then, we discuss challenges and prospects of MNF sensors to some extent, with several clues for future studies. Finally, we conclude with a brief outlook for MNF optical sensors.
Collapse
|