1
|
Wang J, Kan C, Jin B. Highly sensitive electrochemical biosensor for MUC1 detection based on DNA-functionalized CdTe quantum dots as signal enhancers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7806-7815. [PMID: 39421884 DOI: 10.1039/d4ay01544d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this paper, an electrochemical biosensor based on a cadmium telluride/polypyrrole (CdTe/PPy) nanocomposite was developed for the detection of MUC1 with high selectivity and sensitivity. Results indicate that the CdTe/PPy nanocomposite is modified on the surface of the glassy carbon electrode (GCE), which affords a large surface area for immobilizing cap-DNA, ensuring its high selectivity and sensitivity. Next, CdTe-linked sig-DNA (MUC1 aptamer) was introduced, allowing the MUC1 aptamer to hybridize with cap-DNA. CdTe is a signal amplification element used to generate a differential pulse voltammetry (DPV) signal. Conceivably, target MUC1 detection was based on current signal change due to concentration change in the signal amplification element CdTe. In the presence of MUC1, the MUC1 aptamer specifically binds to MUC1, resulting in the release of CdTe-sig-DNA from the electrode surface and a decrease in peak current. Under optimized experimental conditions, the electrochemical biosensor is highly selective, sensitive, stable, and reproducible for MUC1 ranging from 0.1 nM to 100 nM with a detection limit of 0.05 nM (S/N = 3). Therefore, the electrochemical biosensor has potential applications in medical disease diagnosis.
Collapse
Affiliation(s)
- JiaJia Wang
- Department of Chemistry, Anhui University, Hefei 230601, China
- School of Materials Science and Chemical Engineering, ChuZhou University, ChuZhou 239200, China
| | - Chun Kan
- Department of Chemistry, Anhui University, Hefei 230601, China
- School of Materials Science and Chemical Engineering, ChuZhou University, ChuZhou 239200, China
| | - Baokang Jin
- Department of Chemistry, Anhui University, Hefei 230601, China
| |
Collapse
|
2
|
Synthiya S, Thilagavathi T, Uthrakumar R, Renuka R, Kaviyarasu K. Studies of pure TiO2 and CdSe doped TiO2 nanocomposites from structural, optical, electrochemical, and photocatalytic perspectives. JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS 2024; 35:1943. [DOI: 10.1007/s10854-024-13729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/13/2024] [Indexed: 01/05/2025]
Abstract
AbstractA low temperature hydrothermal method is employed in this study to synthesize CdSe doped TiO2 nanocomposites. Further characterization and studies of the synthesized particles were carried out. As part of this study, the sample was examined by X-ray diffraction to determine its structure, crystallite size, strain, and crystallinity. Molecules were analyzed by energy dispersive X-ray spectroscopy to determine their chemical composition. By using fourier transform infrared spectroscopy spectroscopy, we were able to observe the presence of functional groups as well as the types of bonds. By analyzing the scanning electron microscopy spectra, we were able to determine the particle size while by analyzing the photoluminescence spectra, we could determine the bandgap energy. To determine the nature of materials and their effective photocatalytic behavior, optical bandgap energies were observed in the ultra-violet visible spectrum of synthesized particles. For determining the charge transfer mechanism and specific capacitance, electrochemical studies were conducted using electrochemical impedance spectroscopy and cyclic voltammetry analysis. The degradation of malachite green and Rhodamine-B dyes with CdSe doped TiO2 nanocomposites in the visible region was studied for photocatalytic activity, degradation efficiency, and rate constant. According to the results, doped nanoparticles increased the efficiency of RhB dye degradation by ~ 4% and MG dye degradation by ~ 20% over pure nanoparticles.
Collapse
|
3
|
Wang J, Dong W, Yang X, Li Y, Jin B. Biosensors based on DNA-functionalized CdTe quantum dots for the enhanced electrochemical detection of human-IgG. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37424508 DOI: 10.1039/d3ay00676j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Electrochemical detection of human-IgG via biosensors is vital in clinical diagnostics, owing to their simple equipment, facile operation, high selectivity, economical, short diagnostic time, fast response, and easy miniaturization, but the need to improve sensitivity for protein detection is still a barrier limiting its wider practical applications. A hypersensitized electrochemical biosensor based on steric effects for IgG detection was developed in this work. The results indicate that IgG-modified sig-DNA attached to CdTe quantum dots (CdTe-sig-DNA) limited the ability of CdTe-sig-DNA or CdTe-sig-DNA-IgG conjugate to hybridize through the captured DNA strand (cap-DNA) immobilized on a chitosan/nitrogen-doped carbon nanocomposite (CS/N-C) modified glassy carbon electrode surface (GCE). The concentration of IgG based on CdTe concentration was detected by differential pulse anode stripping voltammetry (DPASV) on the electrode surface. The efficiency for hybridizing CdTe-sig-DNA with cap-DNA was found to be logarithmically inverse to the concentration of IgG attached. A highly sensitive and selective detection of IgG from 5 pM to 50 μM with a relatively low detection limit of 1.7 pM was achieved. Therefore, the steric hindrance effect of IgG limited the quantity of DNA that could be functionalized on CdTe QDs, significantly improving the signal, and providing a practical strategy for the clinical analysis of IgG.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Wenhui Dong
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Xiaomin Yang
- Respiratory Medicine Department, The First People's Hospital of Chuzhou, Chuzhou 239001, China
| | - Yanan Li
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Baokang Jin
- Department of Chemistry, Anhui University, Hefei 230601, China.
| |
Collapse
|
4
|
You J, Park H, Lee H, Jang K, Park J, Na S. Sensitive and selective DNA detecting electrochemical sensor via double cleaving CRISPR Cas12a and dual polymerization on hyperbranched rolling circle amplification. Biosens Bioelectron 2023; 224:115078. [PMID: 36641878 DOI: 10.1016/j.bios.2023.115078] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Electrochemical sensors are widely used for nucleic acid detection. However, they exhibit low sensitivity and specificity. To overcome these limitations, DNA amplification method is necessary. In this study, we introduced CRISPR (Clustered regularly interspaced short palindromic repeats) Cas12a-dependent hyperbranched rolling circle amplification (HRCA) into an electrochemical sensor platform. By resolving the existing false-positive issue of HRCA, CRISPR Cas12a determines the real positive amplification that able to enhance its sensitivity for extremely low concentrations of nucleic acids and specificity for single-point mutations. In detail, CRISPR Cas12a, which activates the nucleic acid amplification reaction, was used for both trans and cis cleavage for the first time. Finally, selectively amplified DNA was detected using a screen-printed electrode. Using the change in surface coverage by DNA, the electrochemical sensor detected a decrease in the redox signal. In summary, combining a novel DNA amplification method and electrochemical sensor platform, our proposed method compensates for the shortcomings of existing RCA and hyperbranched RCA, secures a high sensitivity of 10 aM, and overcomes false-positivity problems. Moreover, such creative applications of CRISPR Cas12a may lead to the expansion of its applications to other nucleic acid amplification methods.
Collapse
Affiliation(s)
- Juneseok You
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunjun Park
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hakbeom Lee
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kuewhan Jang
- School of Mechanical and Automotive Engineering, Hoseo University, Asan, 31499, Republic of Korea
| | - Jinsung Park
- Department of Biomechatronics Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, 16419, Republic of Korea.
| | - Sungsoo Na
- Department of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Ribeiro JF, Melo JR, Santos CDL, Chaves CR, Cabral Filho PE, Pereira G, Santos BS, Pereira GA, Rosa DS, Ribeiro RT, Fontes A. Sensitive Zika Biomarker Detection Assisted by Quantum Dot-Modified Electrochemical Immunosensing Platform. Colloids Surf B Biointerfaces 2022; 221:112984. [DOI: 10.1016/j.colsurfb.2022.112984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/04/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
6
|
Safitri E, Heng LY, Ahmad M, Tan LL, Nazaruddin N, Suhud K, Chiang CP, Iqhrammullah M. Electrochemical DNA Biosensor Based on Mercaptopropionic Acid-Capped ZnS Quantum Dots for Determination of the Gender of Arowana Fish. BIOSENSORS 2022; 12:bios12080650. [PMID: 36005045 PMCID: PMC9405751 DOI: 10.3390/bios12080650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
A new electrochemical DNA biosensor based on mercaptopropionic acid (MPA)-capped ZnS quantum dots (MPA-ZnS QDs) immobilization matrix for covalent binding with 20-base aminated oligonucleotide has been successfully developed. Prior to the modification, screen-printed carbon paste electrode (SPE) was self-assembled with multilayer gold nanoparticles (AuNPs) and cysteamine (Cys). The inclusion of MPA-ZnS QDs semiconducting material in modified electrodes has enhanced the electron transfer between the SPE transducer and DNA leading to improved bioanalytical assay of target biomolecules. Electrochemical studies performed by cyclic voltammetry (CV) and differential pulsed voltammetry (DPV) demonstrated that the MPA-ZnS QDs modified AuNPs electrode was able to produce a lower charge transfer resistance response and hence higher electrical current response. Under optimal conditions, the immobilized synthetic DNA probe exhibited high selectivity towards synthetic target DNA. Based on the DPV response of the reduction of anthraquinone monosulphonic acid (AQMS) redox probe, the MPA-ZnS QDs-based electrochemical DNA biosensor responded to target DNA concentration from 1 × 10−9 μM to 1 × 10−3 μM with a sensitivity 1.2884 ± 0.12 µA, linear correlation coefficient (R2) of 0.9848 and limit of detection (LOD) of 1 × 10−11 μM target DNA. The DNA biosensor exhibited satisfactory reproducibility with an average relative standard deviation (RSD) of 7.4%. The proposed electrochemical transducer substrate has been employed to immobilize the aminated Arowana fish (Scleropages formosus) DNA probe. The DNA biosensor showed linearity to target DNA from 1 × 10−11 to 1 × 10−6 µM (R2 = 0.9785) with sensitivity 1.1251 ± 0.243 µA and LOD of 1 × 10−11 µM. The biosensor has been successfully used to determine the gender of Arowana fish without incorporating toxic raw materials previously employed in the hazardous processing conditions of polypyrrole chemical conducting polymer, whereby the cleaning step becomes difficult with thicker films due to high levels of toxic residues from the decrease in polymerization efficacy as films grew.
Collapse
Affiliation(s)
- Eka Safitri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia
- Correspondence:
| | - Lee Yook Heng
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| | - Musa Ahmad
- Chemical Technology Program, Faculty of Science and Technology, University Sains Islam Malaysia (USIM), Nilai 91800, Negeri Sembilan, Malaysia
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| | - Nazaruddin Nazaruddin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia
| | - Khairi Suhud
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia
| | - Chew Poh Chiang
- Freshwater Fisheries Research Division, Fisheries Research Institute Glami Lemi, Jelebu 71650, Negeri Sembilan, Malaysia
| | - Muhammad Iqhrammullah
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
7
|
Hu M, Liang G, Chen K, Zhu L, Xu M, Wang M, Li J, He L, Zhang Z, Du M. Conjugated bimetallic cobalt/iron polyphthalocyanine as an electrochemical aptasensing platform for impedimetric determination of enrofloxacin in diverse environments. Mikrochim Acta 2021; 188:432. [PMID: 34822036 DOI: 10.1007/s00604-021-05086-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/31/2021] [Indexed: 12/13/2022]
Abstract
The synthesis of bimetallic cobalt/iron polyphthalocyanine (represented by polyCoFePc) network via a modified solid-phase synthesis method is described. It was exploited as a platform for anchoring enrofloxacin (ENR)-targeted aptamer strands, thus, fabricating a label-free impedimetric aptasensor for determination of ENR. The polyCoFePc exhibited a porous two-dimensional (2D) conjugated nanostructure and rich functional groups, and showed a superior binding interaction toward aptamer strands as compared to monometallic polyFePc and polyCoPc networks. This finding was attributed to structural defects and increased active binding sites, thereby giving a highly sensitive detection ability toward ENR. By using electrochemical impedance spectroscopy (EIS), the polyCoFePc-based electrochemical aptasensor exhibited an extremely low detection limit of 0.06 fg mL-1 within the ENR concentration from 0.1 fg mL-1 to 100 pg mL-1, along with high selectivity, good reproducibility, and remarkable stability. Interestingly, the constructed polyCoFePc-based aptasensor also demonstrated wide practicability in various environments. The recoveries of ENR spiked into river water, milk, and pork samples ranged within 91.2 - 107.2%, 90.5 - 109.6%, and 91.2 - 102.3%, respectively.
Collapse
Affiliation(s)
- Min Hu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Gaolei Liang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Kun Chen
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Lei Zhu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Miaoran Xu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Junguang Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Linghao He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China.
| | - Miao Du
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
8
|
Zhou X, Pu Q, Yu H, Peng Y, Li J, Yang Y, Chen H, Weng Y, Xie G. An electrochemical biosensor based on hemin/G-quadruplex DNAzyme and PdRu/Pt heterostructures as signal amplifier for circulating tumor cells detection. J Colloid Interface Sci 2021; 599:752-761. [PMID: 33989928 DOI: 10.1016/j.jcis.2021.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/21/2022]
Abstract
Metastasis due to circulating tumor cells (CTCs) shed from the original tumor accounts for the majority of cancer-related death. Efficient CTCs detection is pivotal to the diagnosis of early cancer metastasis. In this work, Platinum nanoparticles (PtNPs) decorated hyperbranched PdRu nanospines (PdRu/Pt) hierarchical structures were firstly synthesized to detect CTCs with the assistance of DNAzyme. Meanwhile, Super P and gold nanoparticles (AuNPs) acted as sensing medium to improve electrical conductivity and immobilization of anti-EpCAM antibody to specifically capture model CTCs. After immune-conjugation of anti-EpCAM-MCF-7-signal probes on the gold electrode, PtNPs, PdRu nanospines (PdRuNSs) and hemin/G-quadruplex co-catalyzed substrate H2O2 to realize multiplexed signal amplification, which significantly improves the analytical performance of the electrochemical biosensor. As-proposed biosensor reached a limit of detection (LOD) down to 2 cells mL-1 and showed a wide detection range of 2 to 106 cells mL-1. Application of the biosensor to detect MCF-7 cells spiked human blood samples further demonstrated the feasibility for early cancer evaluation in clinic.
Collapse
Affiliation(s)
- Xi Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Qinli Pu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Yang Peng
- Clinical Laboratory Medicine Center, Chongqing University Cancer Hospital, Chongqing 400030, PR China
| | - Junjie Li
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Yujun Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Huajian Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China; Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yaguang Weng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China.
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China.
| |
Collapse
|
9
|
Li P, Ma G, Wu K, Deng A, Li J. An electrochemiluminescence energy resonance transfer system for highly sensitive detection of brombuterol. Talanta 2021; 223:121687. [PMID: 33303140 DOI: 10.1016/j.talanta.2020.121687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/17/2022]
Abstract
In this work, an electrochemiluminescence resonance energy transfer (ECL-RET) system was established based on the modified graphite phase carbon nitride to detect brombuterol residues in food. The ultrasonic-assisted acidification exfoliation modification improved the conductivity and specific surface area of the graphite phase carbon nitride (g-C3N4). In addition, the carboxylated g-C3N4 nanosheets as ECL donors and the Au-Ag alloy nanoparticles as ECL acceptors could respectively directly carry antigen and antibody. Therefore, the trouble of introducing additional bridge molecules was avoided. A competitive immunoassay strategy was used for the detection of brombuterol, where brombuterol in the sample would compete with the coating antigen for the limited binding sites on antibody. The proposed ECL immunosensor for brombuterol detection exhibited high sensitivity with a wide linear range from 0.001 ng mL-1 to 1000 ng mL-1 and a low detection limit at 0.31 pg mL-1. This work adopts a very simple way to design the sensor without losing its sensitivity, bringing convenience to its possible future applications.
Collapse
Affiliation(s)
- Pengcheng Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Guoyu Ma
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, PR China
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
10
|
Badıllı U, Mollarasouli F, Bakirhan NK, Ozkan Y, Ozkan SA. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Huang Y, Zhang L, Zhang S, Zhao P, Li L, Ge S, Yu J. Paper-based electrochemiluminescence determination of streptavidin using reticular DNA-functionalized PtCu nanoframes and analyte-triggered DNA walker. Mikrochim Acta 2020; 187:530. [PMID: 32860548 DOI: 10.1007/s00604-020-04515-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
A paper-based electrochemiluminescence (ECL) biosensor characterized by the signal amplification of reticular DNA-functionalized PtCu nanoframes (DNA-PtCuTNFs) and analyte-triggered DNA walker was developed for sensitive streptavidin assay. Silver microflower functionalized paper-based sensing platform was prepared to fix the hairpin strand (S1). With addition of the streptavidin, plenty of DNA walkers consisting of the walking strands (S2) labeled with biotin and streptavidin were established, which protected S2 from digestion via the terminal protection mechanism. The sequential introduction of the DNA walker and capture probe initiated the hairpin structure opening of S1 and strand displacement reaction (SDR) happening, causing the S2 release. Subsequently, S1 hybridized with S3. The free S2 further hybridized with adjacent S1 to trigger the next cycle. After multiple cycles, the DNA-PtCuTNFs, the fire-new signal enhancer, with remarkable peroxidase activity, were successfully attached onto the paper electrode via metal-catalyst-free click chemistry. Based on the SDR of the DNA walker and the catalysis of DNA-PtCuTNFs, a significantly boosted ECL signal of luminol was obtained. Under the optimal conditions, the developed sensor for streptavidin assay exhibited a low detection limit of 33.4 fM with a linear range from 0.1 pM to 0.1 μM. Graphical abstract.
Collapse
Affiliation(s)
- Yuzhen Huang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, People's Republic of China.,Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, People's Republic of China
| | - Sibao Zhang
- Chemical Technology Academy of Shandong Province, Qingdao University of Science and Technology, Jinan, 250014, People's Republic of China
| | - Peini Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Li Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Jinghua Yu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
12
|
Shen H, Wang C, Ren C, Zhang G, Zhang Y, Li J, Hu X, Yang Z. A streptavidin-functionalized tin disulfide nanoflake-based ultrasensitive electrochemical immunosensor for the detection of tumor markers. NEW J CHEM 2020. [DOI: 10.1039/d0nj00160k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Universal and novel streptavidin-functionalized tin disulfide nanoflakes (SnS2 NFs) have been explored for the first time to develop an ultrasensitive electrochemical immunosensor for the detection of tumor markers.
Collapse
Affiliation(s)
- Huifang Shen
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Chu Wang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Chuanli Ren
- Clinical Medical College of Yangzhou University
- Yangzhou
- P. R. China
| | - Geshan Zhang
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- P. R. China
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Juan Li
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| | - Zhanjun Yang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- P. R. China
| |
Collapse
|
13
|
|
14
|
Ehzari H, Safari M, Shahlaei M. A signal amplification by QDs used for ferrocene-labeled sandwich aptasensor for determination of Hg2+ in water samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01718-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Suo Z, Chen J, Hou X, Hu Z, Xing F, Feng L. Growing prospects of DNA nanomaterials in novel biomedical applications. RSC Adv 2019; 9:16479-16491. [PMID: 35516377 PMCID: PMC9064466 DOI: 10.1039/c9ra01261c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
As an important genetic material for life, DNA has been investigated widely in recent years, especially in interdisciplinary fields crossing nanomaterials and biomedical applications. It plays an important role because of its extraordinary molecular recognition capability and novel conformational polymorphism. DNA is also a powerful and versatile building block for the fabrication of nanostructures and nanodevices. Such DNA-based nanomaterials have also been successfully applied in various aspects ranging from biosensors to biomedicine and special logic gates, as well as in emerging molecular nanomachines. In this present mini-review, we briefly overview the recent progress in these fields. Furthermore, some challenges are also discussed in the conclusions and perspectives section, which aims to stimulate broader scientific interest in DNA nanotechnology and its biomedical applications.
Collapse
Affiliation(s)
- Zhiguang Suo
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Jingqi Chen
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Xialing Hou
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Ziheng Hu
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| | - Feifei Xing
- Department of Chemistry, College of Science, Shanghai University Shanghai 200444 China
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University Shanghai 200444 China
| |
Collapse
|
16
|
Hu Z, Suo Z, Liu W, Zhao B, Xing F, Zhang Y, Feng L. DNA conformational polymorphism for biosensing applications. Biosens Bioelectron 2019; 131:237-249. [PMID: 30849723 DOI: 10.1016/j.bios.2019.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
In this mini review, we will briefly introduce the rapid development of DNA conformational polymorphism in biosensing field, including canonical DNA duplex, triplex, quadruplex, DNA origami, as well as more functionalized DNAs (aptamer, DNAzyme etc.). Various DNA structures are adopted to play important roles in sensor construction, through working as recognition receptor, signal reporter or linking staple for signal motifs, etc. We will mainly summarize their recent developments in DNA-based electrochemical and fluorescent sensors. For the electrochemical sensors, several types will be included, e.g. the amperometric, electrochemical impedance, electrochemiluminescence, as well as field-effect transistor sensors. For the fluorescent sensors, DNA is usually modified with fluorescent molecules or novel nanomaterials as report probes, excepting its core recognition function. Finally, general conclusion and future perspectives will be discussed for further developments.
Collapse
Affiliation(s)
- Ziheng Hu
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Zhiguang Suo
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Wenxia Liu
- Department of Chemistry, College of Science, Shanghai University, 200444 Shanghai, China
| | - Biying Zhao
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Feifei Xing
- Department of Chemistry, College of Science, Shanghai University, 200444 Shanghai, China
| | - Yuan Zhang
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China.
| | - Lingyan Feng
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China.
| |
Collapse
|
17
|
Tian C, Wang L, Luan F, Fu X, Zhuang X, Chen L. A novel electrochemiluminescent emitter of europium hydroxide nanorods and its application in bioanalysis. Chem Commun (Camb) 2019; 55:12479-12482. [DOI: 10.1039/c9cc07129f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The high electrochemiluminescence intensity from europium hydroxide nanorods was reported for sensitive detection of thrombin.
Collapse
Affiliation(s)
- Chunyuan Tian
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Li Wang
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Feng Luan
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Xiuli Fu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Xuming Zhuang
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
18
|
Yang Y, Fu Y, Su H, Mao L, Chen M. Sensitive detection of MCF-7 human breast cancer cells by using a novel DNA-labeled sandwich electrochemical biosensor. Biosens Bioelectron 2018; 122:175-182. [PMID: 30265967 DOI: 10.1016/j.bios.2018.09.062] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 01/23/2023]
Abstract
The simple, rapid, sensitive, and specific detection of cancer cells plays a pivotal role in the diagnosis and prognosis of cancer. We developed a novel DNA-labeled sandwich electrochemical biosensor based on a glassy carbon electrode modified with 3D graphene and a hybrid of Au nanocages (Au NCs)/amino-functionalized multiwalled carbon nanotubes (MWCNT-NH2) for label-free and selective detection of MCF-7 breast cancer cells via differential pulse voltammetry. The layer-by-layer assembly and cell-detection performance of the Au NCs/MWCNTs-NH2-based biosensor were investigated using scanning electron microscopy and electrochemical methods including cyclic voltammetry and electrochemical impedance spectroscopy. Owing to the advantages of DNA-labeled antibodies and a nanomaterial-based signal amplification strategy, the fabricated cytosensor exhibited high specificity and sensitivity when detecting MCF-7 cells in the range of 1.0 × 102 to 1.0 × 106 cells mL-1 with a low detection limit of 80 cells mL-1 (3σ/slope). Furthermore, the biosensor exhibited high selectivity when detecting MCF-7 cells and showed considerable potential for practical applications. The proposed DNA-labeled sandwich electrochemical biosensor provides a stable, sensitive approach to detecting cancer cells and is promising in terms of potential applications to cancer diagnosis.
Collapse
Affiliation(s)
- Yuhan Yang
- School of Biology Science And Technology, Chengdu Medical College, Chengdu, Sichuan 610500, PR China
| | - Yongyao Fu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Fuling District, Chongqing 408100, PR China
| | - Huilan Su
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Li Mao
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Mei Chen
- School of Biology Science And Technology, Chengdu Medical College, Chengdu, Sichuan 610500, PR China.
| |
Collapse
|
19
|
Aydindogan E, Guler Celik E, Odaci Demirkol D, Yamada S, Endo T, Timur S, Yagci Y. Surface Modification with a Catechol-Bearing Polypeptide and Sensing Applications. Biomacromolecules 2018; 19:3067-3076. [DOI: 10.1021/acs.biomac.8b00650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Eda Aydindogan
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Emine Guler Celik
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Dilek Odaci Demirkol
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Shuhei Yamada
- Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555, Japan
| | - Takeshi Endo
- Molecular Engineering Institute, Kinki University, 11-6 Kayanomori, Iizuka, Fukuoka 820-8555, Japan
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, 35100 Bornova, Izmir, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- Faculty of Science, Chemistry Department, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|