1
|
Wu Z, Yang H, Li X, Ji X, Mo C, Zheng Z, Xu Y, Xiong D. Circulating tumor DNA laboratory processes and clinical applications in nasopharyngeal carcinoma. Front Oncol 2025; 15:1520733. [PMID: 40444084 PMCID: PMC12119280 DOI: 10.3389/fonc.2025.1520733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/28/2025] [Indexed: 06/02/2025] Open
Abstract
Circulating tumor DNA (ctDNA), a subset of cell-free DNA (cfDNA), originates from primary tumors and metastatic lesions in cancer patients, often carrying genomic variations identical to those of the primary tumor. ctDNA analysis via liquid biopsy has proven to be a valuable biomarker for early cancer detection, minimal residual disease (MRD) assessment, monitoring tumor recurrence, and evaluating treatment efficacy. However, despite advancements in ctDNA analysis technologies, standardized protocols for its extraction and detection have yet to be established. Each step of the process-from pre-analytical variables to detection techniques-significantly impacts the accuracy and reliability of ctDNA analysis. This review examines recent developments in ctDNA detection methods, focusing on pre-analytical factors such as specimen types, collection tubes, centrifugation protocols, and storage conditions, alongside high-throughput and ultra-sensitive detection technologies. It also briefly discusses the clinical potential of liquid biopsy in nasopharyngeal carcinoma (NPC).
Collapse
Affiliation(s)
- Ziman Wu
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haiyan Yang
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| | - Xinying Li
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiang Ji
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chan Mo
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhou Zheng
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yafei Xu
- Department of Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen, China
| | - Dan Xiong
- School of Medical Technology, Xinxiang Medical University, Xinxiang, China
- Medical Laboratory of the Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Chen Z, Liu J, Wang W, Qin G, Liu S, Zhang W, Peng C, Tan Y, Dai Z, Zhen D, Li L. Aptamer-regulated colorimetric and electrochemical dual-mode sensor for the detection of uranyl ions utilizing AuNCs@COF composite. Mikrochim Acta 2025; 192:295. [PMID: 40227446 DOI: 10.1007/s00604-025-07156-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Uranium is the core material for the development of the nuclear industry, but its irreversible radiation damage poses a significant threat to human health. In this context, an innovative dual-mode colorimetric and electrochemical sensor was developed for the detection of uranyl ions (UO22+), utilizing a covalent organic framework@gold nanoclusters (AuNCs@COF) composite. The synthesis of AuNCs@COF was simple, and the incorporation of AuNCs imparted the composite with exceptional peroxidase-like catalytic activity and enhanced electrochemical properties. By regulating the adsorption and desorption of aptamers on the AuNCs@COF surface, both peroxidase-like activity and conductivity were modulated, enabling the detection of UO22+ utilizing colorimetric and electrochemical dual signals. Under optimal conditions, the sensor revealed a broad linear detection range and a low detection limit, with ranges of 1.36 × 10-10-1.36 × 10-5 mol/L for colorimetric detection and 5.0 × 10-10-2.5 × 10-5 mol/L for electrochemical detection, achieving detection limits for these two methods of 107 pmol/L and 347 pmol/L, respectively. Unlike other single-mode sensors for UO22+ detection, this dual-mode sensor demonstrated superior sensitivity, specificity, and repeatability. Furthermore, the results of spiked recovery experiments in real water samples highlight the promising potential of this dual-mode sensor for environmental water monitoring applications.
Collapse
Affiliation(s)
- Zhijun Chen
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, 421001, China
| | - Jinquan Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Province Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, 421001, China.
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, China.
| | - Wenyu Wang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, 421001, China
| | - Guoqing Qin
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, 421001, China
| | - Siru Liu
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, 421001, China
| | - Weilin Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, 421001, China
| | - Changmin Peng
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, 421001, China
| | - Yan Tan
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, 421001, China
| | - Zhongran Dai
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, China
| | - Deshuai Zhen
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Province Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, 421001, China
| | - Le Li
- Department of Health Inspection and Quarantine, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Province Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
He R, Wang S, Ju F, Huang Z, Gao Y, Zhang J, He N, Nie L. Metal Nanocluster-Based Biosensors for DNA Detection. BIOSENSORS 2025; 15:72. [PMID: 39996974 PMCID: PMC11853106 DOI: 10.3390/bios15020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
The early detection of genetic diseases is a critical need in modern medicine, underscoring the importance of developing deoxyribonucleic acid (DNA) biosensors. In recent years, metal nanoclusters (MNCs) have demonstrated significant potential as biosensors for DNA detection due to their ultra-small size, excellent photostability, bright photoluminescence, low toxicity and other outstanding properties. This review firstly discusses the characteristics of MNCs, which are effective in the early diagnosis of DNA diseases. Subsequently, different synthesis methods of MNCs are introduced. In the following section, DNA sensors based on different types of MNCs and their respective detection mechanisms are discussed in detail. Finally, the opportunities and challenges faced by DNA sensors based on MNCs are analyzed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (R.H.); (S.W.); (F.J.); (Z.H.); (Y.G.); (J.Z.)
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (R.H.); (S.W.); (F.J.); (Z.H.); (Y.G.); (J.Z.)
| |
Collapse
|
4
|
Kumar S, Poria R, Kala D, Nagraik R, Dhir Y, Dhir S, Singh B, Kaushik NK, Noorani MS, Kumar D, Gupta S, Kaushal A. Recent advances in ctDNA detection using electrochemical biosensor for cancer. Discov Oncol 2024; 15:517. [PMID: 39356360 PMCID: PMC11448507 DOI: 10.1007/s12672-024-01365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
In the quest for early cancer diagnosis, early identification and treatment are paramount. Recently, ctDNA detection has emerged as a viable avenue for early screening of cancer. The examination of ctDNA in fluid biopsies has gained substantial attention in tumor diagnosis and therapy. Both the scientific community and industry are actively exploring this field. However, developing cost-effective, portable, and real-time ctDNA measurement methods using conventional gene detection equipment poses a significant challenge. This challenge has led to the exploration of alternative approaches. Electrochemical biosensors, distinguished by their heightened sensitivity, remarkable specificity, affordability, and excellent portability, have emerged as a promising avenue for ctDNA detection. This review is dedicated to the specific focus on ctDNA detection, highlighting recent advancements in this evolving detection technology. We aimed to reference previous studies related to ctDNA-targeted cancer detection using electrochemical biosensors to advocate the utilization of electrochemical biosensors in healthcare diagnostics. Further research is imperative for the effective integration of ctDNA analysis into point-of-care cancer testing. Innovative approaches utilizing multiple markers need to be explored to advance this technology and make substantial contributions to societal well-being.
Collapse
Affiliation(s)
- Sahil Kumar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Deepak Kala
- NL-11 Centera Tetrahertz Laboratory, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, Warsaw, 01142, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Yashika Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Sunny Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Bharat Singh
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Naveen Kumar Kaushik
- Department of Industrial Biotechnology, College of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India.
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India.
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India.
| |
Collapse
|
5
|
Huang FF, Di XF, Bai MH. Analysis of urine cell-free DNA in bladder cancer diagnosis by emerging bioactive technologies and materials. Front Bioeng Biotechnol 2024; 12:1458362. [PMID: 39295845 PMCID: PMC11408225 DOI: 10.3389/fbioe.2024.1458362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
Urinary cell-free DNA (UcfDNA) is gaining recognition as an important biomarker for diagnosing bladder cancer. UcfDNA contains tumor derived DNA sequences, making it a viable candidate for non-invasive early detection, diagnosis, and surveillance of bladder cancer. The quantification and qualification of UcfDNA have demonstrated high sensitivity and specificity in the molecular characterization of bladder cancer. However, precise analysis of UcfDNA for clinical bladder cancer diagnosis remains challenging. This review summarizes the history of UcfDNA discovery, its biological properties, and the quantitative and qualitative evaluations of UcfDNA for its clinical significance and utility in bladder cancer patients, emphasizing the critical role of UcfDNA in bladder cancer diagnosis. Emerging bioactive technologies and materials currently offer promising tools for multiple UcfDNA analysis, aiming to achieve more precise and efficient capture of UcfDNA, thereby significantly enhancing diagnostic accuracy. This review also highlights breakthroughs in detection technologies and substrates with the potential to revolutionize bladder cancer diagnosis in clinic.
Collapse
Affiliation(s)
- Fei-Fei Huang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiao-Fei Di
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Mo-Han Bai
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Mishra M, Ahmed R, Das DK, Pramanik DD, Dash SK, Pramanik A. Recent Advancements in the Application of Circulating Tumor DNA as Biomarkers for Early Detection of Cancers. ACS Biomater Sci Eng 2024; 10:4740-4756. [PMID: 38950521 PMCID: PMC11322919 DOI: 10.1021/acsbiomaterials.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Early detection of cancer is vital for increasing patient survivability chances. The three major techniques used to diagnose cancers are instrumental examination, tissue biopsy, and tumor biomarker detection. Circulating tumor DNA (ctDNA) has gained much attention in recent years due to advantages over traditional technology, such as high sensitivity, high specificity, and noninvasive nature. Through the mechanism of apoptosis, necrosis, and circulating exosome release in tumor cells, ctDNA can spread throughout the circulatory system and carry modifications such as methylations, mutations, gene rearrangements, and microsatellite instability. Traditional gene-detection technology struggles to achieve real-time, low-cost, and portable ctDNA measurement, whereas electrochemical biosensors offer low cost, high specificity alongside sensitivity, and portability for the detection of ctDNA. Therefore, this review focuses on describing the recent advancements in ctDNA biomarkers for various cancer types and biosensor developments for real-time, noninvasive, and rapid ctDNA detection. Further in the review, ctDNA sensors are also discussed in regards to their selections of probes for receptors based on the electrode surface recognition elements.
Collapse
Affiliation(s)
- Mahima Mishra
- Amity Institute
of Biotechnology, Amity University, Noida 201301, India
| | - Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda-732103, West Bengal, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, 281406 Uttar Pradesh, India
| | | | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda-732103, West Bengal, India
| | - Arindam Pramanik
- Amity Institute
of Biotechnology, Amity University, Noida 201301, India
- School of Medicine, University of Leeds, Leeds LS53RL, United Kingdom
| |
Collapse
|
7
|
Duan X, Qin W, Hao J, Yu X. Recent advances in the applications of DNA frameworks in liquid biopsy: A review. Anal Chim Acta 2024; 1308:342578. [PMID: 38740462 DOI: 10.1016/j.aca.2024.342578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Cancer is one of the serious threats to public life and health. Early diagnosis, real-time monitoring, and individualized treatment are the keys to improve the survival rate and prolong the survival time of cancer patients. Liquid biopsy is a potential technique for cancer early diagnosis due to its non-invasive and continuous monitoring properties. However, most current liquid biopsy techniques lack the ability to detect cancers at the early stage. Therefore, effective detection of a variety of cancers is expected through the combination of various techniques. Recently, DNA frameworks with tailorable functionality and precise addressability have attracted wide spread attention in biomedical applications, especially in detecting cancer biomarkers such as circulating tumor cells (CTCs), exosomes and circulating tumor nucleic acid (ctNA). Encouragingly, DNA frameworks perform outstanding in detecting these cancer markers, but also face some challenges and opportunities. In this review, we first briefly introduced the development of DNA frameworks and its typical structural characteristics and advantages. Then, we mainly focus on the recent progress of DNA frameworks in detecting commonly used cancer markers in liquid-biopsy. We summarize the advantages and applications of DNA frameworks for detecting CTCs, exosomes and ctNA. Furthermore, we provide an outlook on the possible opportunities and challenges for exploiting the structural advantages of DNA frameworks in the field of cancer diagnosis. Finally, we envision the marriage of DNA frameworks with other emerging materials and technologies to develop the next generation of disease diagnostic biosensors.
Collapse
Affiliation(s)
- Xueyuan Duan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Weiwei Qin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| | - Jicong Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Science, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
8
|
Daems E, Bassini S, Mariën L, Op de Beeck H, Stratulat A, Zwaenepoel K, Vandamme T, Op de Beeck K, Koljenović S, Peeters M, Van Camp G, De Wael K. Singlet oxygen-based photoelectrochemical detection of single-point mutations in the KRAS oncogene. Biosens Bioelectron 2024; 249:115957. [PMID: 38199080 DOI: 10.1016/j.bios.2023.115957] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Single nucleotide point mutations in the KRAS oncogene occur frequently in human cancers, rendering them intriguing targets for diagnosis, early detection and personalized treatment. Current detection methods are based on polymerase chain reaction, sometimes combined with next-generation sequencing, which can be expensive, complex and have limited availability. Here, we propose a novel singlet oxygen (1O2)-based photoelectrochemical detection methodology for single-point mutations, using KRAS mutations as a case study. This detection method combines the use of a sandwich assay, magnetic beads and robust chemical photosensitizers, that need only air and light to produce 1O2, to ensure high specificity and sensitivity. We demonstrate that hybridization of the sandwich hybrid at high temperatures enables discrimination between mutated and wild-type sequences with a detection rate of up to 93.9%. Additionally, the presence of background DNA sequences derived from human cell-line DNA, not containing the mutation of interest, did not result in a signal, highlighting the specificity of the methodology. A limit of detection as low as 112 pM (1.25 ng/mL) was achieved without employing any amplification techniques. The developed 1O2-based photoelectrochemical methodology exhibits unique features, including rapidity, ease of use, and affordability, highlighting its immense potential in the field of nucleic acid-based diagnostics.
Collapse
Affiliation(s)
- Elise Daems
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Simone Bassini
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Laura Mariën
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, 2650, Belgium; Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
| | - Hannah Op de Beeck
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Alexandr Stratulat
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium
| | - Karen Zwaenepoel
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium; Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
| | - Timon Vandamme
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium; Department of Oncology and Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital, Edegem, 2650, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, 2650, Belgium; Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
| | - Senada Koljenović
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium; Department of Pathology, Antwerp University Hospital, Edegem, 2650, Belgium
| | - Marc Peeters
- Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium; Department of Oncology and Multidisciplinary Oncological Center Antwerp (MOCA), Antwerp University Hospital, Edegem, 2650, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, 2650, Belgium; Center for Oncological Research, Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, 2610, Belgium
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Antwerp, 2020, Belgium; NANOlab Center of Excellence, University of Antwerp, Antwerp, 2020, Belgium.
| |
Collapse
|
9
|
Li C, Jia H, Wei X, Xue G, Xu J, Cheng R, Cheng Y, Song Q, Shen Z, Xue C. Single-Nucleotide-Specific Lipidic Nanoflares for Precise and Visible Detection of KRAS Mutations via Toehold-Initiated Self-Priming DNA Polymerization. Anal Chem 2024; 96:4205-4212. [PMID: 38433457 DOI: 10.1021/acs.analchem.3c05511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Accurate identification of single-nucleotide mutations in circulating tumor DNA (ctDNA) is critical for cancer surveillance and cell biology research. However, achieving precise and sensitive detection of ctDNAs in complex physiological environments remains challenging due to their low expression and interference from numerous homologous species. This study introduces single-nucleotide-specific lipidic nanoflares designed for the precise and visible detection of ctDNA via toehold-initiated self-priming DNA polymerization (TPP). This system can be assembled from only a single cholesterol-conjugated multifunctional molecular beacon (MMB) via hydrophobicity-mediated aggregation. This results in a compact, high-density, and nick-hidden arrangement of MMBs on the surface of lipidic micelles, thereby enhancing their biostability and localized concentrations. The assay commences with the binding of frequently mutated regions of ctDNA to the MMB toehold domain. This domain is the proximal holding point for initiating the TPP-based strand-displacement reaction, which is the key step in enabling the discrimination of single-base mutations. We successfully detected a single-base mutation in ctDNA (KRAS G12D) in its wild-type gene (KRAS WT), which is one of the most frequently mutated ctDNAs. Notably, coexisting homologous species did not interfere with signal transduction, and small differences in these variations can be visualized by fluorescence imaging. The limit of detection was as low as 10 amol, with the system functioning well in physiological media. In particular, this system allowed us to resolve genetic mutations in the KRAS gene in colorectal cancer, suggesting its high potential in clinical diagnosis and personalized medicine.
Collapse
Affiliation(s)
- Chan Li
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Haiyan Jia
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Xiaoling Wei
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Guohui Xue
- Department of Clinical Laboratory, Jiujiang No. 1 People's Hospital, Jiujiang 332000, Jiangxi, PR China
| | - Jianguo Xu
- Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Ruize Cheng
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Yinghao Cheng
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Qiufeng Song
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Zhifa Shen
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| | - Chang Xue
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325000, PR China
| |
Collapse
|
10
|
Zhou X, Zamani M, Austin K, De Bock M, Chaj Ullola J, Riki S, Furst AL. Improving electrochemical hybridization assays with restriction enzymes. Chem Commun (Camb) 2024; 60:1948-1951. [PMID: 38284146 PMCID: PMC10863419 DOI: 10.1039/d3cc06192b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Nucleic acids in blood are early indicators of disease that could be detected by point-of-care biosensors if sufficiently sensitive and facile sensors existed. Electrochemical hybridization assays are sensitive and specific but are limited to very short nucleic acids. We have developed a restriction enzyme-assisted electrochemical hybridization (REH) assay for improved nucleic acid detection. By incorporating target-specific restriction enzymes, we detect long nucleic acids, with performance dependent on the location of the cut site relative to the electrode surface. Thus, we have further established guidelines for REH design to serve as a generalizable platform for robust electrochemical detection of long nucleic acids.
Collapse
Affiliation(s)
- Xingcheng Zhou
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Marjon Zamani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Katherine Austin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Marieke De Bock
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Joshua Chaj Ullola
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Smah Riki
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Ariel L Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
11
|
Kim JE, Kang JH, Kwon WH, Lee I, Park SJ, Kim CH, Jeong WJ, Choi JS, Kim K. Self-assembling biomolecules for biosensor applications. Biomater Res 2023; 27:127. [PMID: 38053161 PMCID: PMC10696764 DOI: 10.1186/s40824-023-00466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Molecular self-assembly has received considerable attention in biomedical fields as a simple and effective method for developing biomolecular nanostructures. Self-assembled nanostructures can exhibit high binding affinity and selectivity by displaying multiple ligands/receptors on their surface. In addition, the use of supramolecular structure change upon binding is an intriguing approach to generate binding signal. Therefore, many self-assembled nanostructure-based biosensors have been developed over the past decades, using various biomolecules (e.g., peptides, DNA, RNA, lipids) and their combinations with non-biological substances. In this review, we provide an overview of recent developments in the design and fabrication of self-assembling biomolecules for biosensing. Furthermore, we discuss representative electrochemical biosensing platforms which convert the biochemical reactions of those biomolecules into electrical signals (e.g., voltage, ampere, potential difference, impedance) to contribute to detect targets. This paper also highlights the successful outcomes of self-assembling biomolecules in biosensor applications and discusses the challenges that this promising technology needs to overcome for more widespread use.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jeon Hyeong Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Woo Hyun Kwon
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inseo Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Jun Shik Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
12
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
13
|
Tan K, Chen L, Cao D, Xiao W, Lv Q, Zou L. A rapid and highly sensitive ctDNA detection platform based on locked nucleic acid-assisted catalytic hairpin assembly circuits. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4548-4554. [PMID: 37642516 DOI: 10.1039/d3ay01150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
As a promising biomarker of liquid biopsy, circulating tumor DNA (ctDNA) plays a paramount role in the early diagnosis of noninvasive cancer. The isothermal catalytic hairpin assembly (CHA) strategy has great potential for in vitro detection of ctDNA in low abundance. However, a traditional CHA strategy for ctDNA detection at the earlier stages of cancer remains extremely challenging, as annoying signal leakage from the 'breathing' phenomenon and nuclease degradation occur. Herein, we report a locked nucleic acid (LNA)-incorporated CHA circuit for the rapid and sensitive detection of target ctDNA. The target ctDNA intelligently catalyzed LNA-modified hairpins H1 and H2via a range of toehold-mediated strand displacement processes, leading to the continuous generation of an H1-H2 hybrid for the amplified fluorescence signal. In comparison to conventional CHA circuits, the stronger binding affinity of LNA-DNA bases greatly inhibited the breathing effect, which endowed it with greater thermodynamic stability and resistance to nuclease degradation in the LNA-assisted CHA system, thus achieving a high signal gain. The developed CHA circuit demonstrated excellent performance during target ctDNA detection, with a linear range from 10 pM to 5 nM, and its target detection limit was reached at 3.3 pM. Moreover, this LNA-assisted CHA system was successfully applied to the analysis of target ctDNA in clinical serum samples of breast cancer patients. This updated CHA system provides a general and robust platform for the sensitive detection of biomarkers of interest, thus facilitating the accurate identification and diagnosis of cancers.
Collapse
Affiliation(s)
- Kaiyue Tan
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou 510632, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, China
| | - Longsheng Chen
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou 510632, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Point-of-care Testing (POCT), Guangdong Second Provincial General Hospital, Guangzhou 510500, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Point-of-care Testing (POCT), Guangdong Second Provincial General Hospital, Guangzhou 510500, China
| | - Qian Lv
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou 510632, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, China
| | - Lili Zou
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences & National Engineering Research Center for Healthcare Devices, Guangzhou 510632, China.
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China
- Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Guangzhou 510632, China
| |
Collapse
|
14
|
Ashley J, Potts IG, Olorunniji FJ. Applications of Terminal Deoxynucleotidyl Transferase Enzyme in Biotechnology. Chembiochem 2023; 24:e202200510. [PMID: 36342345 DOI: 10.1002/cbic.202200510] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The use of polymerase enzymes in biotechnology has allowed us to gain unprecedented control over the manipulation of DNA, opening up new and exciting applications in areas such as biosensing, polynucleotide synthesis, and DNA storage, aptamer development and DNA-nanotechnology. One of the most intriguing enzymes which has gained prominence in the last decade is terminal deoxynucleotidyl transferase (TdT), which is one of the only polymerase enzymes capable of catalysing the template independent stepwise addition of nucleotides onto an oligonucleotide chain. This unique enzyme has seen a significant increase in a variety of different applications. In this review, we give a comprehensive discussion of the unique properties and applications of TdT as a biotechnology tool, and the application in the enzymatic synthesis of poly/oligonucleotides. Finally, we look at the increasing role of TdT enzyme in biosensing, DNA storage, synthesis of DNA nanostructures and aptamer development, and give a future outlook for this technology.
Collapse
Affiliation(s)
- Jon Ashley
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Indiia G Potts
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Femi J Olorunniji
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| |
Collapse
|
15
|
Fang P, Ji X, Zhao X, Yan-Do R, Wan Y, Wang Y, Zhang Y, Shi P. Self-Healing Electronics for Prognostic Monitoring of Methylated Circulating Tumor DNAs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207282. [PMID: 36412926 DOI: 10.1002/adma.202207282] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Methylated circulating DNAs (ctDNAs) have recently been reported as a promising biomarker for early cancer diagnostics, but limited tools are currently available for continuous and dynamic profiling of ctDNAs and their methylation levels, especially when such assays need to be conducted in point-of-care (POC) scenarios. Here, a self-healing bioelectronic patch (iMethy) is developed that combines transdermal interstitial fluid (ISF) extraction and field effect transistor-based (FET-based) biosensing for dynamic monitoring of methylated ctDNAs as a prognostic approach for cancer risk management. The projection micro-stereolithography-based 3D patterning of an Eutectic Gallium-Indium (EGaIn) circuit with an unprecedented 10 µm resolution enables the construction of self-healing EGaIn microfluidic circuits that remain conductive under 100% strain and self-healing under severe destruction. In combination with continuous transdermal ISF sampling of methylated ctDNAs, iMethy can detect ctDNAs as low as 10-16 m in cellular models and is capable of phenotypic analysis of tumor growth in rodent animals. As the first demonstration of a wearable device for real-time in vivo analysis of disease-indicative biomarkers, this proof-of-concept study well demonstrated the potential of the iMethy platform for cancer risk management based on dynamic transdermal surveillance of methylated ctDNAs via a painless and self-administrable procedure.
Collapse
Affiliation(s)
- Peilin Fang
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Department of Otolaryngology Head and Neck Surgery, Beijing Tong Ren Hospital, Capital Medical University, Beijing, 100730, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, 100005, China
| | - Xianglin Ji
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong SAR, 999077, China
| | - Xi Zhao
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong SAR, 999077, China
| | - Richard Yan-Do
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong SAR, 999077, China
| | - Youyang Wan
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Ying Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yuanting Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong SAR, 999077, China
| | - Peng Shi
- Department of Biomedical Engineering, The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Shatin, Hong Kong SAR, 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), The City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Shenzhen Research Institute, The City University of Hong Kong, Shenzhen, 518000, China
| |
Collapse
|
16
|
Wu NJW, Aquilina M, Qian BZ, Loos R, Gonzalez-Garcia I, Santini CC, Dunn KE. The Application of Nanotechnology for Quantification of Circulating Tumour DNA in Liquid Biopsies: A Systematic Review. IEEE Rev Biomed Eng 2023; 16:499-513. [PMID: 35302938 DOI: 10.1109/rbme.2022.3159389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Technologies for quantifying circulating tumour DNA (ctDNA) in liquid biopsies could enable real-time measurements of cancer progression, profoundly impacting patient care. Sequencing methods can be too complex and time-consuming for regular point-of-care monitoring, but nanotechnology offers an alternative, harnessing the unique properties of objects tens to hundreds of nanometres in size. This systematic review was performed to identify all examples of nanotechnology-based ctDNA detection and assess their potential for clinical use. Google Scholar, PubMed, Web of Science, Google Patents, Espacenet and Embase/MEDLINE were searched up to 23rd March 2021. The review identified nanotechnology-based methods for ctDNA detection for which quantitative measures (e.g., limit of detection, LOD) were reported and biologically relevant samples were used. The pre-defined inclusion criteria were met by 66 records. LODs ranged from 10 zM to 50nM. 25 records presented an LOD of 10fM or below. Nanotechnology-based approaches could provide the basis for the next wave of advances in ctDNA diagnostics, enabling analysis at the point-of-care, but none are currently used clinically. Further work is needed in development and validation; trade-offs are expected between different performance measures e.g., number of sequences detected and time to result.
Collapse
|
17
|
Jing L, Li Q, Li S, Li H, Xia F. Introduction. ELECTROCHEMICAL BIOSENSORS FOR WHOLE BLOOD ANALYSIS 2023:1-16. [DOI: 10.1007/978-981-99-5644-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Wen X, Pu H, Liu Q, Guo Z, Luo D. Circulating Tumor DNA-A Novel Biomarker of Tumor Progression and Its Favorable Detection Techniques. Cancers (Basel) 2022; 14:6025. [PMID: 36551512 PMCID: PMC9775401 DOI: 10.3390/cancers14246025] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death in the world and seriously affects the quality of life of patients. The diagnostic techniques for tumors mainly include tumor biomarker detection, instrumental examination, and tissue biopsy. In recent years, liquid technology represented by circulating tumor DNA (ctDNA) has gradually replaced traditional technology with its advantages of being non-invasive and accurate, its high specificity, and its high sensitivity. ctDNA may carry throughout the circulatory system through tumor cell necrosis, apoptosis, circulating exosome secretion, etc., carrying the characteristic changes in tumors, such as mutation, methylation, microsatellite instability, gene rearrangement, etc. In this paper, ctDNA mutation and methylation, as the objects to describe the preparation process before ctDNA analysis, and the detection methods of two gene-level changes, including a series of enrichment detection techniques derived from PCR, sequencing-based detection techniques, and comprehensive detection techniques, are combined with new materials. In addition, the role of ctDNA in various stages of cancer development is summarized, such as early screening, diagnosis, molecular typing, prognosis prediction, recurrence monitoring, and drug guidance. In summary, ctDNA is an ideal biomarker involved in the whole process of tumor development.
Collapse
Affiliation(s)
- Xiaosha Wen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Huijie Pu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Quan Liu
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Dixian Luo
- Laboratory Medicine Centre, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| |
Collapse
|
19
|
Yin T, Wu D, Du H, Jie G. Dual-wavelength electrochemiluminescence biosensor based on a multifunctional Zr MOFs@PEI@AuAg nanocomposite with intramolecular self-enhancing effect for simultaneous detection of dual microRNAs. Biosens Bioelectron 2022; 217:114699. [PMID: 36113302 DOI: 10.1016/j.bios.2022.114699] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/02/2022]
Abstract
Rapid parallel detection of multi-targets has always been an exploration aim in electrochemiluminescence (ECL) assays. Herein, a multifunctional nanocomposite of Zr metal-organic frameworks (MOFs) @PEI@AuAg nanoclusters (NCs) with intense and stable dual-wavelength ECL was synthesized for the first time, and used to construct a new ECL biosensor for rapid simultaneous detection of dual targets. Notably, the novel ECL emitter Zr MOFs with high-performance was not only integrated with a co-reactant polyethyleneimine (PEI) to form a unique intramolecular self-enhancing structure, but also loaded a large number of another ECL emitter AuAg NCs, furthermore, AuAg NCs with superior electron transfer property can much enhance the electrical conductivity of the composites, thus achieving the goal of "killing three birds with one stone". Moreover, a unique stable and rigid three-dimensional DNA tetrahedron (TDN) structure was connected with two quenching probes BHQ1 and BHQ3 and immobilized on the composites-modified electrode, so ECL emission of the nanocomposites at two wavelengths of 535 nm and 644 nm were both quenched by resonance energy transfer (RET). In the presence of target miRNAs, the efficient DNA cycling double-amplification processes were performed by using exonuclease (T7 Exo) combined with DNA Walker, thus both quenching groups were separated to restore the ECL at two wavelengths, achieving simultaneous and rapid ECL detection of two miRNAs. Therefore, this present work not only opens a unique nanocomplex with dual wavelength ECL and self-enhancing performance, but also develops a highly sensitive ECL biosensor with promising value for rapid multi-target analysis in clinical fields.
Collapse
Affiliation(s)
- Tengyue Yin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Di Wu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Haotian Du
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
20
|
Electrochemical Biosensors for Circulating Tumor DNA Detection. BIOSENSORS 2022; 12:bios12080649. [PMID: 36005048 PMCID: PMC9406149 DOI: 10.3390/bios12080649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
Early diagnosis and treatment have always been highly desired in the fight against cancer, and detection of circulating tumor DNA (ctDNA) has recently been touted as highly promising for early cancer-screening. Consequently, the detection of ctDNA in liquid biopsy is gaining much attention in the field of tumor diagnosis and treatment, which has also attracted research interest from industry. However, it is difficult to achieve low-cost, real-time, and portable measurement of ctDNA in traditional gene-detection technology. Electrochemical biosensors have become a highly promising solution to ctDNA detection due to their unique advantages such as high sensitivity, high specificity, low cost, and good portability. Therefore, this review aims to discuss the latest developments in biosensors for minimally invasive, rapid, and real-time ctDNA detection. Various ctDNA sensors are reviewed with respect to their choices of receptor probes, designs of electrodes, detection strategies, preparation of samples, and figures of merit, sorted by type of electrode surface recognition elements. The development of biosensors for the Internet of Things, point-of-care testing, big data, and big health is analyzed, with a focus on their portable, real-time, and non-destructive characteristics.
Collapse
|
21
|
Jafari-Kashi A, Rafiee-Pour HA, Shabani-Nooshabadi M. A new strategy to design label-free electrochemical biosensor for ultrasensitive diagnosis of CYFRA 21-1 as a biomarker for detection of non-small cell lung cancer. CHEMOSPHERE 2022; 301:134636. [PMID: 35447211 DOI: 10.1016/j.chemosphere.2022.134636] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/15/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Lung cancer is one of the most dangerous cancers with high mortality rate among other cancers therefore, early detection of this cancer is very important. Many studies have been reported in ways of diagnostic lung cancer early. According to reports, one of the most important biomarkers to detect lung cancer is Cytokeratin 19 fragment 21-1 (CYFRA21-1), which is significantly related to non-small cell lung cancer, in particular, squamous cell carcinoma. Thus, finding a new method for the early diagnosis of CYFRA 21-1 (DNA target probe) is essential. In the present report, we design a novel label-free electrochemical DNA-biosensor related to the signal of guanine oxidation. The proposed DNA biosensor is fabricated by a modified glassy carbon electrode (GCE) with reduced-graphene oxide (rGO), poly pyrrole (PPy), silver nanoparticles (AgNPs) and single-strand DNA (ssDNA as capture probe) GCE/rGO/PPy/AgNPs/ssDNA. The differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques are used to verify the hybridization process between capture and target probes. Electrochemical impedance spectroscopy (EIS), energy diffraction X-ray (EDX) and field-emission scanning microscopy (FE-SEM) techniques are applied to the characterization of different modified GCE surfaces as well as X-ray diffraction (XRD) for graphene oxide synthesis. The XRD pattern of the synthesized GO that its diffraction peak appears at 10.2. The applied CV and DPV for the guanine oxidation are determined under optimal conditions. The label-free DNA biosensor showed a great result for the determination of CYFRA21-1 with a wide linear range from two consecutive linear relationships of peak current and CYFRA21-1 concentration were found (1.0 × 10-14 - 1.0 × 10-10 M, R2 = 0.9936 and 1.0 × 10-9 - 1.0 × 10-6 M, R2 = 0.9955). Proposed electrochemical biosensor displayed low detection limit (2.4 fM).
Collapse
Affiliation(s)
- Abbas Jafari-Kashi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R, Iran
| | - Hossain-Ali Rafiee-Pour
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, I. R, Iran.
| | - Mehdi Shabani-Nooshabadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, I.R, Iran; Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran.
| |
Collapse
|
22
|
An ultrasensitive electrochemical self-signal circulating tumor DNA recognition strategy employing black phosphorous nanosheets assembled with flavin adenine dinucleotide. Bioelectrochemistry 2022; 148:108231. [DOI: 10.1016/j.bioelechem.2022.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022]
|
23
|
Cui Z, Li D, Yang W, Fan K, Liu H, Wen F, Li L, Dong L, Wang G, Wu W. An electrochemical biosensor based on few-layer MoS 2 nanosheets for highly sensitive detection of tumor marker ctDNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1956-1962. [PMID: 35531866 DOI: 10.1039/d2ay00467d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An electrochemical biosensor based on few-layer molybdenum disulfide (MoS2) nanosheets was fabricated for the highly sensitive detection of tumor marker circulating tumor DNA (ctDNA) in this paper. The MoS2 nanosheets with few layers were prepared by the shear stripping. Compared with the mechanical stripping method and the lithium ion intercalation method, this method is simpler to operate, and the prepared MoS2 nanosheets had good electrochemical activity. The biosensing platform was fabricated based on the discriminative affinity of MoS2 nanosheets towards single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA). Methylene blue (MB) was used as the signal molecule. The results showed that the detection of ctDNA by this sensor showed an excellent linear relationship in the concentration range of 1.0 × 10-7 M to 1.0 × 10-16 M, and the detection limit was 2.5 × 10-18 M. In addition, this sensor exhibited outstanding stability and specificity. This strategy provides an alternative approach for ctDNA detection and an effective sensing strategy for future in vitro cancer diagnosis by label-free detection.
Collapse
Affiliation(s)
- Zhilian Cui
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China.
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China.
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weihuang Yang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China.
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Hongying Liu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Fei Wen
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China.
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lili Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China.
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China.
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China.
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Wei Wu
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou, 310018, China.
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
24
|
Wang D, Zhou H, Shi Y, Sun W. A FEN 1-assisted swing arm DNA walker for electrochemical detection of ctDNA by target recycling cascade amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1922-1927. [PMID: 35527509 DOI: 10.1039/d2ay00364c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A flap endonuclease 1 (FEN 1)-assisted swing arm DNA walker was constructed to achieve the signal amplification detection of ctDNA. The MB-labeled hairpin DNA was designed as the track and a long swing-arm DNA strand as the capture probe. The introduction of ctDNA unlocked a helper hairpin DNA, which could be captured to form the DNA duplex walker with the capture probe, and also activated the catalyst hairpin assembly. The DNA duplex walker opened the hairpin track and formed a three-base overlapping DNA structure, which was recognized and cleaved by FEN 1. Driven by the FEN 1 and the high reaction temperature, the DNA walker was initiated to hybridize with the track DNA and release multiple MB-labeled flaps for signal amplification. Owing to the excellent amplification capacity of the target recycling-induced DNA walker and programmed catalysis hairpin assembly, the one-step biosensor showed a linear detection range from 1 fM to 100 pM with a detection limit of 0.33 fM. Moreover, the sensitive detection of ctDNA in serum samples was verified, suggesting its potential application in liquid biopsy for clinical diagnosis.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| | - Huan Zhou
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| | - Yundong Shi
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| | - Wanjun Sun
- School of Laboratory Medicine, Wannan Medical College, Wuhu, 241000, P. R. China.
| |
Collapse
|
25
|
Wang C, Wang W, Xu Y, Zhao X, Li S, Qian Q, Mi X. Tetrahedral DNA Framework-Programmed Electrochemical Biosenors with Gold Nanoparticles for Ultrasensitive Cell-Free DNA Detection. NANOMATERIALS 2022; 12:nano12040666. [PMID: 35214994 PMCID: PMC8879424 DOI: 10.3390/nano12040666] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
Tumor-associated cell-free DNA (cfDNA) is a dynamic biomarker for genetic analysis, early diagnosis and clinical treatment of cancers. However, its detection has limitations because of its low abundance in blood or other complex bodily fluids. Herein, we developed an ultrasensitive cfDNA electrochemical biosensor (E-cfDNA sensor) based on tetrahedral DNA framework (TDF)-modified gold nanoparticles (Au NPs) with an interface for cfDNA detection. By accurately controlling the numbers of base pairs on each DNA framework, three types of TDFs were programmed: 26 base pairs of TDF; 17 base pairs of TDF; and 7 base pairs of TDF (TDF-26, TDF-16 and TDF-7, respectively). We also combined the TDF with hybridization chain reaction (HCR) to achieve signal amplification. Under optimal conditions, we detected the breast cancer susceptibility gene 1 (BRCA-1), a representative cfDNA closely related to breast cancer. An ultra-low detection limit of 1 aM with a linear range from 1 aM to 1 pM by TDF-26 was obtained, which was superior to the existing methods. Each type of TDF has excellent discrimination ability, which can distinguish single mismatch. More significantly, we also detected BRCA-1 in mimic serum samples, demonstrating that the E-cfDNA sensor has potential use in clinical research.
Collapse
Affiliation(s)
- Chenguang Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (C.W.); (Y.X.); (S.L.); (Q.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- Shanghai Pudong New District Zhoupu Hospital, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China;
| | - Yi Xu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (C.W.); (Y.X.); (S.L.); (Q.Q.)
| | - Xiaoshuang Zhao
- State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
| | - Shuainan Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (C.W.); (Y.X.); (S.L.); (Q.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuling Qian
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (C.W.); (Y.X.); (S.L.); (Q.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianqiang Mi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (C.W.); (Y.X.); (S.L.); (Q.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
- CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
- Correspondence:
| |
Collapse
|
26
|
Rapid Multiplex Strip Test for the Detection of Circulating Tumor DNA Mutations for Liquid Biopsy Applications. BIOSENSORS 2022; 12:bios12020097. [PMID: 35200357 PMCID: PMC8869478 DOI: 10.3390/bios12020097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 01/16/2023]
Abstract
In the era of personalized medicine, molecular profiling of patient tumors has become the standard practice, especially for patients with advanced disease. Activating point mutations of the KRAS proto-oncogene are clinically relevant for many types of cancer, including colorectal cancer (CRC). While several approaches have been developed for tumor genotyping, liquid biopsy has been gaining much attention in the clinical setting. Analysis of circulating tumor DNA for genetic alterations has been challenging, and many methodologies with both advantages and disadvantages have been developed. We here developed a gold nanoparticle-based rapid strip test that has been applied for the first time for the multiplex detection of KRAS mutations in circulating tumor DNA (ctDNA) of CRC patients. The method involved ctDNA isolation, PCR-amplification of the KRAS gene, multiplex primer extension (PEXT) reaction, and detection with a multiplex strip test. We have optimized the efficiency and specificity of the multiplex strip test in synthetic DNA targets, in colorectal cancer cell lines, in tissue samples, and in blood-derived ctDNA from patients with advanced colorectal cancer. The proposed strip test achieved rapid and easy multiplex detection (normal allele and three major single-point mutations) of the clinically relevant KRAS mutations in ctDNA in blood samples of CRC patients with high specificity and repeatability. This multiplex strip test represents a minimally invasive, rapid, low-cost, and promising diagnostic tool for the detection of clinically relevant mutations in cancer patients.
Collapse
|
27
|
Xu M, Chen K, Zhu L, Zhang S, Wang M, He L, Zhang Z, Du M. MOF@COF Heterostructure Hybrid for Dual-Mode Photoelectrochemical-Electrochemical HIV-1 DNA Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13479-13492. [PMID: 34734735 DOI: 10.1021/acs.langmuir.1c02253] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We developed a novel metal-organic framework (MOF)@covalent-organic framework (COF) hybrid with a hierarchical nanostructure and excellent photoactivity, which further acted as the bifunctional platform of a dual-mode photoelectrochemical (PEC) and electrochemical (EC) biosensor for detecting HIV-1 DNA via immobilizing the HIV-1 DNA probe. First, the presynthesized Cu-MOF nanoellipsoids were used as the template for the in situ growth of the COF network, which was synthesized using copper-phthalocyanine tetra-amine (CoPc-TA) and 2,9-bis[p-(formyl)phenyl]-1,10-phenanthroline as building blocks through the Schiff base condensation. In view of the large specific surface area, abundant reserved amino group, excellent electrochemical activity, and high photoactivity, the obtained Cu-MOF@CuPc-TA-COF heterostructure not only can serve as the sensitive platform for anchoring the HIV-1 DNA probe strands but also can be utilized as the signal transducers for PEC and EC biosensors. Thereby, the constructed biosensor shows the sensitive and selective analysis ability toward the HIV-1 target DNA via the complementary hybridization between probe and target DNA strands. The dual-mode PEC and EC measurements revealed that the Cu-MOF@CuPc-TA-COF-based biosensor displayed a wide linear detection range from 1 fM to 1 nM and an extremely low limit of detection (LOD) of 0.07 and 0.18 fM, respectively. In addition, the dual-mode PEC-EC biosensor also demonstrated remarkable selectivity, high stability, good reproducibility, and preferable regeneration ability, as well as acceptable applicability, for which the detected HIV-1 DNA in human serum showed good consistency with real concentrations. Thereby, the present work can open a new dual-mode PEC-EC platform for detecting HIV-1 DNA based on the porous-organic framework heterostructure.
Collapse
Affiliation(s)
- Miaoran Xu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Kun Chen
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Lei Zhu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Shuai Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Minghua Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Linghao He
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Miao Du
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| |
Collapse
|
28
|
Manne A, Woods E, Tsung A, Mittra A. Biliary Tract Cancers: Treatment Updates and Future Directions in the Era of Precision Medicine and Immuno-Oncology. Front Oncol 2021; 11:768009. [PMID: 34868996 PMCID: PMC8634105 DOI: 10.3389/fonc.2021.768009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
The effective management of biliary tract cancers (BTCs) has been hampered by limited options for systemic therapy. In recent years, the focus on precision medicine has made technologies such as next-generation sequencing (NGS) accessible to clinicians to identify targetable mutations in BTCs in tumor tissue (primarily) as well as blood, and to treat them with targeted therapies when possible. It has also expanded our understanding of functional pathways associated with genetic alterations and opened doors for identifying novel targets for treatment. Recent advances in the precision medicine approach allowed us to identify new molecular markers in BTCs, such as epigenetic changes (methylation and histone modification) and non-DNA markers such as messenger RNA, microRNA, and long non-coding RNA. It also made detecting these markers from non-traditional sources such as blood, urine, bile, and cytology (from fine-needle aspiration and biliary brushings) possible. As these tests become more accessible, we can see the integration of different molecular markers from all available sources to aid physicians in diagnosing, assessing prognosis, predicting tumor response, and screening BTCs. Currently, there are a handful of approved targeted therapies and only one class of immunotherapy agents (immune checkpoint inhibitors or ICIs) to treat BTCs. Early success with new targets, vascular endothelial growth factor receptor (VEGFR), HER2, protein kinase receptor, and Dickkopf-1 (DKK1); new drugs for known targets, fibroblast growth factor receptors (FGFRs) such as futabatinib, derazantinib, and erdafitinib; and ICIs such as durvalumab and tremelimumab is encouraging. Novel immunotherapy agents such as bispecific antibodies (bintrafusp alfa), arginase inhibitors, vaccines, and cellular therapy (chimeric antigen receptor-T cell or CAR-T, natural killer cells, tumor-infiltrating lymphocytes) have the potential to improve outcomes of BTCs in the coming years.
Collapse
Affiliation(s)
- Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Edward Woods
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Allan Tsung
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH, United States
| | - Arjun Mittra
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
29
|
Li S, Fu Z, Wang C, Shang X, Zhao Y, Liu C, Pei M. An ultrasensitive and specific electrochemical biosensor for DNA detection based on T7 exonuclease-assisted regulatory strand displacement amplification. Anal Chim Acta 2021; 1183:338988. [PMID: 34627518 DOI: 10.1016/j.aca.2021.338988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/26/2022]
Abstract
An electrochemical biosensor for determination of DNA is developed based on T7 exonuclease-assisted regulatory strand displacement dual recycling signal amplification strategy. First, the hairpin probe recognized and bound the target DNA to form a double strand nucleotide structure, and then the T7 exonuclease was introduced. After be digested by T7 exonuclease, the target DNA was released and entered the next cycle of T7 exonuclease-assisted recycle amplification, while accompanied by a large number of mimic targets (output DNAs) into another cycle. Second, the mimic target reacted with double-chain substrated DNA (CP) by a regulated toehold exchange mechanism, yielding the product complex of detection probes with the help of assisted DNA (S). Finally, after many cycles, a large number of detection probes were produced for binding numerous streptavidin-alkaline phosphatases. The electrochemical biosensor showed very high sensitivity and selectivity with a dynamic response ranged from 0.1 fM to 10 pM with a detection limit of 31.6 aM. Furthermore, this proposed biosensor was successfully applied to the detection of target DNA in 20% diluted serum. The developed strategy has been demonstrated to have the potential for application in molecular diagnostics.
Collapse
Affiliation(s)
- Shengqiang Li
- Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, PR China
| | - Zhengxiang Fu
- Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, PR China
| | - Chao Wang
- Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, PR China
| | - Xipeng Shang
- Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, PR China
| | - Yan Zhao
- Clinical Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, PR China
| | - Cuiying Liu
- Clinical Laboratory, Tianjin Xi Qing Hospital Tianjin, 300000, PR China.
| | - Ming Pei
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300000, PR China; Division of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300000, PR China.
| |
Collapse
|
30
|
Yang X, Liao M, Zhang H, Gong J, Yang F, Xu M, Tremblay PL, Zhang T. An electrochemiluminescence resonance energy transfer biosensor for the detection of circulating tumor DNA from blood plasma. iScience 2021; 24:103019. [PMID: 34522862 PMCID: PMC8426273 DOI: 10.1016/j.isci.2021.103019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
A liquid biopsy is a noninvasive approach for detecting double-stranded circulating tumor DNA (ctDNA) of 90-320 nucleotides in blood plasma from patients with cancer. Most techniques employed for ctDNA detection are time consuming and require expensive DNA purification kits. Electrochemiluminescence resonance energy transfer (ECL-RET) biosensors exhibit high sensitivity, a wide response range, and are promising for straightforward sensing applications. Until now, ECL-RET biosensors have been designed for sensing short single-stranded oligonucleotides of less than 45 nucleotides. In this work, an ECL-RET biosensor comprising graphitic carbon nitride quantum dots was assessed for the amplification-free detection in the blood plasma of DNA molecules coding for the EGFR L858R mutation, which is associated with non-small-cell lung cancer. Following a low-cost pre-treatment, the highly specific ECL-RET biosensor quantified double-stranded EGFR L858R DNA of 159 nucleotides diluted into the blood within a linear range of 0.01 fM to 1 pM, demonstrating its potential for noninvasive biopsies.
Collapse
Affiliation(s)
- Xidong Yang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
| | - Meiyan Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hanfei Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - JinBo Gong
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Fan Yang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengying Xu
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
31
|
Surucu O, Öztürk E, Kuralay F. Nucleic Acid Integrated Technologies for Electrochemical Point‐of‐Care Diagnostics: A Comprehensive Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ozge Surucu
- Department of Chemistry Faculty of Science Ege University 35040 Izmir Turkey
| | - Elif Öztürk
- Department of Chemistry Faculty of Science Hacettepe University 06800 Ankara Turkey
| | - Filiz Kuralay
- Department of Chemistry Faculty of Science Hacettepe University 06800 Ankara Turkey
| |
Collapse
|
32
|
Wang Q, Liu Y, Wang X, Wang F, Zhang L, Ge S, Yu J. Ternary Electrochemiluminescence Biosensor Based on DNA Walkers and AuPd Nanomaterials as a Coreaction Accelerator for the Detection of miRNA-141. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25783-25791. [PMID: 34034485 DOI: 10.1021/acsami.1c05368] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, a ternary electrochemiluminescence (ECL) sensing platform coupled with a multiple signal amplification strategy was proposed for ultrasensitive detection of miRNA-141. The initial signal amplification was achieved via three-dimensional reduced graphene oxide (3D-rGO)@Au nanoparticles (NPs) to form an excellent conductive layer. Then, AuPd NPs as a coreaction accelerator was introduced into the N-(4-aminobutyl)-N-(ethylisoluminol) (ABEI)-H2O2 system to facilitate the transformation from H2O2 to excess superoxide anion radicals (O2•-), which further amplified the ECL emission of ABEI, leading to a significant increase of the ECL signal. Meanwhile, in the presence of miRNA-141 and T7 Exonuclease (T7 Exo), the self-assembled DNA swing arm can be driven to walk autonomously. The DNA walker reaction could result in the release of numerous labeled luminophores, which could react to achieve an extremely weak ECL signal. Surprisingly, the established ECL sensor platform for the detection of miRNA-141 demonstrated excellent sensitivity with a low detection limit of 31.9 aM in the concentration range from 100 aM to 1 nM. Consequently, the designed strategy greatly improves the luminous efficiency of the ternary ECL system and provides a special approach for the detection of nucleic acids and biomarkers in clinical and biochemical analysis.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yaqi Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Xuefeng Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Fengyi Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
33
|
Chen K, Zhao H, Wang Z, Lan M. A novel signal amplification label based on AuPt alloy nanoparticles supported by high-active carbon for the electrochemical detection of circulating tumor DNA. Anal Chim Acta 2021; 1169:338628. [PMID: 34088375 DOI: 10.1016/j.aca.2021.338628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 01/06/2023]
Abstract
The detection of circulating tumor DNA (ctDNA) has increasingly received a great deal of attention considering its significance in cancer diagnosis. And the signal amplification plays an important role in the development of sensitive ctDNA biosensors. Herein, the nanocomposites (denoted as HAC-AuPt), integrating from high-active carbon (HAC) and AuPt alloy nanoparticles, were synthesized and subsequently used as a signal amplification label to fabricate a sandwich-type ctDNA electrochemical biosensor. Characterizations demonstrated that HAC presents uniform size distribution and AuPt alloy nanoparticles were successfully loaded on HAC. The current response could be amplified to a great extent by the resultant HAC-AuPt due to its excellent electrochemical property. The nanocomposites were further bounded with DNA signal probes (SPs) via Au-S or Pt-S assembly to form SPs-label. After the capture probes (CPs) were immobilized on the electrode surface, the target DNA (tDNA) and SPs-label were stepwise incubated on the CPs-modified electrode, thus forming a sandwich-type structure. By monitoring the catalytic signal of HAC-AuPt towards the reduction process of H2O2, this biosensor provided a wide linear range of 10-8 mol/L - 10-16 mol/L with a low detection limit of 3.6 × 10-17 mol/L (S/N = 3) for the detection of the tDNA. Furthermore, obvious differences in response signals among different DNAs were observed benefitting from the excellent selectivity of the biosensor. Besides, the long-term stability, reproducibility, and recovery rate were proved to be outstanding. These results indicate that the established biosensor holds a potential application in the clinical diagnosis of ctDNA.
Collapse
Affiliation(s)
- Kaicha Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Zhenxing Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
34
|
An ultrasensitive biosensor for dual-specific DNA based on deposition of polyaniline on a self-assembled multi-functional DNA hexahedral-nanostructure. Biosens Bioelectron 2021; 179:113066. [PMID: 33571935 DOI: 10.1016/j.bios.2021.113066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 11/21/2022]
Abstract
Kras and Braf are major oncogenes. The mutation of Kras codon 12 or Braf V600E can lead to ovarian carcinoma. The detection of oncogene-related DNAs and their mutations offers solution for early diagnosis of ovarian cancer. Herein, a size-tunable multi-functional DNA hexahedral-nanostructure (DHN) has been rationally designed and modified on the electrode to response to Kras and Braf DNA. The size of DHN is controlled via polyadenines (polyA). The complete self-assembly of DHN depends on the presence of both target DNAs and two assistant probes. Meanwhile, a HRP-mimicking DNAzyme forms in DHN, which catalyzes the polymerization of aniline. The produced polyaniline is utilized as the output signal through differential pulse voltammetry (DPV). The biosensor shows the linear range from 100 fM to 1 μM, with the detection limit of 48.7 fM for Kras gene; and the linear range from 100 fM to 100 nM, with the detection limit of 44.1 fM for Braf gene, respectively. Since the current response depends on both gene sequences, the high specificity of the biosensor endows it to operate in an "OR"-type logic gate to discriminate the mutation of both genes. When Kras codon 12 or Braf V600E mutation happens, the response decreases significantly due to the incomplete formation of DNAzyme in DHN. The practicability of the biosensor has been verified through challenging human serum samples. Thus, it has great potential for clinical diagnosis of ovarian cancer through simultaneous detection of Kras and Braf genes and their mutations.
Collapse
|
35
|
Zhou QY, Ma RN, Hu CL, Sun F, Jia LP, Zhang W, Shang L, Xue QW, Jia WL, Wang HS. A novel ratiometric electrochemical biosensing strategy based on T7 exonuclease-assisted homogenous target recycling coupling hairpin assembly-triggered double-signal output for the multiple amplified detection of miRNA. Analyst 2021; 146:2705-2711. [PMID: 33751013 DOI: 10.1039/d1an00204j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel ratiometric electrochemical biosensing strategy based on T7 exonuclease (T7 Exo)-assisted homogenous target recycling coupling hairpin assembly triggered dual-signal output was proposed for the accurate and sensitive detection of microRNA-141 (miRNA-141). Concretely, in the presence of target miRNA, abundant signal transduction probes were released via the T7 Exo-assisted homogenous target recycling amplification, which could be captured by the specially designed ferrocene-labeled hairpin probe (Fc-H1) on -electrode interface and triggered the nonenzymatic catalytic hairpin assembly (Fc-H1 + MB-H2) to realize the cascade signal amplification and dual-signal output. Through such a conformational change process, the electrochemical signal of Fc (IFc) and MB (IMB) is proportionally and substantially decreased and increased. Therefore, the signal ratio of IMB/IFc can be employed to accurately reflect the true level of original miRNA. Benefiting from the efficient integration of the T7 Exo-assisted target recycle, nonenzymatic hairpin assembly and dual-signal output mode, the proposed sensor could realize the amplified detection of miRNA-141 effectively with a wide detection range from 1 fM to 100 pM, and a detection limit of 200 aM. Furthermore, it exhibits outstanding sequence specificity to discriminate mismatched RNA, acceptable reproducibility and feasibility for real sample. This strategy effectively integrated the advantages of multiple amplification and ratiometric output modes, which could provide an accurate and efficient method in biosensing and clinical diagnosis.
Collapse
Affiliation(s)
- Qing-Yun Zhou
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Rong-Na Ma
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Chao-Long Hu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Fei Sun
- Oncology Department, Hospital of Traditional Chinese Medicine of Jinan City, Jinan 250000, Shandong, P.R. China
| | - Li-Ping Jia
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Lei Shang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Qing-Wang Xue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Wen-Li Jia
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| | - Huai-Sheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, P.R. China.
| |
Collapse
|
36
|
Deng Y, Cao G, Chen X, Yang M, Huo D, Hou C. Ultrasensitive detection of gene-PIK3CA H1047R mutation based on cascaded strand displacement amplification and trans-cleavage ability of CRISPR/Cas12a. Talanta 2021; 232:122415. [PMID: 34074403 DOI: 10.1016/j.talanta.2021.122415] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023]
Abstract
Low abundance gene-PIK3CAH1047R mutation detection is crucial for the clinical diagnosis and treatment of breast cancer. Here, a fluorescent biosensor which combines cascaded strand displacement amplification (C-SDA) and trans-cleavage ability of CRISPR/Cas12a was established to ultra-sensitively detect gene-PIK3CAH1047R mutation. The mutated gene-PIK3CAH1047R can combine with complementary sequence to form an intact recognition site for endonuclease FspI. Mediated by FspI, it breaks at the mutation site to produce DNA fragment to trigger SDA or C-SDA. Then, the fluorescent biosensors based on SDA-CRISPR/Cas12a or C-SDA-CRISPR/Cas12a were constructed. Compared with biosensor based on SDA-CRISPR/Cas12a (5 pM), the minimum detection of the biosensor based on C-SDA-CRISPR/Cas12a is reduced two orders of magnitude (50 fM). In range of 0.001%-50%, we achieved the ultrasensitive detection of gene-PIK3CAH1047R mutation low to 0.001%. Besides, the proposed biosensor works well in human serum samples, showing its application potential in low-abundance gene-PIK3CAH1047R mutation detection.
Collapse
Affiliation(s)
- Yuanyi Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Xiaolong Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
37
|
Liquid biopsy genotyping by a simple lateral flow strip assay with visual detection. Anal Chim Acta 2021; 1163:338470. [PMID: 34024417 DOI: 10.1016/j.aca.2021.338470] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022]
Abstract
Liquid biopsy, as a minimally invasive method that allows real-time monitoring of the tumor genome, represents a competing approach for cancer diagnosis, prognosis and therapy decision making. Liquid biopsy in cancer patients mainly includes analysis of circulating tumor cells (CTC) and cell-free circulating tumor DNA (ctDNA). ctDNA is the tumor-derived fraction of the cell-free DNA present in the blood. ctDNA is detected based on cancer-specific genomic aberrations (mainly mutations) and represents a challenging analyte due to high fragmentation and low concentration. Several methodologies have been developed for ctDNA analysis in cancer patients but many of these technologies are too time-intensive, complicated and expensive for implementation in diagnostic testing. Herein, we developed a novel lateral flow strip assay for mutational analysis of ctDNA in blood samples and visual detection that is based on gold nanoparticles as reporters. As a model, common single-point mutations of the KRAS gene, related to colorectal cancer (CRC), have been selected for method development. The proposed DNA biosensor has been successfully applied for the detection of three KRAS mutations (KRAS G12D/A/V), along with the wild-type KRAS gene in synthetic DNA targets, cancer cell lines and cfDNA from blood samples of healthy individuals and CRC patients. The main advantages of the proposed lateral flow assay are simplicity, rapid analysis time (∼10 min) and visual detection without the requirement of special instrumentation. The assay is also cost-effective with high detectability, specificity and reproducibility and has the potential to be used as a portable and universal device. In conclusion, the proposed assay offers a rapid diagnostic strip test for visual genotyping, as an alternative approach for liquid biopsy applications.
Collapse
|
38
|
Shumyantseva VV, Agafonova LE, Bulko TV, Kuzikov AV, Masamrekh RA, Yuan J, Pergushov DV, Sigolaeva LV. Electroanalysis of Biomolecules: Rational Selection of Sensor Construction. BIOCHEMISTRY (MOSCOW) 2021; 86:S140-S151. [PMID: 33827405 DOI: 10.1134/s0006297921140108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methods of electrochemical analysis of biological objects based on the reaction of electro-oxidation/electro-reduction of molecules are presented. Polymer nanocomposite materials that modify electrodes to increase sensitivity of electrochemical events on the surface of electrodes are described. Examples of applications electrochemical biosensors constructed with nanocomposite material for detection of biological molecules are presented, advantages and drawbacks of different applications are discussed.
Collapse
Affiliation(s)
- Victoria V Shumyantseva
- Laboratory of Bioelectrochemistry, Orekhovich Research Institute of Biomedical Chemistry, Moscow, 119992, Russia. .,Department of Biochemistry, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Lubov E Agafonova
- Laboratory of Bioelectrochemistry, Orekhovich Research Institute of Biomedical Chemistry, Moscow, 119992, Russia
| | - Tatiana V Bulko
- Laboratory of Bioelectrochemistry, Orekhovich Research Institute of Biomedical Chemistry, Moscow, 119992, Russia
| | - Alexey V Kuzikov
- Laboratory of Bioelectrochemistry, Orekhovich Research Institute of Biomedical Chemistry, Moscow, 119992, Russia.,Department of Biochemistry, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Rami A Masamrekh
- Laboratory of Bioelectrochemistry, Orekhovich Research Institute of Biomedical Chemistry, Moscow, 119992, Russia.,Department of Biochemistry, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Dmitry V Pergushov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 117991, Russia
| | - Larisa V Sigolaeva
- Laboratory of Bioelectrochemistry, Orekhovich Research Institute of Biomedical Chemistry, Moscow, 119992, Russia.,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 117991, Russia
| |
Collapse
|
39
|
Chen D, Wu Y, Hoque S, Tilley RD, Gooding JJ. Rapid and ultrasensitive electrochemical detection of circulating tumor DNA by hybridization on the network of gold-coated magnetic nanoparticles. Chem Sci 2021; 12:5196-5201. [PMID: 34163756 PMCID: PMC8179593 DOI: 10.1039/d1sc01044a] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
An accurate and robust method for quantifying the levels of circulating tumor DNA (ctDNA) is vital if this potential biomarker is to be used for the early diagnosis of cancer. The analysis of ctDNA presents unique challenges because of its short half-life and ultralow abundance in early stage cancers. Here we develop an ultrasensitive electrochemical biosensor for rapid detection of ctDNA in whole blood. The sensing of ctDNA is based on hybridization on a network of probe DNA modified gold-coated magnetic nanoparticles (DNA-Au@MNPs). This DNA-Au@MNPs biosensor can selectively detect short- and long-strand DNA targets. It has a broad dynamic range (2 aM to 20 nM) for 22 nucleotide DNA target with an ultralow detection limit of 3.3 aM. For 101 nucleotide ctDNA target, a dynamic range from 200 aM to 20 nM was achieved with a detection limit of 5 fM. This DNA-Au@MNPs based sensor provides a promising method to achieve 20 min response time and minimally invasive cancer early diagnosis.
Collapse
Affiliation(s)
- Dongfei Chen
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
- The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales Sydney NSW 2052 Australia
| | - Yanfang Wu
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
- The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales Sydney NSW 2052 Australia
| | - Sharmin Hoque
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
- The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales Sydney NSW 2052 Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales Sydney NSW 2052 Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanoMedicine, The University of New South Wales Sydney NSW 2052 Australia
- The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
40
|
Hai X, Li Y, Zhu C, Song W, Cao J, Bi S. DNA-based label-free electrochemical biosensors: From principles to applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116098] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Ouyang J, Zhan X, Guo S, Cai S, Lei J, Zeng S, Yu L. Progress and trends on the analysis of nucleic acid and its modification. J Pharm Biomed Anal 2020; 191:113589. [DOI: 10.1016/j.jpba.2020.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
42
|
Attoye B, Pou C, Blair E, Rinaldi C, Thomson F, Baker MJ, Corrigan DK. Developing a Low-Cost, Simple-to-Use Electrochemical Sensor for the Detection of Circulating Tumour DNA in Human Fluids. BIOSENSORS 2020; 10:E156. [PMID: 33126531 PMCID: PMC7692145 DOI: 10.3390/bios10110156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
It is well-known that two major issues, preventing improved outcomes from cancer are late diagnosis and the evolution of drug resistance during chemotherapy, therefore technologies that address these issues can have a transformative effect on healthcare workflows. In this work we present a simple, low-cost DNA biosensor that was developed specifically to detect mutations in a key oncogene (KRAS). The sensor employed was a screen-printed array of carbon electrodes, used to perform parallel measurements of DNA hybridisation. A DNA amplification reaction was developed with primers for mutant and wild type KRAS sequences which amplified target sequences from representative clinical samples to detectable levels in as few as twenty cycles. High levels of sensitivity were demonstrated alongside a clear exemplar of assay specificity by showing the mutant KRAS sequence was detectable against a significant background of wild type DNA following amplification and hybridisation on the sensor surface. The time to result was found to be 3.5 h with considerable potential for optimisation through assay integration. This quick and versatile biosensor has the potential to be deployed in a low-cost, point-of-care test where patients can be screened either for early diagnosis purposes or monitoring of response to therapy.
Collapse
Affiliation(s)
- Bukola Attoye
- Department of Biomedical Engineering, University of Strathclyde, 40 George Street, Glasgow G1 1QE, UK; (E.B.); (D.K.C.)
| | - Chantevy Pou
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (C.P.); (F.T.)
| | - Ewen Blair
- Department of Biomedical Engineering, University of Strathclyde, 40 George Street, Glasgow G1 1QE, UK; (E.B.); (D.K.C.)
| | - Christopher Rinaldi
- Technology and Innovation Centre, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George street, Glasgow G1 1RD, UK; (C.R.); (M.J.B.)
| | - Fiona Thomson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (C.P.); (F.T.)
| | - Matthew J. Baker
- Technology and Innovation Centre, Department of Pure and Applied Chemistry, University of Strathclyde, 99 George street, Glasgow G1 1RD, UK; (C.R.); (M.J.B.)
| | - Damion K. Corrigan
- Department of Biomedical Engineering, University of Strathclyde, 40 George Street, Glasgow G1 1QE, UK; (E.B.); (D.K.C.)
| |
Collapse
|
43
|
Liu G, Ma X, Tang Y, Miao P. Ratiometric fluorescence method for ctDNA analysis based on the construction of a DNA four-way junction. Analyst 2020; 145:1174-1178. [PMID: 32016264 DOI: 10.1039/d0an00044b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present a novel ratiometric fluorescent biosensor for ctDNA analysis based on the construction of a DNA four-way junction (FWJ). Three fuel strands for the FWJ are firstly designed and prepared. Another essential strand for the formation of the structure is the DNA product generated from target ctDNA initiated strand displacement amplification. With the transformation of the DNA structure, the FRET states of two fluorophores change and the ratiometric fluorescence response can be recorded to indicate the level of the initial ctDNA. The proposed method also has excellent capability to discriminate mismatches and shows potential practical utility for clinical samples.
Collapse
Affiliation(s)
- Guangxing Liu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, China.
| | | | | | | |
Collapse
|
44
|
Tang Z, Huang J, He H, Ma C, Wang K. Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Quinchia J, Echeverri D, Cruz-Pacheco AF, Maldonado ME, Orozco J. Electrochemical Biosensors for Determination of Colorectal Tumor Biomarkers. MICROMACHINES 2020; 11:E411. [PMID: 32295170 PMCID: PMC7231317 DOI: 10.3390/mi11040411] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
The accurate determination of specific tumor markers associated with cancer with non-invasive or minimally invasive procedures is the most promising approach to improve the long-term survival of cancer patients and fight against the high incidence and mortality of this disease. Quantification of biomarkers at different stages of the disease can lead to an appropriate and instantaneous therapeutic action. In this context, the determination of biomarkers by electrochemical biosensors is at the forefront of cancer diagnosis research because of their unique features such as their versatility, fast response, accurate quantification, and amenability for multiplexing and miniaturization. In this review, after briefly discussing the relevant aspects and current challenges in the determination of colorectal tumor markers, it will critically summarize the development of electrochemical biosensors to date to this aim, highlighting the enormous potential of these devices to be incorporated into the clinical practice. Finally, it will focus on the remaining challenges and opportunities to bring electrochemical biosensors to the point-of-care testing.
Collapse
Affiliation(s)
- Jennifer Quinchia
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (J.Q.); (D.E.); (A.F.C.-P.)
| | - Danilo Echeverri
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (J.Q.); (D.E.); (A.F.C.-P.)
| | - Andrés Felipe Cruz-Pacheco
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (J.Q.); (D.E.); (A.F.C.-P.)
| | - María Elena Maldonado
- Grupo Impacto de los Componentes Alimentarios en la Salud, School of Dietetics and Human Nutrition, University of Antioquia, A.A. 1226, Medellín 050010, Colombia;
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, University of Antioquia, Complejo Ruta N, Calle 67 No. 52-20, Medellín 050010, Colombia; (J.Q.); (D.E.); (A.F.C.-P.)
| |
Collapse
|
46
|
Chen X, Wang L, Lou J. Nanotechnology Strategies for the Analysis of Circulating Tumor DNA: A Review. Med Sci Monit 2020; 26:e921040. [PMID: 32200389 PMCID: PMC7111132 DOI: 10.12659/msm.921040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor DNA (ctDNA) describes the fragmented DNA released from tumor cells into the blood. The ctDNA may have the same genetic changes as the primary tumor. Currently, ctDNA has become a popular biomarker for diagnosis, treatment, real-time clinical response monitoring, and prognosis, for solid tumors. Detection of ctDNA is minimally invasive, and repeat sampling can easily be performed. However, due to its low quality and short DNA fragment length, ctDNA detection still faces challenges and requires highly sensitive analytical techniques. Recently, liquid biopsies for the analysis of circulating tumor cells (CTCs) and circulating tumor-derived exosomes have been studied, and nanotechnology techniques have rapidly developed. Compared to traditional analytical methods, these nanotechnology-based platforms have the advantages of sensitivity, multiplex detection, simplicity, miniaturization, and automation, which support their potential use in clinical practice. This review aims to discuss the recent nanotechnological strategies for ctDNA analysis and the design of reliable techniques for ctDNA detection and to identify the potential clinical applications.
Collapse
Affiliation(s)
- Xiaomin Chen
- Nano Biomedical Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China (mainland).,Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China (mainland)
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China (mainland)
| |
Collapse
|
47
|
Miranda-Castro R, Palchetti I, de-los-Santos-Álvarez N. The Translational Potential of Electrochemical DNA-Based Liquid Biopsy. Front Chem 2020; 8:143. [PMID: 32266206 PMCID: PMC7099045 DOI: 10.3389/fchem.2020.00143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
Latest technological advancement has tremendously expanded the knowledge on the composition of body fluids and the cancer-associated changes, which has fueled the replacement of invasive biopsies with liquid biopsies by using appropriate specific receptors. DNA emerges as a versatile analytical reagent in electrochemical devices for hybridization-based or aptamer-based recognition of all kind of biomarkers. In this mini review, we briefly introduce the current affordable targets (tumor-derived nucleic acids, circulating tumor cells and exosomes) in body fluids, and then we provide an overview of selected electrochemical methods already applied in clinical samples by dividing them into three large categories according to sample type: red (blood), yellow (urine), and white (saliva and sweat) diagnostics. This review focuses on the hurdles of the complex matrices rather than a comprehensive and detailed revision of the format schemes of DNA-based electrochemical sensing. This diverse perspective compiles some challenges that are often forgotten and critically underlines real sample analysis or clinical validation assays. Finally, the needs and trends to reach the market are briefly outlined.
Collapse
Affiliation(s)
- Rebeca Miranda-Castro
- Departamento Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Ilaria Palchetti
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Florence, Italy
| | - Noemí de-los-Santos-Álvarez
- Departamento Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
48
|
Wei J, Zhao Z, Gao J, Wang Y, Ma L, Meng X, Wang Z. Polyacrylamide/Phytic Acid/Polydopamine Hydrogel as an Efficient Substrate for Electrochemical Enrichment of Circulating Cell-Free DNA from Blood Plasma. ACS OMEGA 2020; 5:5365-5371. [PMID: 32201826 PMCID: PMC7081438 DOI: 10.1021/acsomega.9b04397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/20/2020] [Indexed: 05/26/2023]
Abstract
A facile method has been developed for the rapid and efficient enrichment of DNAs from different media including synthetic single-strand DNAs (ssDNAs) from buffer solutions and cell-free DNAs (cfDNAs) from blood plasma through electric field-driven adsorption and desorption of DNAs by a polyacrylamide/phytic acid/polydopamine (PAAM/PA/PDA) hydrogel. The as-prepared PAAM/PA/PDA hydrogel possesses regular porosity with a large surface area, strong electric field responsiveness/good conductivity, and a rich aromatic structure, which can be used as an ideal adsorbent for DNA enrichment under a positive electric field. The enriched DNAs can be released efficiently when the positive electric field is converted to a negative electric field. The PAAM/PA/PDA hydrogel-based electrochemical method enables the completion of the process of DNA adsorption and release within 5 min and exhibits reasonable enrichment efficiencies and recovery rates of various DNAs. For instance, the high enrichment sensitivity (0.1 pmol L-1) together with the excellent recovery (>75%) of an ssDNA with 78 nucleotides is obtained. Combined with the PCR amplification technique, the practicability of the as-proposed method is demonstrated by the screening of circulating tumor DNAs (ctDNAs) with a BRAFV600E mutation in cfDNAs from the blood plasma samples of patients with papillary thyroid cancer or thyroid nodule and random patients from a clinical laboratory.
Collapse
Affiliation(s)
- Jia Wei
- Department
of Thyroid Surgery, The First Hospital of
Jilin University, Changchun, Jilin 130021, P. R. China
| | - Zhen Zhao
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jiaxue Gao
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yaoqi Wang
- Department
of Thyroid Surgery, The First Hospital of
Jilin University, Changchun, Jilin 130021, P. R. China
| | - Lina Ma
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xianying Meng
- Department
of Thyroid Surgery, The First Hospital of
Jilin University, Changchun, Jilin 130021, P. R. China
| | - Zhenxin Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
49
|
Li XY, Cui YX, Du YC, Tang AN, Kong DM. Isothermal cross-boosting extension–nicking reaction mediated exponential signal amplification for ultrasensitive detection of polynucleotide kinase. Analyst 2020; 145:3742-3748. [DOI: 10.1039/c9an02569c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel nucleic acid-based isothermal signal amplification strategy, named cross-boosting extension–nicking reaction (CBENR) is developed and successfully used for rapid and ultrasensitive detection of polynucleotide kinase (PNK) activity.
Collapse
Affiliation(s)
- Xiao-Yu Li
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| |
Collapse
|
50
|
Jiang L, Yang Y, Lin Y, Chen Z, Xing C, Lu C, Yang H, Zhang S. An electrochemical sensor based on enzyme-free recycling amplification for sensitive and specific detection of miRNAs from cancer cells. Analyst 2020; 145:3353-3358. [DOI: 10.1039/d0an00275e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A catalyzed hairpin assembly and binding-induced formation of the DNA three-way junction for ultrasensitive electrochemical detection of diverse miRNAs is reported.
Collapse
Affiliation(s)
- Lili Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Yuling Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Yuhong Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Ziyi Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Chao Xing
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Shusheng Zhang
- Collaborative Innovation Centre of Tumour Marker Detection Technology
- Equipment and Diagnosis-Therapy Integration in Universities of Shandong
- College of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
| |
Collapse
|