1
|
Wu X, Ye Y, Sun M, Mei Y, Ji B, Wang M, Song E. Recent Progress of Soft and Bioactive Materials in Flexible Bioelectronics. CYBORG AND BIONIC SYSTEMS 2025; 6:0192. [PMID: 40302943 PMCID: PMC12038164 DOI: 10.34133/cbsystems.0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 05/02/2025] Open
Abstract
Materials that establish functional, stable interfaces to targeted tissues for long-term monitoring/stimulation equipped with diagnostic/therapeutic capabilities represent breakthroughs in biomedical research and clinical medicine. A fundamental challenge is the mechanical and chemical mismatch between tissues and implants that ultimately results in device failure for corrosion by biofluids and associated foreign body response. Of particular interest is in the development of bioactive materials at the level of chemistry and mechanics for high-performance, minimally invasive function, simultaneously with tissue-like compliance and in vivo biocompatibility. This review summarizes the most recent progress for these purposes, with an emphasis on material properties such as foreign body response, on integration schemes with biological tissues, and on their use as bioelectronic platforms. The article begins with an overview of emerging classes of material platforms for bio-integration with proven utility in live animal models, as high performance and stable interfaces with different form factors. Subsequent sections review various classes of flexible, soft tissue-like materials, ranging from self-healing hydrogel/elastomer to bio-adhesive composites and to bioactive materials. Additional discussions highlight examples of active bioelectronic systems that support electrophysiological mapping, stimulation, and drug delivery as treatments of related diseases, at spatiotemporal resolutions that span from the cellular level to organ-scale dimension. Envisioned applications involve advanced implants for brain, cardiac, and other organ systems, with capabilities of bioactive materials that offer stability for human subjects and live animal models. Results will inspire continuing advancements in functions and benign interfaces to biological systems, thus yielding therapy and diagnostics for human healthcare.
Collapse
Affiliation(s)
- Xiaojun Wu
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
| | - Yuanming Ye
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mubai Sun
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Yongfeng Mei
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Bowen Ji
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ming Wang
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Frontier Institute of Chip and System,
Fudan University, Shanghai 200433, China
| | - Enming Song
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
| |
Collapse
|
2
|
Nam KY, Kim MS, An J, Min S, Lee JH, Park JS, Huh C, Yun SH, Lee KJ. Human-Centric, Three Dimensional Micro Light-Emitting Diodes for Cosmetic and Medical Phototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416716. [PMID: 39960366 PMCID: PMC11905057 DOI: 10.1002/advs.202416716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Phototherapy based on micro light-emitting diodes (µLEDs) has gained enormous attention in the medical field as a patient-friendly therapeutic method due to its advantages of minimal invasiveness, fewer side effects, and versatile device form factors with high stability in biological environment. Effective cosmetic and medical phototherapy depends on deep light penetration, precise irradiation, and simultaneous multi-site stimulation, facilitated by three-dimensional (3D) optoelectronics specifically designed for complex human matters, defined here as 3D µLEDs. This perspective article aims to present the functionalities and strategies of 3D µLEDs for human-centric phototherapy. This study investigates the effectiveness of phototherapy enabled by three key functionalities such as shape morphing, self-adaptation, and multilayered spatiotemporal mapping of 3D µLEDs. Finally, this article provides future insights of 3D µLEDs for human-centric phototherapy applications.
Collapse
Affiliation(s)
- Ki Yun Nam
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34 141Republic of Korea
- School of Electrical EngineeringGraduate School of Semiconductor TechnologyKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34 141Republic of Korea
| | - Min Seo Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34 141Republic of Korea
| | - Jaehun An
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34 141Republic of Korea
| | - Seongwook Min
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34 141Republic of Korea
| | - Jae Hee Lee
- Querrey‐Simpson Institute for BioelectronicsNorthwestern UniversityEvanstonIL60 208USA
| | - Jae Sung Park
- Yonsei Myview Clinic301, Sadang‐ro, Dongjak‐guSeoul0 7008Republic of Korea
| | - Chang‐Hun Huh
- Department of DermatologySeoul National University Bundang Hospital (SNUBH)173–82, Gumi‐ro, Bundang‐guSeongnam13 620Republic of Korea
| | - Seok Hyun Yun
- Harvard Medical School and Wellman Center for PhotomedicineMassachusetts General HospitalBostonMA0 2114USA
| | - Keon Jae Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34 141Republic of Korea
- School of Electrical EngineeringGraduate School of Semiconductor TechnologyKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34 141Republic of Korea
| |
Collapse
|
3
|
Xu Y, Li BZ, Huang X, Liu Y, Liang Z, Yang X, Lin L, Wang L, Xia Y, Ridenour M, Huang Y, Yuan Z, Klug A, Pun SH, Lei TC, Zhang B. Sapphire-Based Optrode for Low Noise Neural Recording and Optogenetic Manipulation. ACS Chem Neurosci 2025; 16:628-641. [PMID: 39910858 PMCID: PMC12066107 DOI: 10.1021/acschemneuro.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Electrophysiological recording of neurons in deep brain regions using optogenetic stimulation is a powerful method for understanding and regulating the role of complex neural activity in biological behavior and cognitive function. Optogenetic techniques have significantly advanced neuroscience research by enabling the optical manipulation of neural activities. Because of the significance of the technique, constant advancements in implantable optrodes that integrate optical stimulation with low-noise, large-scale electrophysiological recording are in demand to improve the spatiotemporal resolution for various experimental designs and future clinical applications. However, robust and easy-to-use neural optrodes that integrate neural recording arrays with high-intensity light emitting diodes (LEDs) are still lacking. Here, we propose a neural optrode based on Gallium Nitride (GaN) on sapphire technology, which integrates a high-intensity blue LED with a 5 × 2 recording array monolithically for simultaneous neural recording and optogenetic manipulation. To reduce the noise interference between the recording electrodes and the LED, which is in close physical proximity, three metal grounding interlayers were incorporated within the optrode, and their ability to reduce LED-induced artifacts during neural recording was confirmed through both electromagnetic simulations and experimental demonstrations. The capability of the sapphire optrode to record action potentials has been demonstrated by recording the firing of mitral/tuft cells in the olfactory bulbs of mice in vivo. Additionally, the elevation of action potential firing due to optogenetic stimulation observed using the sapphire probe in medial superior olive (MSO) neurons of the gerbil auditory brainstem confirms the capability of this sapphire optrode to precisely access neural activities in deep brain regions under complex experimental designs.
Collapse
Affiliation(s)
- Yanyan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ben-Zheng Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Electrical Engineering, University of Colorado Denver, Denver, CO 80204, USA
| | - Xinlong Huang
- Reliability Physics and application Technology of Electronic Component Key Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou, 511370, China
| | - Yuebo Liu
- Reliability Physics and application Technology of Electronic Component Key Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou, 511370, China
| | - Zhiwen Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xien Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lizhang Lin
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liyang Wang
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Yu Xia
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Matthew Ridenour
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yujing Huang
- Centre for Cognitive and Brain Sciences, University of Macau, Macau 999078, China
- Ministry of Education, Frontiers Science Center for Precision Oncology, Faculty of Health Science, University of Macau, Macau 999078, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, University of Macau, Macau 999078, China
- Ministry of Education, Frontiers Science Center for Precision Oncology, Faculty of Health Science, University of Macau, Macau 999078, China
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Tim C. Lei
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Electrical Engineering, University of Colorado Denver, Denver, CO 80204, USA
| | - Baijun Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
4
|
Gu W, Wang L, Wang X, Zhao C, Guan S. Large-Scale, High-Density MicroLED Array-Based Optogenetic Device for Neural Stimulation and Recording. NANO LETTERS 2024. [PMID: 39564939 DOI: 10.1021/acs.nanolett.4c03645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Optogenetics has emerged as a pivotal tool in neuroscience, enabling precise control of neural activity through light stimulation. However, the current microLED arrays lack sufficient density and scalability. This study proposes an innovative optogenetic device capable of integrating hundreds of microLEDs and electrocorticography (ECOG) electrodes. Individual or multiple microLEDs in the device can be selectively controlled with a custom controller. The light intensity of microLEDs decreases with increasing brain tissue penetration while maintaining a low temperature rise during pulse stimulations. In addition, interference from microLED pulses on ECOG electrode recordings could be alleviated with local mean subtraction data processing. The optogenetic device enables high-quality neural signal recording and triggers a significant enhancement in neural activity following light stimulation. Integration of microLED arrays and ECOG electrodes in the optogenetic device represents a promising advancement in neuroscientific research, providing improved spatial and temporal recording and control over neural activity.
Collapse
Affiliation(s)
- Wen Gu
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Longda Wang
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Xiangyu Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Zhao
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Shouliang Guan
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| |
Collapse
|
5
|
Zhu G, Javanmardia N, Qian L, Jin F, Li T, Zhang S, He Y, Wang Y, Xu X, Wang T, Feng ZQ. Advances of conductive hydrogel designed for flexible electronics: A review. Int J Biol Macromol 2024; 281:136115. [PMID: 39349076 DOI: 10.1016/j.ijbiomac.2024.136115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
In recent years, there has been considerable attention devoted to flexible electronic devices within the realm of biomedical engineering. These devices demonstrate the capability to accurately capture human physiological signals, thereby facilitating efficient human-computer interaction, and providing a novel approach of flexible electronics for monitoring and treating related diseases. A notable contribution to this domain is the emergence of conductive hydrogels as a novel flexible electronic material. Renowned for their exceptional flexibility, adjustable electrical conductivity, and facile processing, conductive hydrogels have emerged as the preferred material for designing and fabricating innovative flexible electronic devices. This paper provides a comprehensive review of the recent advancements in flexible electronic devices rooted in conductive hydrogels. It offers an in-depth exploration of existing synthesis strategies for conductive hydrogels and subsequently examines the latest progress in their applications, including flexible neural electrodes, sensors, energy storage devices and soft robots. The analysis extends to the identification of technological challenges and developmental opportunities in both the synthesis of new conductive hydrogels and their application in the dynamic field of flexible electronics.
Collapse
Affiliation(s)
- Guanzhou Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Negar Javanmardia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Lili Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Siwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yuyuan He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xuran Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Ting Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
6
|
Huang Y, Li G, Bai T, Shin Y, Wang X, More AI, Boucher P, Chandrasekaran C, Liu J, Fang H. Flexible electronic-photonic 3D integration from ultrathin polymer chiplets. NPJ FLEXIBLE ELECTRONICS 2024; 8:61. [PMID: 39780990 PMCID: PMC11709425 DOI: 10.1038/s41528-024-00344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/27/2024] [Indexed: 01/11/2025]
Abstract
The integration of flexible electronics and photonics has the potential to create revolutionary technologies, yet it has been challenging to marry electronic and photonic components on a single polymer device, especially through high-volume manufacturing. Here, we present a robust, chiplet-level heterogeneous integration of polymer-based circuits (CHIP), where several post-fabricated, ultrathin, polymer electronic, and optoelectronic chiplets are vertically bonded into one single chip at room temperature and then shaped into application-specific form factors with monolithic Input/Output (I/O). As a demonstration, we applied this process and developed a flexible 3D-integrated optrode with high-density arrays of microelectrodes for electrical recording and micro light-emitting diodes (μLEDs) for optogenetic stimulation while with unprecedented integration of additional temperature sensors for bio-safe operations and shielding designs for optoelectronic artifact prevention. Besides achieving simple, high-yield, and scalable 3D integration of much-needed functionalities, CHIP also enables double-sided area utilization and miniaturization of connection I/O. Systematic device characterization demonstrated the successfulness of this scheme and also revealed frequency-dependent origins of optoelectronic artifacts in flexible 3D-integrated optrodes. In addition to enabling excellent manufacturability and scalability, we envision CHIP to be generally applicable to numerous polymer-based devices to achieve wide-ranging applications.
Collapse
Affiliation(s)
- Yunxiang Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Gen Li
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Tianyu Bai
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yieljae Shin
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Xiaoxin Wang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Alexander Ian More
- Department of Psychological and Brain Sciences, Boston University, MA, 02118, USA
| | - Pierre Boucher
- Department of Psychological and Brain Sciences, Boston University, MA, 02118, USA
| | | | - Jifeng Liu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Hui Fang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
7
|
Xu Y, Yang X, Liang Z, Lin L, Zhao W, Wang L, Xia Y, Lin X, Vai MI, Pun SH, Zhang B. An Integrated Neural Optrode with Modification of Polymer-Carbon Composite Films for Suppression of the Photoelectric Artifacts. ACS OMEGA 2024; 9:33119-33129. [PMID: 39100334 PMCID: PMC11292809 DOI: 10.1021/acsomega.4c04534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Optogenetics-based integrated photoelectrodes with high spatiotemporal resolution play an important role in studying complex neural activities. However, the photostimulation artifacts caused by the high level of integration and the high impedance of metal recording electrodes still hinder the application of photoelectrodes for optogenetic studies of neural circuits. In this study, a neural optrode fabricated on sapphire GaN material was proposed, and 4 μLEDs and 14 recording microelectrodes were monolithically integrated on a shank. Poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate and multiwalled carbon nanotubes (PEDOT:PSS-MWCNT) and poly(3,4-ethylenedioxythiophene) and graphene oxide (PEDOT-GO) composite films were deposited on the surface of the recording microelectrode by electrochemical deposition. The results demonstrate that compared with the gold microelectrode, the impedances of both composite films reduced by more than 98%, and the noise amplitudes decreased by 70.73 and 87.15%, respectively, when exposed to light stimulation. Adjusting the high and low levels, we further reduced the noise amplitude by 48.3%. These results indicate that modifying the electrode surface by a polymer composite film can effectively enhance the performance of the microelectrode and further promote the application of the optrode in the field of neuroscience.
Collapse
Affiliation(s)
- Yanyan Xu
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xien Yang
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhiwen Liang
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lizhang Lin
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenbo Zhao
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liyang Wang
- State
Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Yu Xia
- State
Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Xudong Lin
- School
of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Mang I. Vai
- State
Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Sio Hang Pun
- State
Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Baijun Zhang
- State
Key Laboratory of Optoelectronic Materials and Technologies, School
of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Zhang Q, Li T, Xu M, Islam B, Wang J. Application of Optogenetics in Neurodegenerative Diseases. Cell Mol Neurobiol 2024; 44:57. [PMID: 39060759 PMCID: PMC11281982 DOI: 10.1007/s10571-024-01486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
Optogenetics, a revolutionary technique integrating optical and genetic methodologies, offers unparalleled precision in spatial targeting and temporal resolution for cellular control. This approach enables the selective manipulation of specific neuronal populations, inducing subtle electrical changes that significantly impact complex neural circuitry. As optogenetics precisely targets and modulates neuronal activity, it holds the potential for significant breakthroughs in understanding and potentially altering the course of neurodegenerative diseases, characterized by selective neuronal loss leading to functional deficits within the nervous system. The integration of optogenetics into neurodegenerative disease research has significantly advanced in the field, offering new insights and paving the way for innovative treatment strategies. Its application in clinical settings, although still in the nascent stages, suggests a promising future for addressing some of the most challenging aspects of neurodegenerative disorders. In this review, we provide a comprehensive overview of these research undertakings.
Collapse
Affiliation(s)
- Qian Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Binish Islam
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China.
| |
Collapse
|
9
|
Ji B, Gao K. Editorial for the Special Issue on Wearable and Implantable Bio-MEMS Devices and Applications. MICROMACHINES 2024; 15:955. [PMID: 39203606 PMCID: PMC11356249 DOI: 10.3390/mi15080955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024]
Abstract
Wearable and implantable bio-MEMS sensors and actuators have attracted tremendous attention in the fields of health monitoring, disease treatment, and human-machine interaction, to name but a few [...].
Collapse
Affiliation(s)
- Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
- National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kunpeng Gao
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Xiang Y, Zhao Y, Cheng T, Sun S, Wang J, Pei R. Implantable Neural Microelectrodes: How to Reduce Immune Response. ACS Biomater Sci Eng 2024; 10:2762-2783. [PMID: 38591141 DOI: 10.1021/acsbiomaterials.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Implantable neural microelectrodes exhibit the great ability to accurately capture the electrophysiological signals from individual neurons with exceptional submillisecond precision, holding tremendous potential for advancing brain science research, as well as offering promising avenues for neurological disease therapy. Although significant advancements have been made in the channel and density of implantable neural microelectrodes, challenges persist in extending the stable recording duration of these microelectrodes. The enduring stability of implanted electrode signals is primarily influenced by the chronic immune response triggered by the slight movement of the electrode within the neural tissue. The intensity of this immune response increases with a higher bending stiffness of the electrode. This Review thoroughly analyzes the sequential reactions evoked by implanted electrodes in the brain and highlights strategies aimed at mitigating chronic immune responses. Minimizing immune response mainly includes designing the microelectrode structure, selecting flexible materials, surface modification, and controlling drug release. The purpose of this paper is to provide valuable references and ideas for reducing the immune response of implantable neural microelectrodes and stimulate their further exploration in the field of brain science.
Collapse
Affiliation(s)
- Ying Xiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tingting Cheng
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shengkai Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jine Wang
- Jiangxi Institute of Nanotechnology, Nanchang 330200, China
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, Dezhou 253023, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei 230026, PR China
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
11
|
Liu X, Gong Y, Jiang Z, Stevens T, Li W. Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review. Front Neurosci 2024; 18:1348434. [PMID: 38686330 PMCID: PMC11057246 DOI: 10.3389/fnins.2024.1348434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/12/2024] [Indexed: 05/02/2024] Open
Abstract
Flexible high-density microelectrode arrays (HDMEAs) are emerging as a key component in closed-loop brain-machine interfaces (BMIs), providing high-resolution functionality for recording, stimulation, or both. The flexibility of these arrays provides advantages over rigid ones, such as reduced mismatch between interface and tissue, resilience to micromotion, and sustained long-term performance. This review summarizes the recent developments and applications of flexible HDMEAs in closed-loop BMI systems. It delves into the various challenges encountered in the development of ideal flexible HDMEAs for closed-loop BMI systems and highlights the latest methodologies and breakthroughs to address these challenges. These insights could be instrumental in guiding the creation of future generations of flexible HDMEAs, specifically tailored for use in closed-loop BMIs. The review thoroughly explores both the current state and prospects of these advanced arrays, emphasizing their potential in enhancing BMI technology.
Collapse
Affiliation(s)
- Xiang Liu
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
| | - Yan Gong
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Zebin Jiang
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Trevor Stevens
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Wen Li
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Jia Q, Liu Y, Lv S, Wang Y, Jiao P, Xu W, Xu Z, Wang M, Cai X. Wireless closed-loop deep brain stimulation using microelectrode array probes. J Zhejiang Univ Sci B 2024; 25:803-823. [PMID: 39420519 PMCID: PMC11494161 DOI: 10.1631/jzus.b2300400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/25/2023] [Indexed: 03/02/2024]
Abstract
Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously. Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems, key challenges, including excessive wired communication, need to be urgently resolved. In this review, we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field. This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.
Collapse
Affiliation(s)
- Qianli Jia
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyao Jiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China. ,
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. ,
| |
Collapse
|
13
|
Ji B, Sun F, Guo J, Zhou Y, You X, Fan Y, Wang L, Xu M, Zeng W, Liu J, Wang M, Hu H, Chang H. Brainmask: an ultrasoft and moist micro-electrocorticography electrode for accurate positioning and long-lasting recordings. MICROSYSTEMS & NANOENGINEERING 2023; 9:126. [PMID: 37829160 PMCID: PMC10564857 DOI: 10.1038/s41378-023-00597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023]
Abstract
Bacterial cellulose (BC), a natural biomaterial synthesized by bacteria, has a unique structure of a cellulose nanofiber-weaved three-dimensional reticulated network. BC films can be ultrasoft with sufficient mechanical strength, strong water absorption and moisture retention and have been widely used in facial masks. These films have the potential to be applied to implantable neural interfaces due to their conformality and moisture, which are two critical issues for traditional polymer or silicone electrodes. In this work, we propose a micro-electrocorticography (micro-ECoG) electrode named "Brainmask", which comprises a BC film as the substrate and separated multichannel parylene-C microelectrodes bonded on the top surface. Brainmask can not only guarantee the precise position of microelectrode sites attached to any nonplanar epidural surface but also improve the long-lasting signal quality during acute implantation with an exposed cranial window for at least one hour, as well as the in vivo recording validated for one week. This novel ultrasoft and moist device stands as a next-generation neural interface regardless of complex surface or time of duration.
Collapse
Affiliation(s)
- Bowen Ji
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072 China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, 201108 China
| | - Fanqi Sun
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072 China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, 201108 China
| | - Jiecheng Guo
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Yuhao Zhou
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072 China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, 201108 China
| | - Xiaoli You
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072 China
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
- Collaborative Innovation Center of Northwestern Polytechnical University, Shanghai, 201108 China
| | - Ye Fan
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Longchun Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Mengfei Xu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Wen Zeng
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Minghao Wang
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, 710072 China
| | - Honglong Chang
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an, 710072 China
| |
Collapse
|
14
|
Xu S, Momin M, Ahmed S, Hossain A, Veeramuthu L, Pandiyan A, Kuo CC, Zhou T. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303267. [PMID: 37726261 DOI: 10.1002/adma.202303267] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Optogenetic modulation of brain neural activity that combines optical and electrical modes in a unitary neural system has recently gained robust momentum. Controlling illumination spatial coverage, designing light-activated modulators, and developing wireless light delivery and data transmission are crucial for maximizing the use of optical neuromodulation. To this end, biocompatible electrodes with enhanced optoelectrical performance, device integration for multiplexed addressing, wireless transmission, and multimodal operation in soft systems have been developed. This review provides an outlook for uniformly illuminating large brain areas while spatiotemporally imaging the neural responses upon optoelectrical stimulation with little artifacts. Representative concepts and important breakthroughs, such as head-mounted illumination, multiple implanted optical fibers, and micro-light-delivery devices, are discussed. Examples of techniques that incorporate electrophysiological monitoring and optoelectrical stimulation are presented. Challenges and perspectives are posed for further research efforts toward high-density optoelectrical neural interface modulation, with the potential for nonpharmacological neurological disease treatments and wireless optoelectrical stimulation.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Marzia Momin
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Salahuddin Ahmed
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Arafat Hossain
- Department of Electrical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Archana Pandiyan
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Tao Zhou
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| |
Collapse
|
15
|
Almasri RM, Ladouceur F, Mawad D, Esrafilzadeh D, Firth J, Lehmann T, Poole-Warren LA, Lovell NH, Al Abed A. Emerging trends in the development of flexible optrode arrays for electrophysiology. APL Bioeng 2023; 7:031503. [PMID: 37692375 PMCID: PMC10491464 DOI: 10.1063/5.0153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.
Collapse
Affiliation(s)
- Reem M. Almasri
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | | | - Damia Mawad
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Josiah Firth
- Australian National Fabrication Facility, UNSW, Sydney, NSW 2052, Australia
| | - Torsten Lehmann
- School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | | | | | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
16
|
Zhang Q, Jing W, Wu S, Zhu M, Jiang J, Liu X, Yu D, Cheng L, Feng B, Wen J, Xiong F, Lu Y, Du H. Development of a synchronous recording and photo-stimulating electrode in multiple brain neurons. Front Neurosci 2023; 17:1195095. [PMID: 37383109 PMCID: PMC10293621 DOI: 10.3389/fnins.2023.1195095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
The investigation of brain networks and neural circuits involves the crucial aspects of observing and modulating neurophysiological activity. Recently, opto-electrodes have emerged as an efficient tool for electrophysiological recording and optogenetic stimulation, which has greatly facilitated the analysis of neural coding. However, implantation and electrode weight control have posed significant challenges in achieving long-term and multi-regional brain recording and stimulation. To address this issue, we have developed a mold and custom-printed circuit board-based opto-electrode. We report successful opto-electrode placement and high-quality electrophysiological recordings from the default mode network (DMN) of the mouse brain. This novel opto-electrode facilitates synchronous recording and stimulation in multiple brain regions and holds promise for advancing future research on neural circuits and networks.
Collapse
Affiliation(s)
- Qingping Zhang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Jing
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Shiping Wu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzheng Zhu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Jingrui Jiang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Dian Yu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Long Cheng
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Feng
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbin Wen
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xiong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, National Center for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Huiyun Du
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| |
Collapse
|
17
|
Hu Z, Niu Q, Hsiao BS, Yao X, Zhang Y. Bioactive polymer-enabled conformal neural interface and its application strategies. MATERIALS HORIZONS 2023; 10:808-828. [PMID: 36597872 DOI: 10.1039/d2mh01125e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neural interface is a powerful tool to control the varying neuron activities in the brain, where the performance can directly affect the quality of recording neural signals and the reliability of in vivo connection between the brain and external equipment. Recent advances in bioelectronic innovation have provided promising pathways to fabricate flexible electrodes by integrating electrodes on bioactive polymer substrates. These bioactive polymer-based electrodes can enable the conformal contact with irregular tissue and result in low inflammation when compared to conventional rigid inorganic electrodes. In this review, we focus on the use of silk fibroin and cellulose biopolymers as well as certain synthetic polymers to offer the desired flexibility for constructing electrode substrates for a conformal neural interface. First, the development of a neural interface is reviewed, and the signal recording methods and tissue response features of the implanted electrodes are discussed in terms of biocompatibility and flexibility of corresponding neural interfaces. Following this, the material selection, structure design and integration of conformal neural interfaces accompanied by their effective applications are described. Finally, we offer our perspectives on the evolution of desired bioactive polymer-enabled neural interfaces, regarding the biocompatibility, electrical properties and mechanical softness.
Collapse
Affiliation(s)
- Zhanao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Qianqian Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
18
|
Belloir T, Montalgo-Vargo S, Ahmed Z, Griggs DJ, Fisher S, Brown T, Chamanzar M, Yazdan-Shahmorad A. Large-scale multimodal surface neural interfaces for primates. iScience 2023; 26:105866. [PMID: 36647381 PMCID: PMC9840154 DOI: 10.1016/j.isci.2022.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deciphering the function of neural circuits can help with the understanding of brain function and treating neurological disorders. Progress toward this goal relies on the development of chronically stable neural interfaces capable of recording and modulating neural circuits with high spatial and temporal precision across large areas of the brain. Advanced innovations in designing high-density neural interfaces for small animal models have enabled breakthrough discoveries in neuroscience research. Developing similar neurotechnology for larger animal models such as nonhuman primates (NHPs) is critical to gain significant insights for translation to humans, yet still it remains elusive due to the challenges in design, fabrication, and system-level integration of such devices. This review focuses on implantable surface neural interfaces with electrical and optical functionalities with emphasis on the required technological features to realize scalable multimodal and chronically stable implants to address the unique challenges associated with nonhuman primate studies.
Collapse
Affiliation(s)
- Tiphaine Belloir
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Sergio Montalgo-Vargo
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Devon J. Griggs
- Washington National Primate Research Center, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Shawn Fisher
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Timothy Brown
- Department of Bioethics & Humanities, University of Washington, Seattle, WA, USA
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Luo J, Xue N, Chen J. A Review: Research Progress of Neural Probes for Brain Research and Brain-Computer Interface. BIOSENSORS 2022; 12:bios12121167. [PMID: 36551135 PMCID: PMC9775442 DOI: 10.3390/bios12121167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/01/2023]
Abstract
Neural probes, as an invasive physiological tool at the mesoscopic scale, can decipher the code of brain connections and communications from the cellular or even molecular level, and realize information fusion between the human body and external machines. In addition to traditional electrodes, two new types of neural probes have been developed in recent years: optoprobes based on optogenetics and magnetrodes that record neural magnetic signals. In this review, we give a comprehensive overview of these three kinds of neural probes. We firstly discuss the development of microelectrodes and strategies for their flexibility, which is mainly represented by the selection of flexible substrates and new electrode materials. Subsequently, the concept of optogenetics is introduced, followed by the review of several novel structures of optoprobes, which are divided into multifunctional optoprobes integrated with microfluidic channels, artifact-free optoprobes, three-dimensional drivable optoprobes, and flexible optoprobes. At last, we introduce the fundamental perspectives of magnetoresistive (MR) sensors and then review the research progress of magnetrodes based on it.
Collapse
Affiliation(s)
- Jiahui Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xue
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiamin Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Shen J, Xu Y, Xiao Z, Liu Y, Liu H, Wang F, Yan C, Wang L, Chen C, Wu Z, Liu Y, Mak PU, Vai MI, Pun SH, Lei TC, Zhang B. Double-Sided Sapphire Optrodes with Conductive Shielding Layers to Reduce Optogenetic Stimulation Artifacts. MICROMACHINES 2022; 13:1836. [PMID: 36363857 PMCID: PMC9695949 DOI: 10.3390/mi13111836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Optrodes, which are single shaft neural probes integrated with microelectrodes and optical light sources, offer a remarkable opportunity to simultaneously record and modulate neural activities using light within an animal's brain; however, a common problem with optrodes is that stimulation artifacts can be observed in the neural recordings of microelectrodes when the light source on the optrode is activated. These stimulation artifacts are undesirable contaminants, and they cause interpretation complexity when analyzing the recorded neural activities. In this paper, we tried to mitigate the effects of the stimulation artifacts by developing a low-noise, double-sided optrode integrated with multiple Electromagnetic Shielding (EMS) layers. The LED and microelectrodes were constructed separately on the top epitaxial and bottom substrate layers, and EMS layers were used to separate the microelectrodes and LED to reduce signal cross-talks. Compared with conventional single-sided designs, in which the LED and microelectrodes are constructed on the same side, our results indicate that double-sided optrodes can significantly reduce the presence of stimulation artifacts. In addition, the presence of stimulation artifacts can further be reduced by decreasing the voltage difference and increasing the rise/fall time of the driving LED pulsed voltage. With all these strategies, the presence of stimulation artifacts was significantly reduced by ~76%. As well as stimulation suppression, the sapphire substrate also provided strong mechanical stiffness and support to the optrodes, as well as improved electronic stability, thus making the double-sided sapphire optrodes highly suitable for optogenetic neuroscience research on animal models.
Collapse
Affiliation(s)
- Junyu Shen
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanyan Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengwen Xiao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuebo Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Honghui Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Fengge Wang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chaokun Yan
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Liyang Wang
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Changhao Chen
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Zhisheng Wu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Peng Un Mak
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Mang I. Vai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China
| | - Tim C. Lei
- Department of Electrical Engineering, University of Colorado, Denver, CO 80204, USA
| | - Baijun Zhang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
A flexible implantable microelectrode array for recording electrocorticography signals from rodents. Biomed Microdevices 2022; 24:31. [PMID: 36138255 DOI: 10.1007/s10544-022-00632-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Abstract
Electrocorticography signals, the intracranial recording of electrical signatures of the brain, are recorded by non-penetrating planar electrode arrays placed on the cortical surface. Flexible electrode arrays minimize the tissue damage upon implantation. This work shows the design and development of a 32-channel flexible microelectrode array to record electrocorticography signals from the rat's brain. The array was fabricated on a biocompatible flexible polyimide substrate. A titanium/gold layer was patterned as electrodes, and a thin polyimide layer was used for insulation. The fabricated microelectrode array was mounted on the exposed somatosensory cortex of the right hemisphere of a rat after craniotomy and incision of the dura. The signals were recorded using OpenBCI Cyton Daisy Biosensing Boards. The array faithfully recorded the baseline electrocorticography signals, the induced epileptic activities after applying a convulsant, and the recovered baseline signals after applying an antiepileptic drug. The signals recorded by such fabricated microelectrode array from anesthetized rats demonstrate its potential to monitor electrical signatures corresponding to epilepsy. Finally, the time-frequency analyses highlight the difference in spatiotemporal features of baseline and evoked epileptic discharges.
Collapse
|
22
|
Chang Y, Jang J, Cho J, Lee J, Son Y, Park S, Kim C. Seamless Capacitive Body Channel Wireless Power Transmission Toward Freely Moving Multiple Animals in an Animal Cage. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:714-725. [PMID: 35976817 DOI: 10.1109/tbcas.2022.3199455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unstable wireless power transmission toward multiple living animals in an animal cage is one of the significant barriers to performing long-term and real-time neural monitoring in preclinical research. Here, seamless capacitive body channel (SCB) wireless power transmission (WPT) along with power management integrated circuit (PMIC) is designed using a standard 65 nm CMOS process. The SCB WPT enables stable wireless power transmission toward multiple 35 mm×20 mm×2 mm sized receivers (RXs) attached to freely moving animals in a 600 mm×600 mm×120 mm sized animal cage. By utilizing fringe-field capacitance and a body channel for wireless power link between the cage and RXs, the maximum difference in all measured power efficiencies in diverse scenarios is only 6.66 % with a 20 mW load. Even with a 90 ° RX rotation against the cage, power efficiency marks 17.76 %. Furthermore, an in-vivo experiment conducted with three untethered rats demonstrates the capability of continuous long-term power delivery in practical situations.
Collapse
|
23
|
Flexible Neural Probes with Optical Artifact-Suppressing Modification and Biofriendly Polypeptide Coating. MICROMACHINES 2022; 13:mi13020199. [PMID: 35208323 PMCID: PMC8877708 DOI: 10.3390/mi13020199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 11/24/2022]
Abstract
The advent of optogenetics provides a well-targeted tool to manipulate neurons because of its high time resolution and cell-type specificity. Recently, closed-loop neural manipulation techniques consisting of optical stimulation and electrical recording have been widely used. However, metal microelectrodes exposed to light radiation could generate photoelectric noise, thus causing loss or distortion of neural signal in recording channels. Meanwhile, the biocompatibility of neural probes remains to be improved. Here, five kinds of neural interface materials are deposited on flexible polyimide-based neural probes and illuminated with a series of blue laser pulses to study their electrochemical performance and photoelectric noises for single-unit recording. The results show that the modifications can not only improve the electrochemical performance, but can also reduce the photoelectric artifacts. In particular, the double-layer composite consisting of platinum-black and conductive polymer has the best comprehensive performance. Thus, a layer of polypeptide is deposited on the entire surface of the double-layer modified neural probes to further improve their biocompatibility. The results show that the biocompatible polypeptide coating has little effect on the electrochemical performance of the neural probe, and it may serve as a drug carrier due to its special micromorphology.
Collapse
|
24
|
Hong JW, Yoon C, Jo K, Won JH, Park S. Recent advances in recording and modulation technologies for next-generation neural interfaces. iScience 2021; 24:103550. [PMID: 34917907 PMCID: PMC8666678 DOI: 10.1016/j.isci.2021.103550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Along with the advancement in neural engineering techniques, unprecedented progress in the development of neural interfaces has been made over the past few decades. However, despite these achievements, there is still room for further improvements especially toward the possibility of monitoring and modulating neural activities with high resolution and specificity in our daily lives. In an effort of taking a step toward the next-generation neural interfaces, we want to highlight the recent progress in neural technologies. We will cover a wide scope of such developments ranging from novel platforms for highly specific recording and modulation to system integration for practical applications of novel interfaces.
Collapse
Affiliation(s)
- Ji-Won Hong
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Chanwoong Yoon
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kyunghyun Jo
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Joon Hee Won
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seongjun Park
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.,KAIST Institute of Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
25
|
Wang Y, Li Y, Yang X, Wu X, Wang Y, Pei W. Analysis of Electromagnetic Interference and Shielding in the μLED Optrode Based on Finite Element Method. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.758484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monolithic integrated μLED optrode has promising applications in optogenetics due to their ability to achieve more optical channels in a smaller footprint. The current used to drive the μLED will cause electromagnetic interference (EMI) noise to the recording electrodes at a very close distance. Utilizing a grounded metal shielding layer between the active device and the electrode can potentially reduce the interference. In this paper, multi-dimensional μLED optrode models are set up according to the real device. By numerically analyzing the electromagnetic interference between the μLED and recording electrodes, several optimized shielding schemes are evaluated by simulations and experiments. Some important process and layout parameters that may influence the shielding effect are studied through the finite element method (FEM). Different circuit models based on the corresponding test environment are built to analyze the simulation and experiment results. A new PCB with a shielding layer has been designed and initially verified. The proposed novel computational model can analyze EMI quantitatively, which could facilitate the design of low-noise μLED optrode with reasonable shielding and packaging.
Collapse
|
26
|
Li X, Song Y, Xiao G, He E, Xie J, Dai Y, Xing Y, Wang Y, Wang Y, Xu S, Wang M, Tao TH, Cai X. PDMS-Parylene Hybrid, Flexible Micro-ECoG Electrode Array for Spatiotemporal Mapping of Epileptic Electrophysiological Activity from Multicortical Brain Regions. ACS APPLIED BIO MATERIALS 2021; 4:8013-8022. [PMID: 35006782 DOI: 10.1021/acsabm.1c00923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epilepsy detection and focus location are urgent issues that need to be solved in epilepsy research. A cortex conformable and fine spatial accuracy electrocorticogram (ECoG) sensor array, especially for real-time detection of multicortical functional regions and delineating epileptic focus remains a challenge. Here, we fabricated a polydimethylsiloxane (PDMS)-parylene hybrid, flexible micro-ECoG electrode array. The multiwalled carbon nanotubes (MWCNTs)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) nanocomposite-modified electrode interface significantly improved the sensing performance with low impedance (20.68 ± 6.65 kΩ), stable phase offset, and high sensitivity. The electrophysiological activities of multicortical brain regions (somatosensory cortex, parietal association cortex, and visual cortex) were simultaneously monitored during normal and epileptic statuses. The epileptic ECoG activities spread spatiotemporally from the starting point toward the adjacent cortex. Significant variations of the waveform, power, and frequency band were observed. The ECoG potential (123 ± 23 μV) at normal status was prominently up to 417 ± 87 μV at the spike wave stage. Besides, the power for epileptic activity (11.049 ± 4.513 μW) was 10 times higher than that (1.092 ± 0.369 μW) for normal activity. In addition, the theta frequency band was found to be a characteristic frequency band of epileptic signals. These joint analysis results of multicortical regions indicated that the active micron-scale region on the parietal association cortex was more likely to be the epileptogenic focus. Cortical mapping with high spatial detail provides the accurate delineation of lesions. The flexible micro-ECoG electrode array is a powerful tool for constructing a spatiotemporal map of the cortex. It provides a technical platform for epileptic focus location, biomedical diagnosis, and brain-computer interaction.
Collapse
Affiliation(s)
- Xinrong Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guihua Xiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Enhui He
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Xing
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yun Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengwei Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
27
|
Guo B, Fan Y, Wang M, Cheng Y, Ji B, Chen Y, Wang G. Flexible Neural Probes with Electrochemical Modified Microelectrodes for Artifact-Free Optogenetic Applications. Int J Mol Sci 2021; 22:ijms222111528. [PMID: 34768957 PMCID: PMC8584107 DOI: 10.3390/ijms222111528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
With the rapid increase in the use of optogenetics to investigate nervous systems, there is high demand for neural interfaces that can simultaneously perform optical stimulation and electrophysiological recording. However, high-magnitude stimulation artifacts have prevented experiments from being conducted at a desirably high temporal resolution. Here, a flexible polyimide-based neural probe with polyethylene glycol (PEG) packaged optical fiber and Pt-Black/PEDOT-GO (graphene oxide doped poly(3,4-ethylene-dioxythiophene)) modified microelectrodes was developed to reduce the stimulation artifacts that are induced by photoelectrochemical (PEC) and photovoltaic (PV) effects. The advantages of this design include quick and accurate implantation and high-resolution recording capacities. Firstly, electrochemical performance of the modified microelectrodes is significantly improved due to the large specific surface area of the GO layer. Secondly, good mechanical and electrochemical stability of the modified microelectrodes is obtained by using Pt-Black as bonding layer. Lastly, bench noise recordings revealed that PEC noise amplitude of the modified neural probes could be reduced to less than 50 µV and no PV noise was detected when compared to silicon-based neural probes. The results indicate that this device is a promising optogenetic tool for studying local neural circuits.
Collapse
Affiliation(s)
- Bangbang Guo
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China; (B.G.); (Y.F.); (Y.C.)
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ye Fan
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China; (B.G.); (Y.F.); (Y.C.)
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Minghao Wang
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China; (B.G.); (Y.F.); (Y.C.)
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence: (M.W.); (G.W.)
| | - Yuhua Cheng
- Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China; (B.G.); (Y.F.); (Y.C.)
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Bowen Ji
- The Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710060, China;
| | - Ying Chen
- The Institute of Flexible Electronics Technology of THU, Jiaxing 314000, China;
| | - Gaofeng Wang
- MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence: (M.W.); (G.W.)
| |
Collapse
|
28
|
Shen J, Xu Y, Xiao Z, Liu Y, Liu H, Wang F, Yao W, Yan Z, Zhang M, Wu Z, Liu Y, Pun SH, Lei TC, Vai MI, Mak PU, Chen C, Zhang B. Influence of the Surface Material and Illumination upon the Performance of a Microelectrode/Electrolyte Interface in Optogenetics. MICROMACHINES 2021; 12:1061. [PMID: 34577704 PMCID: PMC8471589 DOI: 10.3390/mi12091061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Integrated optrodes for optogenetics have been becoming a significant tool in neuroscience through the combination of offering accurate stimulation to target cells and recording biological signals simultaneously. This makes it not just be widely used in neuroscience researches, but also have a great potential to be employed in future treatments in clinical neurological diseases. To optimize the integrated optrodes, this paper aimed to investigate the influence of surface material and illumination upon the performance of the microelectrode/electrolyte interface and build a corresponding evaluation system. In this work, an integrated planar optrode with a blue LED and microelectrodes was designed and fabricated. The charge transfer mechanism on the interface was theoretically modeled and experimentally verified. An evaluation system for assessing microelectrodes was also built up. Using this system, the proposed model of various biocompatible surface materials on microelectrodes was further investigated under different illumination conditions. The influence of illumination on the microelectrode/electrolyte interface was the cause of optical artifacts, which interfere the biological signal recording. It was found that surface materials had a great effect on the charge transfer capacity, electrical stability and recoverability, photostability, and especially optical artifacts. The metal with better charge transfer capacity and electrical stability is highly possible to have a better performance on the optical artifacts, regardless of its electrical recoverability and photostability under the illumination conditions of optogenetics. Among the five metals used in our investigation, iridium served as the best surface material for the proposed integrated optrodes. Thus, optimizing the surface material for optrodes could reduce optical interference, enhance the quality of the neural signal recording for optogenetics, and thus help to advance the research in neuroscience.
Collapse
Grants
- 62061160368 & 0022/2020/AFJ This research was funded by the joint funding of the Nature Science Foundation of China (NSFC) & the Macao Science and Technology Development Fund (FDCT) of China
- 2019B010132003, 2019B010132001 Science & Technology Plan of Guangdong Province, China
- 2016YFB0400105, 2017YFB0403001 the National Key Research and Development Program
- 20167612042080001 the Zhuhai Key Technology Laboratory of Wide Bandgap Semiconductor Power Electronics, Sun Yat-sen University, China
- 088/2016/A2, 0144/2019/A3, 0022/2020/AFJ, SKL-AMSV (FDCT-funded), SKL-AMSV-ADDITIONAL FUND, SKL-AMSV(UM)-2020-2022 the Science and Technology Development Fund, Macau SAR
- MYRG2018-00146-AMSV, MYRG2019-00056-AMSV the University of Macau
- 2020YFB1313502 the National Key R&D Program of China
Collapse
Affiliation(s)
- Junyu Shen
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Yanyan Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Zhengwen Xiao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Yuebo Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Honghui Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Fengge Wang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Wanqing Yao
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Zhaokun Yan
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Minjie Zhang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
| | - Zhisheng Wu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Sio Hang Pun
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China; (S.H.P.); (M.I.V.); (C.C.)
| | - Tim C. Lei
- Department of Electrical Engineering, University of Colorado Denver, Denver, CO 80204, USA;
| | - Mang I Vai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China; (S.H.P.); (M.I.V.); (C.C.)
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China;
| | - Peng Un Mak
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China;
| | - Changhao Chen
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau 999078, China; (S.H.P.); (M.I.V.); (C.C.)
| | - Baijun Zhang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China; (J.S.); (Y.X.); (Z.X.); (Y.L.); (H.L.); (F.W.); (W.Y.); (Z.Y.); (M.Z.); (Z.W.); (Y.L.)
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
29
|
Jeong J, Jung J, Jung D, Kim J, Ju H, Kim T, Lee J. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light. Biosens Bioelectron 2021; 180:113139. [PMID: 33714161 DOI: 10.1016/j.bios.2021.113139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
Abstract
Optogenetics is a cutting-edge tool in neuroscience that employs light-sensitive proteins and controlled illumination for neuromodulation. Its main advantage is the ability to demonstrate causal relationships by manipulating the activity of specific neuronal populations and observing behavioral phenotypes. However, the tethering system used to deliver light to optogenetic tools can constrain both natural animal behaviors and experimental design. Here, we present an optically powered and controlled wireless optogenetic system using near-infrared (NIR) light for high transmittance through live tissues. In vivo optogenetic stimulations using this system induced whisker movement in channelrhodopsin-expressing mice, confirming the photovoltaics-generated electrical power was sufficient, and the remote controlling system operated successfully. The proposed optogenetic system provides improved optogenetic applications in freely moving animals.
Collapse
Affiliation(s)
- Jinmo Jeong
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jieun Jung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Dongwuk Jung
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Juho Kim
- Department of Applied Nano-Mechanics, Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon, 34103, Republic of Korea
| | - Hunpyo Ju
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| | - Jongho Lee
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
30
|
Fallegger F, Schiavone G, Pirondini E, Wagner FB, Vachicouras N, Serex L, Zegarek G, May A, Constanthin P, Palma M, Khoshnevis M, Van Roost D, Yvert B, Courtine G, Schaller K, Bloch J, Lacour SP. MRI-Compatible and Conformal Electrocorticography Grids for Translational Research. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003761. [PMID: 33977054 PMCID: PMC8097365 DOI: 10.1002/advs.202003761] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/23/2020] [Indexed: 05/23/2023]
Abstract
Intraoperative electrocorticography (ECoG) captures neural information from the surface of the cerebral cortex during surgeries such as resections for intractable epilepsy and tumors. Current clinical ECoG grids come in evenly spaced, millimeter-sized electrodes embedded in silicone rubber. Their mechanical rigidity and fixed electrode spatial resolution are common shortcomings reported by the surgical teams. Here, advances in soft neurotechnology are leveraged to manufacture conformable subdural, thin-film ECoG grids, and evaluate their suitability for translational research. Soft grids with 0.2 to 10 mm electrode pitch and diameter are embedded in 150 µm silicone membranes. The soft grids are compatible with surgical handling and can be folded to safely interface hidden cerebral surface such as the Sylvian fold in human cadaveric models. It is found that the thin-film conductor grids do not generate diagnostic-impeding imaging artefacts (<1 mm) nor adverse local heating within a standard 3T clinical magnetic resonance imaging scanner. Next, the ability of the soft grids to record subdural neural activity in minipigs acutely and two weeks postimplantation is validated. Taken together, these results suggest a promising future alternative to current stiff electrodes and may enable the future adoption of soft ECoG grids in translational research and ultimately in clinical settings.
Collapse
Affiliation(s)
- Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Elvira Pirondini
- Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV) and University of Lausanne (UNIL)Lausanne1010Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV)University of Lausanne (UNIL)Lausanne1015Switzerland
| | - Fabien B. Wagner
- Defitech Center for Interventional Neurotherapies (NeuroRestore)Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV)University of Lausanne (UNIL)Lausanne1015Switzerland
- UPCourtineCenter for Neuroprosthetics and Brain Mind InstituteSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
- Present address:
Institut des Maladies Neurodégénératives – CNRS UMR 5293Université de BordeauxCentre Broca Nouvelle‐Aquitaine146 rue Léo Saignat – CS 61292 – Case 28, Bordeaux cedexBordeaux33076France
| | - Nicolas Vachicouras
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Ludovic Serex
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Gregory Zegarek
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
| | - Adrien May
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
| | - Paul Constanthin
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
| | - Marie Palma
- BrainTech LaboratoryInsermUniv Grenoble AlpesGrenoble38400France
| | | | - Dirk Van Roost
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
- Department of NeurosurgeryGhent UniversityGhent9000Belgium
| | - Blaise Yvert
- BrainTech LaboratoryInsermUniv Grenoble AlpesGrenoble38400France
| | - Grégoire Courtine
- Defitech Center for Interventional Neurotherapies (NeuroRestore)Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV)University of Lausanne (UNIL)Lausanne1015Switzerland
- UPCourtineCenter for Neuroprosthetics and Brain Mind InstituteSchool of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| | - Karl Schaller
- Department of NeurosurgeryHôpital Universitaire de Genève (HUG)Geneva1205Switzerland
| | - Jocelyne Bloch
- Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV) and University of Lausanne (UNIL)Lausanne1010Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore)Department of NeurosurgeryUniversity Hospital of Lausanne (CHUV)University of Lausanne (UNIL)Lausanne1015Switzerland
| | - Stéphanie P. Lacour
- Bertarelli Foundation Chair in Neuroprosthetic TechnologyLaboratory for Soft Bioelectronic InterfacesInstitute of MicroengineeringInstitute of BioengineeringCenter for NeuroprostheticsEcole Polytechnique Fédérale de Lausanne (EPFL)Geneva1202Switzerland
| |
Collapse
|
31
|
Ramezani Z, Seo KJ, Fang H. Hybrid Electrical and Optical Neural Interfaces. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2021; 31:044002. [PMID: 34177136 PMCID: PMC8232899 DOI: 10.1088/1361-6439/abeb30] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neural interfaces bridge the nervous system and the outside world by recording and stimulating neurons. Combining electrical and optical modalities in a single, hybrid neural interface system could lead to complementary and powerful new ways to explore the brain. It has gained robust and exciting momentum recently in neuroscience and neural engineering research. Here, we review developments in the past several years aiming to achieve such hybrid electrical and optical microsystem platforms. Specifically, we cover three major categories of technological advances: transparent neuroelectrodes, optical neural fibers with electrodes, and neural probes/grids integrating electrodes and microscale light-emitting diodes. We discuss examples of these probes tailored to combine electrophysiological recording with optical imaging or optical neural stimulation of the brain and possible directions of future innovation.
Collapse
Affiliation(s)
| | | | - Hui Fang
- Department of Electrical and Computer Engineering
- Department of Mechanical and Industrial Engineering
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
32
|
Yang W, Gong Y, Yao CY, Shrestha M, Jia Y, Qiu Z, Fan QH, Weber A, Li W. A fully transparent, flexible PEDOT:PSS-ITO-Ag-ITO based microelectrode array for ECoG recording. LAB ON A CHIP 2021; 21:1096-1108. [PMID: 33522526 DOI: 10.1039/d0lc01123a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Integrative neural interfaces combining neurophysiology and optogenetics with neural imaging provide numerous opportunities for neuroscientists to study the structure and function of neural circuits in the brain. Such a comprehensive interface demands miniature electrode arrays with high transparency, mechanical flexibility, electrical conductivity, and biocompatibility. Conventional transparent microelectrodes made of a single material, such as indium tin oxide (ITO), ultrathin metals, graphene and poly-(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS), hardly possess the desired combination of those properties. Herein, ultra-flexible, highly conductive and fully transparent microscale electrocorticogram (μECoG) electrode arrays made of a PEDOT:PSS-ITO-Ag-ITO assembly are constructed on thin parylene C films. The PEDOT:PSS-ITO-Ag-ITO assembly achieves a maximum ∼14% enhancement in light transmission over a broad spectrum (350-650 nm), a significant reduction in electrochemical impedance by 91.25%, and an increase in charge storage capacitance by 1229.78 μC cm-2. Peeling, bending, and Young's modulus tests verify the enhanced mechanical flexibility and robustness of the multilayer assembly. The μECoG electrodes enable electrical recordings with high signal-to-noise ratios (SNRs) (∼35-36 dB) under different color photostimulations, suggesting that the electrodes are resilient to photon-induced artifacts. In vivo animal experiments confirm that our array can successfully record light-evoked ECoG oscillations from the primary visual cortex (V1) of an anesthetized rat.
Collapse
Affiliation(s)
- Weiyang Yang
- The Institute for Quantitative Health Science & Engineering, Michigan State University, 775 Woodlot Dr, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu S, Zhao Y, Hao W, Zhang XD, Ming D. Micro- and nanotechnology for neural electrode-tissue interfaces. Biosens Bioelectron 2020; 170:112645. [DOI: 10.1016/j.bios.2020.112645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/14/2023]
|