1
|
Li L, Li M, Qiu Y, Wang S, Dong Y. Aptamers capable of simultaneously identifying multiple targets and corresponding applications in medical diagnosis-A review. Int J Biol Macromol 2025:143666. [PMID: 40316072 DOI: 10.1016/j.ijbiomac.2025.143666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Aptamers, a unique class of nucleic acid sequences recognized for their specific binding capabilities, have found widespread application in biomedical field. While traditional aptamers are typically designed to target a single molecule recognition, recent attention has been directed towards multifunctional aptamers capable of simultaneously identifying multiple targets. In this review, the latest advancements in multifunctional aptamers and their applications in medical diagnosis are presented for the first time. This review focuses on the following essential aspects, including methods employed for developing multifunctional aptamers, detailed characteristics of these aptamers, practical applications across diverse diagnostic scenarios, and in-depth discussions on critical aspects of their design and utility. To conclude, future perspectives are provided to drive further development and broader application of multifunctional aptamers in the biomedical domain.
Collapse
Affiliation(s)
- Ling Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Menglei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yinghua Qiu
- Center for Molecular Diagnostics and Precision Medicine, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia 19102, USA
| | - Sai Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
2
|
He J, Ren X, Zhang Q, Wang S, Li Z, Cai K, Li M, Hu Y, Ran Q, Luo Z. Nanoradiosentizers with X ray-actuatable supramolecular aptamer building units for programmable immunostimulatory T cell engagement. Biomaterials 2025; 315:122924. [PMID: 39489019 DOI: 10.1016/j.biomaterials.2024.122924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
The insufficient activation and impaired effector functions of T cells in the immunosuppressive tumor microenvironment (TME) substantially reduces the immunostimulatory effects of radiotherapy. Herein, a multifunctional nanoradiosensitizer is established by integrating molecularly engineered aptamer precursors into cisplatin-loaded liposomes for enhancing radio-immunotherapy of solid tumors. Exposure to ionizing radiation (IR) following the nanoradiosensitizer treatment would induce pronounced immunogenic death (ICD) of tumor cells through cisplatin-mediated radiosensitization while also trigger the detachment of the aptamer precursors, which further self-assemble into PD-L1/PD-1-bispecific aptamer-based T cell engagers (CA) through the bridging effect of tumor-derived ATP to direct T cell binding onto tumor cells in the post-IR TME in a spatial-temporally programmable manner. The CA-mediated post-IR tumor-T cell engagement could override the immunosuppressive barriers in TME and enhance T cell-mediated recognition and elimination of tumor cells while minimizing systemic toxicities. Overall, this work offers an innovative approach to enhance the radio-immunotherapeutic efficacy in the clinics.
Collapse
Affiliation(s)
- Jinming He
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Xijiao Ren
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qiqi Zhang
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Shuang Wang
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Zhongjun Li
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Qian Ran
- Hematopoietic Acute Radiation Syndrome Medical and Pharmaceutical Basic Research Innovation Center, Ministry of Education of the People's Republic of China, Laboratory Medicine Center, Department of Blood Transfusion, The Second Affiliated Hospital, Army Military Medical University, Chongqing, 400037, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
3
|
Zeng X, Tong X, Chen J, Chen Q, Lai R, Xu Q, Wang D, Zhou X, Shao Y. Fluorogenic target competitors for developing label-free and sensitive folding-unswitching aptamer sensors. Anal Chim Acta 2024; 1329:343237. [PMID: 39396299 DOI: 10.1016/j.aca.2024.343237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Aptamers have aroused tremendous applications in sensors, drug deliveries, diagnosis, and therapies. In particular, target-induced global structure switching of aptamers has been widely used to develop selective sensors. However, fluorophore and/or quencher modification, sequence elongation, and nano-interface adsorption are required to design such global structure-switching aptamer sensors (SSAS) in order to signal target binding events. Accordingly, these requirements make SSAS at a high cost and expense of sensors' sensitivity. In this aspect, efforts should be made to overcome these drawbacks of SSAS. RESULTS Herein, we tried to develop label-free folding-unswitching aptamer sensors (FUAS) by searching fluorogenic target competitors. Using adenine nucleoside/nucleotide as the proof-of-concept model targets, we screened out berberine (BER) from natural isoquinoline alkaloids (having rings comparable to targets) as the best fluorogenic target competitor. Binding of BER at the conserved nucleotides of intact aptamer foldings turned on this fluorogenic target competitor' fluorescence. Targets then competed with this fluorogenic target competitor over the same conserved nucleotides to cause its release in favor of a resultant fluorescence change. We found that the developed FUAS are much more sensitive than the previously reported SSAS. The FUAS were successfully applied to assays of ATP and adenosine deaminase in serums, and to screening of the adenosine deaminase's inhibitor, verifying the reliability and applicability of this FUAS platform in variant fields. SIGNIFICANCE We demonstrate that by designing fluorogenic target competitors, FUAS can be alternatively developed in a label-free manner and with a higher sensitivity than the previously developed SSAS. This work opens a new way to develop high-performance aptamer-based sensors. Furthermore, our developed FUAS should inspire more interest for wide applications incluidng target-triggered drug deliveries when therapeutic fluorogenic target competitors are used.
Collapse
Affiliation(s)
- Xingli Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Xiufang Tong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Jiahui Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Qiyao Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Rong Lai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, Zhejiang, China.
| |
Collapse
|
4
|
Chen K, Zhu L, Li J, Zhang Y, Yu Y, Wang X, Wei W, Huang K, Xu W. High-content tailoring strategy to improve the multifunctionality of functional nucleic acids. Biosens Bioelectron 2024; 261:116494. [PMID: 38901394 DOI: 10.1016/j.bios.2024.116494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Functional nucleic acids (FNAs) have attracted increasing attention in recent years due to their diverse physiological functions. The understanding of their conformational recognition mechanisms has advanced through nucleic acid tailoring strategies and sequence optimization. With the development of the FNA tailoring techniques, they have become a methodological guide for nucleic acid repurposing. Therefore, it is necessary to systematize the relationship between FNA tailoring strategies and the development of nucleic acid multifunctionality. This review systematically categorizes eight types of FNA multifunctionality, and introduces the traditional FNA tailoring strategy from five aspects, including deletion, substitution, splitting, fusion and elongation. Based on the current state of FNA modification, a new generation of FNA tailoring strategy, called the high-content tailoring strategy, was unprecedentedly proposed to improve FNA multifunctionality. In addition, the multiple applications of rational tailoring-driven FNA performance enhancement in various fields were comprehensively summarized. The limitations and potential of FNA tailoring and repurposing in the future are also explored in this review. In summary, this review introduces a novel tailoring theory, systematically summarizes eight FNA performance enhancements, and provides a systematic overview of tailoring applications across all categories of FNAs. The high-content tailoring strategy is expected to expand the application scenarios of FNAs in biosensing, biomedicine and materials science, thus promoting the synergistic development of various fields.
Collapse
Affiliation(s)
- Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jie Li
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yangzi Zhang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yongxia Yu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Wei
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Kunlun Huang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
5
|
Yuan S, Bremmer A, Yang X, Li J, Hu Q. Splittable systems in biomedical applications. Biomater Sci 2024; 12:4103-4116. [PMID: 39012216 DOI: 10.1039/d4bm00709c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs. One of the pillars of these splittable systems is modularity, which involves decoupling targeting, activation, and effector functions. Challenges, such as off-target effects and overactivation, can be addressed through precise control. This review provides an overview of the design principles, strategies, and applications of splittable systems across diverse fields including immunotherapy, gene editing, prodrug activation, biosensing, and synthetic biology.
Collapse
Affiliation(s)
- Sichen Yuan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
| | - Alexa Bremmer
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
| | - Xicheng Yang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
| | - Jiayue Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
| |
Collapse
|
6
|
Lin Y, Tao X, Gao S, Li N, Dai Z. Highly sensitive and stable fluorescent aptasensor based on an exonuclease III-assisted amplification strategy for ATP detection. Anal Biochem 2023:115210. [PMID: 37329966 DOI: 10.1016/j.ab.2023.115210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Fluctuations in intracellular adenosine triphosphate (ATP) concentration are closely associated with some cancer diseases. Thus, it is a worthwhile undertaking to predict sickness by monitoring changes in ATP levels. However, the detection limits of current fluorescent aptamer sensors for ATP detection are in the range of nmol L-1 to μmol L-1. It has become crucial to employ amplification strategies to increase the sensitivity of fluorescent aptamer sensors. In the current paper, a duplex hybrid aptamer probe was developed based on exonuclease III (Exo III)-catalyzed target recycling amplification for ATP detection. The target ATP forced the duplex probe configuration to change into a molecular beacon that can be hydrolyzed with Exo III to achieve the target ATP cycling to amplify the fluorescence signal. Significantly, many researchers ignore that FAM is a pH-sensitive fluorophore, leading to the fluorescence instability of FAM-modified probes in different pH buffers. The negatively charged ions on the surface of AuNPs were replaced by new ligands bis(p-sulfonatophenyl)phenylphosphine dihydrate dipotassium salt (BSPP) to improve the drawback of FAM instability in alkaline solutions in this work. The aptamer probe was designed to eliminate the interference of other similar small molecules, showing specific selectivity and providing ultra-sensitive detection of ATP with detection limits (3σ) as low as 3.35 nM. Such detection limit exhibited about 4-500-fold better than that of the other amplification strategies for ATP detection. Thus, a relatively general high sensitivity detection system can be established according to the wide target adaptability of aptamers, which can form specific binding with different types of targets.
Collapse
Affiliation(s)
- Yushuang Lin
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xuejiao Tao
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Suhan Gao
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
| | - Nan Li
- School of Chemistry, Tiangong University, Tianjin, 300387, China.
| | - Zhao Dai
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
7
|
Wang X, Clavier G, Zhang Y, Batra K, Xiao N, Maurin G, Ding B, Tissot A, Serre C. A MOF/DNA luminescent sensing platform for detection of potential COVID-19 biomarkers and drugs. Chem Sci 2023; 14:5386-5395. [PMID: 37234896 PMCID: PMC10207894 DOI: 10.1039/d3sc00106g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/02/2023] [Indexed: 05/28/2023] Open
Abstract
COVID-19 has afflicted people's lives worldwide. Interleukin-6 (IL-6) is an important COVID-19 biomarker in human body fluids that can be used as a reference to monitor COVID-19 in real-time and therefore to reduce the risk of virus transmission. On the other hand, oseltamivir is a potential COVID-19 curing drug, but its overuse easily leads to hazardous side effects, calling for its real time monitoring in body fluids. For these purposes, a new yttrium metal-organic framework (Y-MOF) has been synthesized, in which the 5-(4-(imidazole-1-yl)phenyl)isophthalic linker contains a large aromatic backbone capable of strongly interacting with DNA sequences through π-π stacking interactions, which makes it appealing to build a unique sensor based on DNA functionalized MOFs. The MOF/DNA sequence hybrid luminescent sensing platform presents excellent optical properties associated with a high Förster resonance energy transfer (FRET) efficiency. Furthermore, to construct a dual emission sensing platform, a 5'-carboxylfluorescein (FAM) labeled DNA sequence (S2) with a stem-loop structure that can specifically interact with IL-6 has been associated with the Y-MOF. The resulting Y-MOF@S2 exhibits an efficient ratiometric detection of IL-6 in human body fluids with an extremely high Ksv value 4.3 × 108 M-1 and a low detection limit (LOD) of 70 pM. Finally, the Y-MOF@S2@IL-6 hybrid platform allows the detection of oseltamivir with high sensitivity (Ksv value is as high as 5.6 × 105 M-1 and LOD is 54 nM), due to the fact that oseltamivir can disconnect the loop stem structure constructed by S2, leading to a strong quenching effect towards Y-MOF@S2@IL-6. The nature of the interactions between oseltamivir and Y-MOF has been elucidated using density functional theory calculations while the sensing mechanism for the dual detection of IL-6 and oseltamivir has been deciphered based on luminescence lifetime tests and confocal laser scanning microscopy.
Collapse
Affiliation(s)
- Xinrui Wang
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Gilles Clavier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM 91190 Gif-sur-Yvette France
| | - Yan Zhang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Kamal Batra
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier 34095 France
| | - Nanan Xiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | | | - Bin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University 393 Binshui West Road Tianjin 300387 P. R. China
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University 75005 Paris France
| |
Collapse
|
8
|
Zhang Y, Yuan W, Ren Z, Ning J, Wang Y. Indicator displacement assay for freshness monitoring of green tea during storage. Food Res Int 2023; 167:112668. [PMID: 37087209 DOI: 10.1016/j.foodres.2023.112668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023]
Abstract
Aging of green tea leads to reductions in its flavor and health value, yet in situ testing methods for green tea freshness are lacking. A novel sensitive indicator displacement assay (IDA) sensor was constructed and applied for monitoring of green tea freshness during storage. Low-cost pH dyes and metal ions were used as indicators and receptors, respectively, for the targeted detection of catechins in tea samples. The feasibility of the IDA reaction was verified using images and UV-vis spectroscopy, respectively. IDA combined with supervised algorithms achieved accurate identification of green tea freshness with an accuracy of 86.67%, and acceptable accuracies in the prediction of catechin monomers and total catechins with ratio of prediction to deviation values over 1.5. Thus, the developed IDA sensor is capable of qualitative and quantitative monitoring of the green tea freshness during storage, providing a new option for quality evaluation and control of green teas.
Collapse
|
9
|
Hu Y, Jia Y, Yang Y, Liu Y. Controllable DNA nanodevices regulated by logic gates for multi-stimulus recognition. RSC Adv 2023; 13:9003-9009. [PMID: 36950078 PMCID: PMC10025943 DOI: 10.1039/d3ra00295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
DNA biosensors have attracted considerable attention due to their great potential in environmental monitoring and medical diagnosis. Despite the great achievements, the single function and uncontrollability of the sensors restrict their further application. Therefore, it is necessary to construct controllable nanodevices with both sensing and responding capabilities to external stimuli. Herein, we develop a strategy to engineer structure-switching biosensors which can respond to external stimuli while preserving the sensing capability. The engineered nanodevice consists of an actuation module and a sensing module. Initially, the sensing module is disabled by a blocker strand which acts as an allosteric switch. Once the stimuli-responsive actuation module displaces the blocker DNA, the sensing module is activated. Based on the strategy, the engineered nanodevice could recognize both the target and external stimuli. As a demonstration of this strategy, a controllable Hg2+ sensor was designed, in which a 'YES', 'AND', and 'OR' logic gate is employed as the actuation module respectively to facilitate recognition of oligonucleotide inputs. The modular nature of the proposed strategy makes it easily generalizable to other structure-switching sensors. As a demonstration of this, we successfully apply it to the ATP sensor. The proposed strategy has potential in the fields of programmable biosensing, disease diagnosis, DNA computing, and intelligent nanodevices.
Collapse
Affiliation(s)
- Yingxin Hu
- School of Information Science and Technology, Shijiazhuang Tiedao University Shijiazhuang 050043 P. R. China
| | - Yufeng Jia
- School of Management, Shijiazhuang Tiedao University Shijiazhuang 050043 P. R. China
| | - Yuefei Yang
- School of Information Science and Technology, Shijiazhuang Tiedao University Shijiazhuang 050043 P. R. China
| | - Yanjun Liu
- School of Information Science and Technology, Shijiazhuang Tiedao University Shijiazhuang 050043 P. R. China
| |
Collapse
|
10
|
A DNA tweezers fluorescence aptasensor based on split aptamer -assisted magnetic nanoparticles for the detection of enrofloxacin in food. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Cai S, Chen X, Chen H, Zhang Y, Wang X, Zhou N. A fluorescent aptasensor for ATP based on functional DNAzyme/walker and terminal deoxynucleotidyl transferase-assisted formation of DNA-AgNCs. Analyst 2023; 148:799-805. [PMID: 36692002 DOI: 10.1039/d2an02006h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The development of sensitive adenosine triphosphate (ATP) sensors is imperative due to the tight relationship between the physiological conditions and ATP levels in vivo. Herein, a fluorescent aptasensor for ATP is presented, which adopts a strategy that combines a split aptamer and a DNAzyme/walker with terminal deoxynucleotidyl transferase (TDT)-assisted formation of DNA-AgNCs to realize fluorescence detection of ATP. A multifunctional oligonucleotide sequence is rationally designed, which integrates a split aptamer, a DNAzyme and a DNA walker. Both multifunctional oligonucleotide and its substrate strand are connected to the surface of Fe3O4@Au nanoparticles via Au-S bonds. The existence of ATP can induce the formation of the complete aptamer, and then activate the DNAzyme to circularly cleave the substrate strand, leaving 2',3'-cyclophosphate at the 3'end of the strand. This blocks the polymerization of dCTP to form poly(C) even in the presence of TDT and dCTP, due to the lack of free 3'-OH. In contrast, when ATP is absent, the DNAzyme/walker cannot work and then TDT catalyzes the formation of poly(C) at the free 3'-OH of the substrate strand, which is subsequently utilized as the template to prepare DNA-AgNCs. The fluorescence response derived from AgNCs thus reflects the ATP concentration. Under the optimum conditions, the aptasensor shows a linear response range from 5 nM to 10 000 nM, with a detection limit of 0.27 nM. The level of ATP in human serum can be effectively measured by the aptasensor with good recovery, indicating its application potential in medical samples.
Collapse
Affiliation(s)
- Shixin Cai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Haohan Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Lu Y, Li J, Liu Y, Zhu L, Xiao S, Bai M, Chen D, Xie T. Bi-enzyme competition based on ZIF-67 co-immobilization for real-time monitoring of exocellular ATP. Mikrochim Acta 2023; 190:71. [PMID: 36695915 DOI: 10.1007/s00604-023-05652-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Monitoring exocellular adenosine-5'-triphosphate (ATP) is a demanding task but the biosensor development is limited by the low concentration and rapid degradation of ATP. Herein, we developed a simple yet effective biosensor based on ZIF-67 loaded with bi-enzymes of glucose (GOx) and hexokinase (HEX) for effective detection of ATP. In the confined space of the porous matrix, the bi-enzymes competed for the glucose substrate in the presence of ATP, facilitating the biosensor to detect low ATP concentrations down to the micromole level (3.75 μM) at working potential of 0.55 V (vs. Ag/AgCl). Furthermore, ZIF-67 with cobalt served as a porous matrix to specifically adsorb ATP molecules, allowing it to differentiate isomers with sensitivity of 0.53 nA/μM, RSD of 5.4%, and recovery rate of 93.3%. We successfully applied the fabricated biosensor to measure ATP secreted from rat PC12 cells in the pericellular space thus realizing time-resolving measurement. This work paved the path for real-time monitoring of ATP released by cells, which will aid in understanding tumor cell glycolysis and immune responses.
Collapse
Affiliation(s)
- Yan Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Junmin Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuqiao Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ling Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shenghao Xiao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingxia Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Dajing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Tian Xie
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. .,School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
13
|
Li N, Li M, Li M. A programmable catalytic molecular nanomachine for highly sensitive protein and small molecule detection. Analyst 2023; 148:328-336. [PMID: 36484518 DOI: 10.1039/d2an01798a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the construction of a programmable catalytic molecular nanomachine based on a cross-linked catalytic hairpin assembly (CCHA) reaction for the one-step highly sensitive detection of proteins and small molecules. In this system, when the recognition elements attached on split initiators bind to the target proteins, it can trigger the cascade of the CCHA reaction, resulting in the formation of many macromolecular fluorescent products for signaling. This platform couples the advantages of highly efficient DNA-based nanotechnology with specific protein-small molecule interactions. We demonstrated the sensitive detection of streptavidin and anti-digoxigenin antibody with detection limits as low as 48.8 pM and 0.85 nM, respectively. This nanomachine also demonstrated its flexibility in the nanomolar detection of corresponding small molecules, such as biotin and digoxigenin, using a competitive method. In addition, the nanomachine was robust enough to perform well with human serum samples. Overall, this programmable catalytic molecular nanomachine provides a versatile platform for the detection of proteins and small molecules by replacing the recognition elements, which can promote the development of DNA nanotechnology in disease diagnosis and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, School of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Minhui Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, School of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Mei Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Higher Education, School of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
14
|
Wang W, Zhai F, Xu F, Jia M. Enzyme-free amplified and one-step rapid detection of bisphenol A using dual-terminal labeled split aptamer probes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Yan R, Wen Z, Hu X, Wang W, Meng H, Song Y, Wang S, Tang Y. A sensitive sensing system based on fluorescence dipeptide nanoparticles for sulfadimethoxine determination. Food Chem 2022; 405:134963. [DOI: 10.1016/j.foodchem.2022.134963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
16
|
Miao YB, Zhong Q, Ren HX. Engineering a thermostable biosensor based on biomimetic mineralization HRP@Fe-MOF for Alzheimer's disease. Anal Bioanal Chem 2022; 414:8331-8339. [PMID: 36258085 DOI: 10.1007/s00216-022-04367-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/27/2022]
Abstract
The development of disease detection by biosensors represents one of the key components of medical science. However, millions of people are still misdiagnosed each year due to the poor efficacy and thermal instability of biosensors. Using horseradish peroxidase (HRP) as a paradigm, we offer a rational design strategy to optimize the thermostability and activity of biosensors by biomimetic mineralization. To overcome the weak thermostability of the biosensor, the mineralization of Fe-MOF forms an armor on HRP that protects against high temperature. Additionally, the biomimetic mineralization HRP@Fe-MOF can double-catalyze the TMB/H2O2 chromogenic system for color development. The biosensor can also be recycled through simple heat treatment due to the thermally stable aptamer and biomimetic mineralization HRP@Fe-MOF. The optical biosensor based on this sensitive spectral transformation was successfully developed for the measurement of AβO with an outstanding linear range (0.0001-10 nM) and a low limit of detection (LOD) of 0.03 pM. This promising platform will open up new avenues for the detection of AβO in the early diagnosis of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | | | - Hong-Xia Ren
- School of Chemistry and Chemical Engineering, Zunyi Normal College, Guizhou, 563000, China.
| |
Collapse
|
17
|
Ye H, Yang Z, Khan IM, Niazi S, Guo Y, Wang Z, Yang H. Split aptamer acquisition mechanisms and current application in antibiotics detection: a short review. Crit Rev Food Sci Nutr 2022; 63:9098-9110. [PMID: 35507474 DOI: 10.1080/10408398.2022.2064810] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Antibiotic contamination is becoming a prominent global issue. Therefore, sensitive, specific and simple technology is desirable the demand for antibiotics detection. Biosensors based on split aptamer has gradually attracted extensive attention for antibiotic detection due to its higher sensitivity, lower cost, false positive/negative avoidance and flexibility in sensor design. Although many of the reported split aptamers are antibiotics aptamers, the acquisition and mechanism of splitting is still unknow. In this review, six reported split aptamers in antibiotics are outlined, including Enrofloxacin, Kanamycin, Tetracycline, Tobramycin, Neomycin, Streptomycin, which have contributed to promote interest, awareness and thoughts into this emerging research field. The study introduced the pros and cons of split aptamers, summarized the assembly principle of split aptamer and discussed the intermolecular binding of antibiotic-aptamer complexes. In addition, the recent application of split aptamers in antibiotic detection are introduced. Split aptamers have a promising future in the design and development of biosensors for antibiotic detection in food and other field. The development of the antibiotic split aptamer meets many challenges including mechanism discovery, stability improvement and new biosensor development. It is believed that split aptamer could be a powerful molecular probe and plays an important role in aptamer biosensor.
Collapse
Affiliation(s)
- Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhixin Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| | | | - Sobia Niazi
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Li Y, Keller AL, Cryan MT, Ross AE. Metal Nanoparticle Modified Carbon-Fiber Microelectrodes Enhance Adenosine Triphosphate Surface Interactions with Fast-Scan Cyclic Voltammetry. ACS MEASUREMENT SCIENCE AU 2022; 2:96-105. [PMID: 35479102 PMCID: PMC9026253 DOI: 10.1021/acsmeasuresciau.1c00026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 05/08/2023]
Abstract
Adenosine triphosphate (ATP) is an important rapid signaling molecule involved in a host of pathologies in the body. Historically, ATP is difficult to directly detect electrochemically with fast-scan cyclic voltammetry (FSCV) due to limited interactions at bare carbon-fibers. Systematic investigations of how ATP interacts at electrode surfaces is necessary for developing more sensitive electrochemical detection methods. Here, we have developed gold nanoparticle (AuNP), and platinum nanoparticle (PtNP) modified carbon-fiber microelectrodes coupled to FSCV to measure the extent to which ATP interacts at metal nanoparticle-modified surfaces and to improve the sensitivity of direct electrochemical detection. AuNP and PtNPs were electrodeposited on the carbon-fiber surface by scanning from -1.2 to 1.5 V for 30 s in 0.5 mg/mL HAuCl4 or 0.5 mg/mLK2PtCl6. Overall, we demonstrate an average 4.1 ± 1.0-fold increase in oxidative ATP current at AuNP-modified and a 3.5 ± 0.3-fold increase at PtNP-modified electrodes. Metal nanoparticle-modified surfaces promoted improved electrocatalytic conversion of ATP oxidation products at the surface, facilitated enhanced adsorption strength and surface coverage, and significantly improved sensitivity. ATP was successfully detected within living murine lymph node tissue following exogenous application. Overall, this study demonstrates a detailed characterization of ATP oxidation at metal nanoparticle surfaces and a significantly improved method for direct electrochemical detection of ATP in tissue.
Collapse
|
19
|
Liu X, Wang T, Wu Y, Tan Y, Jiang T, Li K, Lou B, Chen L, Liu Y, Liu Z. Aptamer based probes for living cell intracellular molecules detection. Biosens Bioelectron 2022; 208:114231. [PMID: 35390719 DOI: 10.1016/j.bios.2022.114231] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/21/2022]
Abstract
Biosensors have been employed for monitoring and imaging biological events and molecules. Sensitive detection of different biomolecules in vivo can reflect the changes of physiological conditions in real-time, which is of great significance for the diagnosis and treatment of diseases. The detection of intracellular molecules concentration change can indicate the occurrence and development of disease. But the analysis process of the existing detection methods, such as Western blot detection of intracellular protein, polymerase chain reaction (PCR) technique quantitative analysis of intracellular RNA and DNA, usually need to extract the cell lysis which is complex and time-consuming. Fluorescence bioimaging enables in situ monitoring of intracellular molecules in living cells. By combining the specificity of aptamer for intracellular molecules binding, and biocompatibility of fluorescent materials and nanomaterials, biosensors with different nanostructures have been developed to enter into living cells for analysis. This review summarizes the fluorescence detection methods based on aptamer for intracellular molecules detection. The principles, limit of detection, advantages, and disadvantages of different platforms for intracellular molecular fluorescent response are summarized and reviewed. Finally, the current challenges and future developments were discussed and proposed.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
20
|
Geng F, Wang D, Shao C, Li G, Xu M, Feng L. Simple construction of a two-component fluorescent sensor for turn-on detection of Hg2+ in human serum. Anal Bioanal Chem 2022; 414:2021-2028. [DOI: 10.1007/s00216-021-03837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
|
21
|
Li Z, Gu Y, Ge S, Mao Y, Gu Y, Cao X, Lu D. An aptamer-based SERS–LFA biosensor with multiple channels for the ultrasensitive simultaneous detection of serum VEGF and osteopontin in cervical cancer patients. NEW J CHEM 2022. [DOI: 10.1039/d2nj03567g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this work, a novel surface-enhanced Raman scattering and lateral flow assay (SERS–LFA) biosensor with multiple channels based on an aptamer has been proposed.
Collapse
Affiliation(s)
- Zhiyue Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Department of Obstetrics and Gynecology, College of Clinical Medicine, Yangzhou University, Yangzhou, 225001, P. R. China
- The First Clinical College, Dalian Medical University, Dalian, 116011, P. R. China
| | - Yingyan Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Department of Obstetrics and Gynecology, College of Clinical Medicine, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Yuexing Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Dan Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, P. R. China
- Department of Obstetrics and Gynecology, College of Clinical Medicine, Yangzhou University, Yangzhou, 225001, P. R. China
- The First Clinical College, Dalian Medical University, Dalian, 116011, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, P. R. China
| |
Collapse
|
22
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
23
|
Chen M, Li Y, Li P, Guo W, Yang Y, Wu X, Ye Y, Huang J. Ligation-dependent rolling circle amplification method for ATP determination with high selectivity and sensitivity. Analyst 2021; 146:6605-6614. [PMID: 34586110 DOI: 10.1039/d1an01115d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It is highly demanded to develop methods for the reliable detection of ATP, which plays an extremely important role in clinical diagnosis, biomedical engineering, and food chemistry. However, the methods currently available for ATP sensing strongly rely on the utilization of expensive and sophisticated instruments or the use of ATP aptamers with mediocre sensitivity and selectivity. To circumvent these drawbacks, we herein propose an efficient method for ATP detection by integrating highly specific ATP-dependent ligation reaction with dual-stage signal amplification techniques executed by rolling circle amplification (RCA) and the subsequently fabricated DNAzymes ready for the catalytic cleavage and fluorescence signal generation from molecular beacons (MBs). The detection limit is down to 35 pM with a linear range from 0.05 nM to 200 nM. More importantly, the sensing strategy can effectively discriminate ATP from its analogues and the results from the spiked human serum albumin (HSA) samples further confirm the reliability for practical applications. Considering the high sensitivity and selectivity, wash-free and isothermal convenience, and the simplicity in probe design, the strategy reported herein paves a new avenue for the effective determination of ATP and other biomolecules in fundamental and applied research.
Collapse
Affiliation(s)
- Mingjian Chen
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, P. R. China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Yang Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Peng Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Wanni Guo
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, P. R. China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Yuxin Yang
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, P. R. China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, P. R. China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, P. R. China
| | - Yu Ye
- Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Health Care Group, Huangshi 435002, P. R. China. .,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi 435002, P. R. China
| | - Jiahao Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China. .,Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, P. R. China
| |
Collapse
|
24
|
Sang F, Yin S, Pan J, Zhang Z. Ultrasensitive colorimetric strategy for Hg 2+ detection based on T-Hg 2+-T configuration and target recycling amplification. Anal Bioanal Chem 2021; 413:7001-7007. [PMID: 34532763 DOI: 10.1007/s00216-021-03657-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
A novelty aptasensor for ultrasensitive detection of Hg2+ is developed, exploiting the combination of plasmonic properties of gold nanoparticles (AuNPs) and exonuclease III (Exo III)-assisted target recycling for signal amplification. In the presence of Hg2+, a DNA duplex can be formed due to the strong coordination of Hg2+ and T bases of single-stranded DNA (ssDNA) probe. Exo III digests the DNA duplex from the 3' to 5' direction, resulting in the releasing of Hg2+. Then, the released Hg2+ binds with another ssDNA probe through T-Hg2+-T coordination. After Exo III-assisted Hg2+ cycles, numerous ssDNA probes are exhausted, which promotes poly(diallyldimethylammonium chloride) (PDDA)-induced AuNP aggregation, leading to an obvious color change and aggregation-induced plasmon red shift of AuNPs (from 520 to 610 nm). Therefore, this biosensor is ultrasensitive, which is applicable to the detection of trace level of Hg2+ with a linear range from 5 pM to 0.6 nM and an ultralow detection limit of 0.2 pM. Furthermore, it enables visual detection of Hg2+ as low as 50 pM by the naked eye. More importantly, the assay can be applied to the reliable determination of spiked Hg2+ in sea water samples with good recovery.
Collapse
Affiliation(s)
- Fuming Sang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China.
| | - Suyao Yin
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | - Jianxin Pan
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| | - Zhizhou Zhang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, People's Republic of China
| |
Collapse
|
25
|
Rather IA, Ali R. Indicator displacement assays: from concept to recent developments. Org Biomol Chem 2021; 19:5926-5981. [PMID: 34143168 DOI: 10.1039/d1ob00518a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Overcoming the synthetic burden related to covalently connected receptors with appropriate indicators for sensing various analytes via an indicator spacer receptor (ISR) approach, the indicator displacement assay (IDA) seems to be a very sophisticated and versatile supramolecular sensing paradigm, and it has taken the phenomenon of molecular recognition to the next level in the realm of host-guest chemistry. Due to the unavailability of a comprehensive report on what has been done in the last decade in relation to IDAs, we decided to set down this account illustrating diverse indicator displacement assays (IDAs) in detail from the concept stage to recent developments relating to the detection of cationic, anionic, and neutral analytes. The authors conclude this account with future perspectives and highlight the limitations and challenges relating to IDAs which need to be overcome in order to realize the full potential of this popular sensing phenomenon. While we were finalizing our account for publication, a tutorial review by the research groups of Anslyn, Sessler, and Sun was published, which focuses mainly on diverse aspects of the chemistry related to IDAs. As can be seen, our review, besides discussing various basic IDA concepts, has a vast collection of information published in the past decade and hence, hopefully, will be very informative for the supramolecular community. We believe that this work will offer new insights for the construction of novel sensors operating through the IDA approach.
Collapse
Affiliation(s)
- Ishfaq Ahmad Rather
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India.
| | - Rashid Ali
- Organic and Supramolecular Functional Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla, New Delhi 110025, India.
| |
Collapse
|
26
|
Othman AK, El Kurdi R, Patra D. Outstanding Enhancement of Curcumin Fluorescence in PDDA and Silica Nanoparticles Coated DMPC Liposomes Based Nanocapsules: Application for Selective Estimation of ATP**. ChemistrySelect 2021. [DOI: 10.1002/slct.202101386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Alaa K. Othman
- Department of Chemistry American University of Beirut Beirut 1107-2020 Lebanon
| | - Riham El Kurdi
- Department of Chemistry American University of Beirut Beirut 1107-2020 Lebanon
| | - Digambara Patra
- Department of Chemistry American University of Beirut Beirut 1107-2020 Lebanon
| |
Collapse
|
27
|
Li Y, Liu J. Aptamer-based strategies for recognizing adenine, adenosine, ATP and related compounds. Analyst 2021; 145:6753-6768. [PMID: 32909556 DOI: 10.1039/d0an00886a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adenine is a key nucleobase, adenosine is an endogenous regulator of the immune system, while adenosine triphosphate (ATP) is the energy source of many biological reactions. Selective detection of these molecules is useful for understanding biological processes, biochemical reactions and signaling. Since 1993, various aptamers have been reported to bind to adenine and its derivatives. In addition, the adenine riboswitch was later discovered. This review summarizes the efforts for the selection of RNA and DNA aptamers for adenine derivatives, and we pay particular attention to the specificity of binding. In addition, other molecular recognition strategies based on rational sequence design are also introduced. Most of the work in the field was performed on the classic DNA aptamer for adenosine and ATP reported by the Szostak group. Based on this aptamer, some representative applications such as the design of fluorescent, colorimetric and electrochemical biosensors, intracellular imaging, and ATP-responsive materials are also described. In addition, we critically review the limit of the reported aptamers and also important problems in the field, which can give future research opportunities.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | |
Collapse
|
28
|
Kolpashchikov DM, Spelkov AA. Binary (Split) Light‐up Aptameric Sensors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.201914919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dmitry M. Kolpashchikov
- Chemistry Department University of Central Florida Orlando FL 32816-2366 USA
- Burnett School of Biomedical Sciences University of Central Florida Orlando FL 32816 USA
| | - Alexander A. Spelkov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies ITMO University 9 Lomonosova Str. St. Petersburg 191002 Russian Federation
| |
Collapse
|
29
|
Jin X, Lv M, Pan Q, Fang S, Zhu N. An electrochemical aptasensor based on bifunctional Fe3O4@Au nanocomposites for adenosine triphosphate assay. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-020-04887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Zhang J, Xu H, Li C, Wang Y, Liu D, Zhao S. A label-free logic gate hairpin aptasensor for sensitive detection of ATP based on graphene oxide and PicoGreen dye. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00262-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
In this paper, a simple, enzyme-free, label-free fluorescence, high sensitivity logic gate hairpin aptasensor was developed for adenosine triphosphate (ATP) detection based on graphene oxide (GO) and PicoGreen dye.
Methods
Using single-strand deoxyribonucleic acid (DNA) and adenosine triphosphate (ATP) as input signal and fluorescence signal as output signal, if single-strand DNA (DNA-L), single-strand DNA (DNA-S), and ATP were present at the same time, one segment of DNA-L formed a hairpin ring with ATP, and the other segment of DNA-L formed a completely complementary hairpin stem with DNA-S. The hairpin DNA was detached from the GO surface, and PicoGreen dye was embedded into the hairpin stem, and the fluorescence signal was enhanced. The molecular logic gate was constructed through the establishment of logic histogram, logic circuit, truth table, and logic formula. The biosensor-related performances including sensitivity, selectivity, and linearity were investigated, respectively.
Results
We have successfully constructed a AND logic gate. The detection limit of ATP is 138.0 pmol/L (3σ/slope) with detection range of 50–500 nmol/L (R2 = 0.98951), and its sensitivity is 4.748 × 106–6.875 × 108 a.u. (mol/L)−1.
Conclusions
The logic gate hairpin aptamer sensor has the advantages of high sensitivity, low detection limit, and low cost, and can be successfully applied to the detection of adenosine triphosphate (ATP) in actual human urine samples.
Collapse
|
31
|
Chen C, Pang L, Wang R, Zou C, Ruan G, Sun Y, Zhang C, Yu H, Li L, Liu J. Fluorescence copolymer-based dual-signal monitoring tyrosinase activity and its inhibitor screening via blue-green emission transformation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119028. [PMID: 33068897 DOI: 10.1016/j.saa.2020.119028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Tyrosinase (TYR) is a crucial enzyme in melanin metabolism and catecholamine production, its abnormal overexpression is closely associated with many human diseases involving melanoma cancer, vitiligo, Parkinson's disease and so on. Herein, a dual-signal fluorescence sensing system for monitoring TYR activity is constructed depending on the transformation of blue-green fluorescence emission of copolymer. The developed sensing system is based on TYR catalyzing the hydroxylation of mono-phenol to o-diphenol and the conversion of fluorescence copolymer (FCP) blue emission (430 nm) and green emission (535 nm) in the presence of PEI. In the system, both blue and green emission exhibit a high selectivity and sensitivity (S/B up to 300 and 30 for blue and green emission, respectively) toward TYR in the range from 0.5 to 2.5 U/mL with the detection limit of 0.002 U/mL and 0.06 U/mL, respectively. Additionally, this assay is used to detect TYR in human serum with excellent recovery even at 30% human serum concentrations. Furthermore, it still has been successfully applied to TYR inhibitor screening by taking kojic acid as a model. We believe that our developed sensor has great potential application in TYR-associated disease diagnosis and treatment and drug discovery.
Collapse
Affiliation(s)
- Can Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lihua Pang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Rui Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Changpeng Zou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Guotong Ruan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yujie Sun
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Haidong Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
32
|
Jia M, Pan Y, Zhou J, Zhang M. Identification of Chinese teas by a colorimetric sensor array based on tea polyphenol induced indicator displacement assay. Food Chem 2021; 335:127566. [DOI: 10.1016/j.foodchem.2020.127566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
|
33
|
Qi X, Yan X, Zhao Y, Li L, Wang S. Highly sensitive and specific detection of small molecules using advanced aptasensors based on split aptamers: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116069] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Li S, Zheng Y, Zou Q, Liao G, Liu X, Zou L, Yang X, Wang Q, Wang K. Engineering and Application of a Myoglobin Binding Split Aptamer. Anal Chem 2020; 92:14576-14581. [PMID: 33052657 DOI: 10.1021/acs.analchem.0c02869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Given that a split aptamer provides a chance for the development of a sandwich assay for targets with only one aptamer, it has received extensive attention in biosensing. However, due to the lack of binding mechanisms and reliable methods, there were still a few split aptamers that bind to proteins. In this work, cardiac biomarker myoglobin (Myo) was selected as a model, a new strategy of engineering split aptamers was explored with atomic force spectroscopy (AFM), and split aptamers against target protein could be achieved by choosing the optimal binding probability between split aptamers and target. Then, the obtained split aptamers were designed for Myo detection based on dynamic light scattering (DLS). The results demonstrated that the obtained split aptamers could be used to detect targets in human serum. The strategy of engineering split aptamers has the advantages of being intuitive and reliable and could be a general strategy for obtaining split aptamers.
Collapse
Affiliation(s)
- Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qingqing Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Guofu Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
35
|
Kolpashchikov DM, Spelkov AA. Binary (Split) Light-up Aptameric Sensors. Angew Chem Int Ed Engl 2020; 60:4988-4999. [PMID: 32208549 DOI: 10.1002/anie.201914919] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Indexed: 12/12/2022]
Abstract
This Minireview discusses the design and applications of binary (also known as split) light-up aptameric sensors (BLAS). BLAS consist of two RNA or DNA strands and a fluorogenic organic dye added as a buffer component. When associated, the two strands form a dye-binding site, followed by an increase in fluorescence of the aptamer-bound dye. The design is cost-efficient because it uses short oligonucleotides and does not require conjugation of organic dyes with nucleic acids. In some applications, BLAS design is preferable over monolithic sensors because of simpler assay optimization and improved selectivity. RNA-based BLAS can be expressed in cells and used for the intracellular monitoring of biological molecules. BLAS have been used as reporters of nucleic acid association events in RNA nanotechnology and nucleic-acid-based molecular computation. Other applications of BLAS include the detection of nucleic acids, proteins, and cancer cells, and potentially they can be tailored to report a broad range of biological analytes.
Collapse
Affiliation(s)
- Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, FL, 32816-2366, USA.,Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32816, USA
| | - Alexander A Spelkov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., St. Petersburg, 191002, Russian Federation
| |
Collapse
|
36
|
Ma N, Ren X, Wang H, Kuang X, Fan D, Wu D, Wei Q. Ultrasensitive Controlled Release Aptasensor Using Thymine–Hg2+–Thymine Mismatch as a Molecular Switch for Hg2+ Detection. Anal Chem 2020; 92:14069-14075. [DOI: 10.1021/acs.analchem.0c03110] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ning Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xuan Kuang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
37
|
Fluorescent aptasensor based on G-quadruplex-assisted structural transformation for the detection of biomarker lipocalin 1. Biosens Bioelectron 2020; 169:112607. [PMID: 32947081 DOI: 10.1016/j.bios.2020.112607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Diabetic retinopathy (DR) is the leading global cause of blindness in the working-age population. Early diagnosis and intervention can effectively reduce the risk for blindness. However, the current diagnostic methods in clinical practice remain constrained by nonquantitative examinations and individual ophthalmologists' experiences. Sensitive, specific and accurate detection of DR-specific biomarkers is an important approach to achieve its early and rapid diagnosis. In this study, a high-affinity aptamer APT12TM that specifically binds to the tear-derived DR biomarker lipocalin 1 was obtained. The aptamer APT12TM can be folded into a stable B-DNA structure, and its strong interaction with LCN 1, including hydrogen bonding and hydrophobic interactions, is an important factor for targeted recognition and high-affinity binding. A G-rich DNA fragment was further assembled at both ends of the aptamer APT12TM, and the B-DNA form was successfully converted into a parallel G-quadruplex. Most importantly, LCN 1 could induce further transformation of the G-quadruplex structure. Therefore, a fluorescent aptasensor based on G-quadruplex-assisted structural transformation was developed through the Thioflavin T mediator. The aptasensor exhibited a broad detection window from 0.25 to 1000 nM LCN 1, with a limit of detection of 0.2 nM. Furthermore, the aptasensor was applied to LCN 1 detection in artificial tear samples and displayed good reproducibility and stability. These results show that the developed aptasensor has significant potential for sensitive, specific and convenient detection of the DR-specific biomarker LCN 1.
Collapse
|
38
|
Wang X, Chu C, Lv J, Jia Y, Lin L, Yang M, Zhang S, Huo D, Hou C. Simultaneous measurement of Cr(III) and Cu(II) based on indicator-displacement assay using a colorimetric nanoprobe. Anal Chim Acta 2020; 1129:108-117. [PMID: 32891379 DOI: 10.1016/j.aca.2020.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/13/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
High-performance analysis of heavy metal ions is great importance in both environment and food safety. In this work, a facile and reliable colorimetric sensor was presented for simultaneous detection of Cu2+ and Cr3+ based on indicator-displacement assay (IDA). As a typical silicate nanomaterials, ZnSiO3 hollow nanosphere (ZSHS) exhibited an outstanding ion exchange capacity. Zincon was incorporated with the ZSHS to form a zincon/ZSHS hybrid ionophore with a blue color. Upon the addition of Cr3+, IDA reaction and selective ion exchange occurred with the color change of zincon/ZSHS ionophore from blue to yellow. With such a design, colorimetric measurement of Cr3+ was realized. The linear concentration for Cr3+ detection ranged from 0.5 μM to 75 μM with the LOD of 83.2 nM. Furthermore, we also screened different kinds of complexing agents that may respond with zincon/ZSHS ionophore and various metal ions. It was found that tartaric acid (TA) showed the chelation capability of Zn2+-TA is stronger than that of Zn2+-zincon. Thus zincon/ZSHS/TA presented a yellow color due to the chelation reaction of Zn2+-TA, releasing the zincon as a free state. After addition of Cu2+, a stronger chelation reaction of Cu2+-zincon occurred. This process involved in the color change from yellow to blue and realized colorimetric measurement of Cu2+. The detection limit of Cu2+ was calculated to be 43.7 nM with linear range from 0.1 to 20 μM. In addition, the zincon/ZSHS nanoprobe was successfully applied for simultaneous measurement of Cu2+ and Cr3+ in sorghum and river water, indicating that the zincon/ZSHS nanoprobe provided a promising sensing platform in environment and food safety.
Collapse
Affiliation(s)
- Xianfeng Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Chengxiang Chu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Jiayi Lv
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yuanyuan Jia
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Libo Lin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Suyi Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou, 646000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
39
|
Chen XX, Lin ZZ, Yao QH, Huang ZY. A practical aptaprobe for sulfadimethoxine residue detection in water and fish based on the fluorescence quenching of CdTe QDs by poly(diallyldimethylammonium chloride). J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
40
|
Fan YY, Deng X, Wang M, Li J, Zhang ZQ. A dual-function oligonucleotide-based ratiometric fluorescence sensor for ATP detection. Talanta 2020; 219:121349. [PMID: 32887077 DOI: 10.1016/j.talanta.2020.121349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/27/2023]
Abstract
Adenosine triphosphate (ATP) is the main energy currency of life that plays a vital role in supporting physiological activities in living organisms, including humans. Therefore, accurate and sensitive detection of ATP concentration is necessary in biochemical research and clinical diagnosis. Herein, a ratiometric fluorescence aptasensor was developed for ATP detection. A dual-function DNA strand comprising an ATP-binding aptamer (ABA) and berberine-binding aptamer (BBA) was designed and optimized, in which ABA can capture ATP and thioflavin T (ThT), whereas BBA can capture berberine. Interestingly, the fluorescence intensity of both berberine and ThT were enhanced as they were captured by this dual-function DNA strand. In the presence of ATP, the ABA on the 3'-end of the DNA bound specifically to its target, causing ThT release and a significant drop in ThT fluorescence. However, ATP had no significant effect on the interaction between berberine and DNA, remaining the enhanced fluorescence intensity of berberine stable. Based on this interesting phenomenon, a ratiometric fluorescence sensor was constructed that used the enhanced fluorescence intensity of berberine as reference to measure the fluorescence intensity of ThT for ATP detection. This ratiometric fluorescence strategy had excellent selectivity and high sensitivity towards ATP with a detection limit (3σ) as low as 24.8 nM. The feasibility of application of this method in biological samples was evaluated in human serum and urine samples, where it exhibited a good detection performance.
Collapse
Affiliation(s)
- Yao-Yao Fan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Xu Deng
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Man Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Jun Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhi-Qi Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
41
|
Wang XZ, Du J, Xiao NN, Zhang Y, Fei L, LaCoste JD, Huang Z, Wang Q, Wang XR, Ding B. Driving force to detect Alzheimer's disease biomarkers: application of a thioflavine T@Er-MOF ratiometric fluorescent sensor for smart detection of presenilin 1, amyloid β-protein and acetylcholine. Analyst 2020; 145:4646-4663. [PMID: 32458857 DOI: 10.1039/d0an00440e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, the highly sensitive detection of Alzheimer's Disease (AD) biomarkers, namely presenilin 1, amyloid β-protein (Aβ), and acetylcholine (ACh), is vital to helping us prevent and diagnose AD. In this work, a novel metal-organic framework [Er(L)(DMF)1.27]n (Er-MOF) (H3L = terphenyl-3,4'',5-tricarboxylic acid) has been synthesized by solvothermal and ultrasonic methods. Further, through the post-synthesis assembly strategy, the fluorescent dye thioflavine T (ThT) has been introduced into Er-MOF to construct a dual-emission ThT@Er-MOF ratiometric fluorescent sensor. This is the first time that ThT@Er-MOF has been successfully applied in the highly sensitive detection of three main Alzheimer's disease biomarkers in the cerebrospinal fluid through three different low cost and facile detection strategies. Firstly, with the spilted DNA strategy, this is the first time that ThT@Er-MOF can be applied in the label-free detection of SSODN (part of the presenilin 1 gene). Secondly, for the detection of Aβ, because ThT can be specifically combined with Aβ and has an excellent characteristic fluorescence band, the dual-emission ThT@Er-MOF sensor can be selectively applied to detect Aβ over the analog protein, which shows far more sensitivity than other Aβ sensors. Thirdly, through the acetylcholine esterase (AchE) enzymatic cleavage and release strategy, ThT@Er-MOF enhances the detection of acetylcholine (ACh) with a low limit of detection (LOD) value (0.03226 nM). It should be noticed that the three different detection methods are low cost and facile. This study also provides the first example of utilizing laser scanning confocal microscopy (LSCM) to investigate the fluorescence resonance energy transfer (FRET) detection mechanism by ThT@Er-MOF in more detail. The location of FRET occurrence and FRET efficiency can also be investigated by LSCM, which can be helpful to understand the FRET detection process by these unique MOF-based hybrid materials.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hu Y, Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, Peng D, Liu Z, Liu Y. Dynamic DNA Assemblies in Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000557. [PMID: 32714763 PMCID: PMC7375253 DOI: 10.1002/advs.202000557] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/07/2020] [Indexed: 05/13/2023]
Abstract
Deoxyribonucleic acid (DNA) has been widely used to construct homogeneous structures with increasing complexity for biological and biomedical applications due to their powerful functionalities. Especially, dynamic DNA assemblies (DDAs) have demonstrated the ability to simulate molecular motions and fluctuations in bionic systems. DDAs, including DNA robots, DNA probes, DNA nanochannels, DNA templates, etc., can perform structural transformations or predictable behaviors in response to corresponding stimuli and show potential in the fields of single molecule sensing, drug delivery, molecular assembly, etc. A wave of exploration of the principles in designing and usage of DDAs has occurred, however, knowledge on these concepts is still limited. Although some previous reviews have been reported, systematic and detailed reviews are rare. To achieve a better understanding of the mechanisms in DDAs, herein, the recent progress on the fundamental principles regarding DDAs and their applications are summarized. The relative assembly principles and computer-aided software for their designing are introduced. The advantages and disadvantages of each software are discussed. The motional mechanisms of the DDAs are classified into exogenous and endogenous stimuli-triggered responses. The special dynamic behaviors of DDAs in biomedical applications are also summarized. Moreover, the current challenges and future directions of DDAs are proposed.
Collapse
Affiliation(s)
- Yaqin Hu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Ying Wang
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Nachuan Wen
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Shundong Cai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Qunye He
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Dongming Peng
- Department of Medicinal ChemistrySchool of PharmacyHunan University of Chinese MedicineChangshaHunan410013P. R. China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
- Molecular Imaging Research Center of Central South UniversityChangshaHunan410013P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| |
Collapse
|
43
|
Ren L, Xu P, Zhang P, Qin Z, Hang X, Li C, Meng X, Xu X, Jiang L. Effects of Label-free Fluorescence Aptasensors with Different Aptamer Length on Quenching of Carbon Dots. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1742-6596/1520/1/012007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Debiais M, Lelievre A, Smietana M, Müller S. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors. Nucleic Acids Res 2020; 48:3400-3422. [PMID: 32112111 PMCID: PMC7144939 DOI: 10.1093/nar/gkaa132] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In analogy to split-protein systems, which rely on the appropriate fragmentation of protein domains, split aptamers made of two or more short nucleic acid strands have emerged as novel tools in biosensor set-ups. The concept relies on dissecting an aptamer into a series of two or more independent fragments, able to assemble in the presence of a specific target. The stability of the assembled structure can further be enhanced by functionalities that upon folding would lead to covalent end-joining of the fragments. To date, only a few aptamers have been split successfully, and application of split aptamers in biosensing approaches remains as promising as it is challenging. Further improving the stability of split aptamer target complexes and with that the sensitivity as well as efficient working modes are important tasks. Here we review functional nucleic acid assemblies that are derived from aptamers and ribozymes/DNAzymes. We focus on the thrombin, the adenosine/ATP and the cocaine split aptamers as the three most studied DNA split systems and on split DNAzyme assemblies. Furthermore, we extend the subject into split light up RNA aptamers used as mimics of the green fluorescent protein (GFP), and split ribozymes.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Amandine Lelievre
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Sabine Müller
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| |
Collapse
|
45
|
Jiang XL, Liu JH, Que YT, Que YM, Hu PP, Huang CZ, Tong XY. Multifunctional Single-Layered Graphene Quantum Dots Used for Diagnosis of Mitochondrial Malfunction-Related Diseases. ACS Biomater Sci Eng 2020; 6:1727-1734. [PMID: 33455364 DOI: 10.1021/acsbiomaterials.9b01395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondria are critical organelles in eukaryotes that efficiently generate adenosine 5'-triphosphate (ATP) for various biological activities, and any defect in the process of ATP synthesis may lead to mitochondrial dysfunction and directly link to a variety of medical disorders. Monitoring the ATP variations in cells is key for innovative early diagnosis of mitochondrial diseases. Herein, multifunctional single-layered graphene quantum dots (s-GQDs) with bright green emission were constructed, which exhibit strong binding affinity for ATP and good mitochondria targeting ability. Using the proposed s-GQDs, we successfully discriminated the primary smooth muscle cells isolated from the transgenic mouse (heterozygote sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) 2 C674S knock-in mouse) with mitochondrial disorders or their littermate controls, indicating s-GQDs as promising probes for the study of cell metabolism and mitochondrial malfunction-related diseases, and targeting endoplasmic reticulum stress is an effective way to modulate metabolic pathways relevant to SERCA 2 inactivity mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiao Li Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - Jia Hui Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yan Ting Que
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - Yu Mei Que
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ping Ping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiao Yong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| |
Collapse
|
46
|
Wang D, Geng F, Wang Y, Ma Y, Li G, Qu P, Shao C, Xu M. Design of a Fluorescence Turn-on and Label-free Aptasensor Using the Intrinsic Quenching Power of G-Quadruplex to AMT. ANAL SCI 2020; 36:965-970. [PMID: 32062632 DOI: 10.2116/analsci.19p455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel fluorescent aptasensor based on the G-quadruplex induced fluorescent quenching of psoralen and the competitive interactions between 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT), adenosine triphosphate (ATP) and G-rich DNA functionalized split ATP aptamer was proposed. The binding of ATP to the G-rich DNA functionalized split aptamer induced a significant enhancement in fluorescence emission intensity while undergoing excitation at 340 nm. Under the optimal conditions, the developed aptasensor showed high selectivity and good accuracy for detecting ATP. The practicality of the proposed aptasensor has been confirmed by successfully analyzing ATP in spiked human blood serum samples with satisfactory results. As far as we know, this is the first time that the intrinsic quenching ability of G-quadruplex was applied to simply construct a fluorescence turn-on and label-free aptasensor. On account of the superiority of the simplicity of the design strategy, more work is expected in the future to develop a variety of novel sensors for other important analytes using the quenching capability of G-quadruplex through reasonable designs.
Collapse
Affiliation(s)
- Dandan Wang
- College of Chemistry and Chemical Engineering, Xinjiang Normal University
| | - Fenghua Geng
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, School of Chemistry and Chemical Engineering, Shangqiu Normal University
| | - Yongxiang Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, School of Chemistry and Chemical Engineering, Shangqiu Normal University.,College of Chemistry and Material Science, Huaibei Normal University
| | - Yu Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, School of Chemistry and Chemical Engineering, Shangqiu Normal University
| | - Guixin Li
- College of Chemistry and Chemical Engineering, Xinjiang Normal University
| | - Peng Qu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, School of Chemistry and Chemical Engineering, Shangqiu Normal University
| | - Congying Shao
- College of Chemistry and Material Science, Huaibei Normal University
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, School of Chemistry and Chemical Engineering, Shangqiu Normal University
| |
Collapse
|
47
|
Zhu Q, Liang B, Liang Y, Ji L, Cai Y, Wu K, Tu T, Ren H, Huang B, Wei J, Fang L, Liang X, Ye X. 3D bimetallic Au/Pt nanoflowers decorated needle-type microelectrode for direct in situ monitoring of ATP secreted from living cells. Biosens Bioelectron 2020; 153:112019. [PMID: 31989935 DOI: 10.1016/j.bios.2020.112019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 01/07/2023]
Abstract
Adenosine triphosphate (ATP) plays a crucial role in energy metabolism and extracellular purinergic signaling. A 3D bimetallic Au/Pt nanoflowers decorated ATP microelectrode biosensor prepared by facile and effective template-free electrodeposition was firstly reported, realizing local detection of cellular ATP secretion. The ATP biosensor was developed by co-immobilization of glucose oxidase and hexokinase, exhibiting long-term stability (79.39 ± 9.15% of its initial value remained after 14 days at 4 °C) and high selectivity with a limit of detection down to 2.5 μM (S/N = 3). The resulting ATP biosensor was then used for direct in situ monitoring of ATP secreted from living cells (PC12) with the stimulation of high K+ solutions. The obtained current was about 21.6 ± 3.4 nA (N = 6), corresponding to 12.2 ± 2.8 μM ATP released from cells, right in the micromolar range and consistent with the suggested levels. The 3D bimetallic Au/Pt nanoflowers possess excellent catalytic activity and large electroactive surface area, contributing to enzymatic activity preservation and long-term stability. This work provides a promising platform for long-time monitoring of other neurotransmitters and secretions in cellular glycolysis and apoptosis processes in the future.
Collapse
Affiliation(s)
- Qin Zhu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310027, PR China
| | - Bo Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310027, PR China.
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310027, PR China
| | - Lin Ji
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Yu Cai
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310027, PR China
| | - Ke Wu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Tingting Tu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310027, PR China
| | - Hangxu Ren
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310027, PR China
| | - Bobo Huang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310027, PR China
| | - Jinwei Wei
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310027, PR China
| | - Lu Fang
- College of Automation, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Xiao Liang
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Innovation Center for Minimally Invasive Technique and Device, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
48
|
Hu D, Hu Y, Zhan T, Zheng Y, Ran P, Liu X, Guo Z, Wei W, Wang S. Coenzyme A-aptamer-facilitated label-free electrochemical stripping strategy for sensitive detection of histone acetyltransferase activity. Biosens Bioelectron 2019; 150:111934. [PMID: 31818759 DOI: 10.1016/j.bios.2019.111934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/11/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Abnormal histone acetyltransferases (HAT) activity gives rise to all kinds of cellular diseases. Herein, we first report a coenzyme A (CoA)-aptamer-facilitated label-free electrochemical stripping biosensor for sensitive detection of HAT activity via square wave voltammetry (SWV) technique. The presence of HAT can lead to the transfer of the acetyl group from acetyl coenzyme A (Ac-CoA) to lysine residues of substrate peptide, thus generating CoA molecule. Later, CoA, which acts as an initiator, can embrace its aptamer via the typical target-aptamer interaction, then arousing deoxynucleotide terminal transferase (TdT)-induced silver nanoclusters (AgNCs) as signal output. Under optimized conditions, the resultant aptasensor shows obvious electrochemical stripping signal and is employed for HAT p300 analysis in a wide concentration range from 0.01 to 100 nM with a very low detection limit of 0.0028 nM (3δ/slope). The good analytical performances of the biosensor depend on the strong interaction of CoA and its aptamer and abundant stripping resource rooted from AgNCs. Next, the proposed biosensor is used for screening HAT's inhibitors and the practical HAT detection with satisfactory results. Therefore, the new, simple and sensitive HAT biosensor presents a promising direction for HAT-targeted drug discovery and epigenetic research.
Collapse
Affiliation(s)
- Dandan Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Yufang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, PR China.
| | - Tianyu Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Yudi Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Pingjian Ran
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Xinda Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Wenting Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Sui Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
| |
Collapse
|