1
|
Pei Y, Chen L, Zhao Y, Lei Q, Yang Y, Hu J, Liu X. Advances of immunosensors based on noble metal composite materials for detecting procalcitonin. Mikrochim Acta 2025; 192:72. [PMID: 39806105 DOI: 10.1007/s00604-025-06953-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Procalcitonin (PCT) is a reliable biomarker for diagnosing and monitoring bacterial infections and sepsis. PCT exhibits good stability both in vivo and in vitro, and its levels drastically increase in response to bacterial infection or inflammatory reactions in the human body, making it a dependable indicator for sepsis diagnosis and monitoring with significant implications for clinical diagnosis and treatment guidance. Currently, immunosensors are widely utilized in PCT detection due to their high sensitivity and low detection limits. Noble metals, because of their excellent electronic conductivity, biocompatibility, and superior physicochemical properties, are extensively combined with other materials to play a pivotal role in the construction of PCT immunosensors. This review summarizes the research progress on PCT antigen immunosensors based on noble metal composite materials, encompassing the classification and principles of immunosensors. Starting from noble metals, which are widely used as electrode materials in sensors, the review categorizes and discusses the carbon materials, metal oxides, metal sulfides, and other composites with noble metals. The review also elaborates on the influence of sensitive materials on the performance of immunosensors. Finally, the review discusses and anticipates the challenges and future opportunities for the research on PCT antigen immunosensors using noble metal-composite nanomaterials, providing new insights and directions for their application in the treatment and clinical management of sepsis and other diseases.
Collapse
Affiliation(s)
- Yuxin Pei
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yihang Zhao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Qian Lei
- College of Electronic Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Jie Hu
- College of Electronic Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
2
|
Alizadeh M, Dorranian D, Sari AH. Comparison of the antimicrobial photocatalytic activities of SiO 2 and Au@SiO 2 nanostructures in water decontamination. Microsc Res Tech 2024; 87:896-907. [PMID: 38149754 DOI: 10.1002/jemt.24486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
Photocatalytic disinfection of Escherichia coli suspension by silicon dioxide nanoparticles and silicon dioxide/gold nanocomposite in a batch reactor is investigated experimentally and results are compared. Silica nanoparticles were synthesized by Stöber method and pulsed laser ablation method was employed to prepare gold nanoparticles in distilled water. Composition of two nanoparticles species was carried out, using the second harmonic pulse of Nd:YAG laser, whose wavelength is in the absorption spectra of gold nanoparticles. Results confirm a decrease in the bandgap energy of silica nanoparticles after composition. Escherichia coli were selected as an indicator of the microbial water contamination. Disk diffusion method was used to evaluate the antimicrobial potential of SiO2 and Au@SiO2 nanostructures. Photocatalytic activities of both nanostructures were examined in dark, and under the irradiation of UV and visible light. In all conditions, the performance of Au@SiO2 nanocomposites was higher than SiO2 nanoparticles. In dark condition the higher biocidal nature and activity of Au nanoparticles and for the case of UV radiation, decreasing the bandgap energy and recombination rate of SiO2 nanoparticles after composition with Au increased the efficiency. For the case of visible light radiation, surface plasmon resonances effects, and local heat of Au nanoparticles were responsible for increasing the efficiency. RESEARCH HIGHLIGHTS: Doping large bandgap semiconductors nanostructures, such as silica with metal nanoparticles, such as gold will improve their photocatalytic activity to work in visible light. In this mechanism, gold nanoparticles act as effective traps to prevent the recombination of photogenerated electron-hole pairs. Other mechanisms, such as Schottky barrier formation, surface plasmon resonance absorption of gold nanoparticles, and biocidal nature of the gold nanoparticles are effective in increasing the efficiency of Au doped silica nanostructures.
Collapse
Affiliation(s)
- Mahsa Alizadeh
- Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Davoud Dorranian
- Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Sari
- Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Niazi S, Khan IM, Akhtar W, Ul Haq F, Pasha I, Khan MKI, Mohsin A, Ahmad S, Zhang Y, Wang Z. Aptamer functionalized gold nanoclusters as an emerging nanoprobe in biosensing, diagnostic, catalysis and bioimaging. Talanta 2024; 268:125270. [PMID: 37875028 DOI: 10.1016/j.talanta.2023.125270] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/23/2023] [Accepted: 10/01/2023] [Indexed: 10/26/2023]
Abstract
DNA nanostructures, with their fascinating luminescent and detecting capabilities, provide a basis that can accommodate a wide range of applications. The unique electronic configurations, and physical and chemical properties of aptamer-assembled gold nanoclusters (apt-AuNCs) as a novel type of fluorophore have gradually piqued the interest of the scientific community. Bending DNA sequences and other templates/legends as a stabilizing agent with Au metal has produced an abundance of biosensors, along with catalytic and imaging properties. This review article summarizes the synthesis, conjugation tactics, advantages, and sensing mechanisms of AuNCs aptasensor after providing a brief introduction to the topic. Moreover, the application of DNA/aptamer functionalization has been briefly discussed in the fields of food safety and quality, catalysis, clinical diagnosis, cancer cell bioimaging, detection of cancer cell indicators, and therapy. We also concluded the current obstacles and made recommendations about the future prospects of AuNCs for fundamental research and applications in line with the developments in DNA/aptamer-AuNCs.
Collapse
Affiliation(s)
- Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| | - Wasim Akhtar
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Faizan Ul Haq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Pasha
- NIFSAT, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kashif Iqbal Khan
- NIFSAT, University of Agriculture, Faisalabad, Pakistan; Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, ECUST, Shanghai, 200237, China
| | - Shabbir Ahmad
- Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
4
|
Mehranfard N, Ghasemi M, Rajabian A, Ansari L. Protective potential of naringenin and its nanoformulations in redox mechanisms of injury and disease. Heliyon 2023; 9:e22820. [PMID: 38058425 PMCID: PMC10696200 DOI: 10.1016/j.heliyon.2023.e22820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Increasing evidence suggests that elevated intracellular levels of reactive oxygen species (ROS) play a significant role in the pathogenesis of many diseases. Increased intracellular levels of ROS can lead to the oxidation of lipids, DNA, and proteins, contributing to cellular damage. Hence, the maintenance of redox hemostasis is essential. Naringenin (NAR) is a flavonoid included in the flavanones subcategory. Various pharmacological actions have been ascribable to this phytochemical composition, including antioxidant, anti-inflammatory, antibacterial, antiviral, antitumor, antiadipogenic, neuro-, and cardio-protective activities. This review focused on the underlying mechanism responsible for the antioxidative stress properties of NAR and its' nanoformulations. Several lines of in vitro and in vivo investigations suggest the effects of NAR and its nanoformulation on their target cells via modulating signaling pathways. These nanoformulations include nanoemulsion, nanocarriers, solid lipid nanoparticles (SLN), and nanomicelle. This review also highlights several beneficial health effects of NAR nanoformulations on human diseases including brain disorders, cancer, rheumatoid arthritis, and small intestine injuries. Employing nanoformulation can improve the pharmacokinetic properties of NAR and consequently efficiency by reducing its limitations, such as low bioavailability. The protective effects of NAR and its' nanoformulations against oxidative stress may be linked to the modulation of Nrf2-heme oxygenase-1, NO/cGMP/potassium channel, COX-2, NF-κB, AMPK/SIRT3, PI3K/Akt/mTOR, BDNF, NOX, and LOX-1 pathways. Understanding the mechanism behind the protective effects of NAR can facilitate drug development for the treatment of oxidative stress-related disorders.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Legha Ansari
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Valenzuela-Amaro HM, Aguayo-Acosta A, Meléndez-Sánchez ER, de la Rosa O, Vázquez-Ortega PG, Oyervides-Muñoz MA, Sosa-Hernández JE, Parra-Saldívar R. Emerging Applications of Nanobiosensors in Pathogen Detection in Water and Food. BIOSENSORS 2023; 13:922. [PMID: 37887115 PMCID: PMC10605657 DOI: 10.3390/bios13100922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Food and waterborne illnesses are still a major concern in health and food safety areas. Every year, almost 0.42 million and 2.2 million deaths related to food and waterborne illness are reported worldwide, respectively. In foodborne pathogens, bacteria such as Salmonella, Shiga-toxin producer Escherichia coli, Campylobacter, and Listeria monocytogenes are considered to be high-concern pathogens. High-concern waterborne pathogens are Vibrio cholerae, leptospirosis, Schistosoma mansoni, and Schistosima japonicum, among others. Despite the major efforts of food and water quality control to monitor the presence of these pathogens of concern in these kinds of sources, foodborne and waterborne illness occurrence is still high globally. For these reasons, the development of novel and faster pathogen-detection methods applicable to real-time surveillance strategies are required. Methods based on biosensor devices have emerged as novel tools for faster detection of food and water pathogens, in contrast to traditional methods that are usually time-consuming and are unsuitable for large-scale monitoring. Biosensor devices can be summarized as devices that use biochemical reactions with a biorecognition section (isolated enzymes, antibodies, tissues, genetic materials, or aptamers) to detect pathogens. In most cases, biosensors are based on the correlation of electrical, thermal, or optical signals in the presence of pathogen biomarkers. The application of nano and molecular technologies allows the identification of pathogens in a faster and high-sensibility manner, at extremely low-pathogen concentrations. In fact, the integration of gold, silver, iron, and magnetic nanoparticles (NP) in biosensors has demonstrated an improvement in their detection functionality. The present review summarizes the principal application of nanomaterials and biosensor-based devices for the detection of pathogens in food and water samples. Additionally, it highlights the improvement of biosensor devices through nanomaterials. Nanomaterials offer unique advantages for pathogen detection. The nanoscale and high specific surface area allows for more effective interaction with pathogenic agents, enhancing the sensitivity and selectivity of the biosensors. Finally, biosensors' capability to functionalize with specific molecules such as antibodies or nucleic acids facilitates the specific detection of the target pathogens.
Collapse
Affiliation(s)
- Hiram Martin Valenzuela-Amaro
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Edgar Ricardo Meléndez-Sánchez
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Orlando de la Rosa
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico; (H.M.V.-A.); (A.A.-A.); (E.R.M.-S.); (O.d.l.R.); (M.A.O.-M.)
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| |
Collapse
|
6
|
Trihan R, Bogucki O, Kozlowska A, Ihle M, Ziesche S, Fetliński B, Janaszek B, Kieliszczyk M, Kaczkan M, Rossignol F, Aimable A. Hybrid gold-silica nanoparticles for plasmonic applications: A comparison study of synthesis methods for increasing gold coverage. Heliyon 2023; 9:e15977. [PMID: 37223706 PMCID: PMC10200860 DOI: 10.1016/j.heliyon.2023.e15977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
The current work focuses on the synthesis of hybrid nanoparticles (NPs) made of a silica core (Si NPs) coated with discrete gold nanoparticles (Au NPs), which exhibit localized surface plasmon resonance (LSPR) properties. This plasmonic effect is directly related to the nanoparticles size and arrangement. In this paper, we explore a wide range of size for the silica cores (80, 150, 400, and 600 nm) and for the gold NPs (8, 10, and 30 nm). Some rational comparison between different functionalization techniques and different synthesis methods for the Au NPs are proposed, related to the optical properties and colloidal stability in time. An optimized, robust and reliable synthesis route is established, which improves the gold density and homogeneity. The performances of these hybrid nanoparticles are evaluated in order to be used in the shape of a dense layer for pollutant detection in gas or liquids, and find numerous applications as a cheap and new optical device.
Collapse
Affiliation(s)
- Romain Trihan
- Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France
| | - Oskar Bogucki
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Anna Kozlowska
- Łukasiewicz Research Network – Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Martin Ihle
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Winterbergstr. 28, 01277 Dresden, Germany
| | - Steffen Ziesche
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Winterbergstr. 28, 01277 Dresden, Germany
| | - Bartosz Fetliński
- Warsaw University of Technology – Institute of Microelectronics and Optoelectronics, 75 Koszykowa Street, 00-662 Warsaw, Poland
| | - Bartosz Janaszek
- Warsaw University of Technology – Institute of Microelectronics and Optoelectronics, 75 Koszykowa Street, 00-662 Warsaw, Poland
| | - Marcin Kieliszczyk
- Warsaw University of Technology – Institute of Microelectronics and Optoelectronics, 75 Koszykowa Street, 00-662 Warsaw, Poland
| | - Marcin Kaczkan
- Warsaw University of Technology – Institute of Microelectronics and Optoelectronics, 75 Koszykowa Street, 00-662 Warsaw, Poland
| | | | - Anne Aimable
- Univ. Limoges, CNRS, IRCER, UMR 7315, F-87000 Limoges, France
| |
Collapse
|
7
|
Derakhshi M, Naseri M, Vafaeipour Z, Malaekeh-Nikouei B, Jafarian AH, Ansari L. Enhanced wound-healing efficacy of electrospun mesoporous hydroxyapatite nanoparticle-loaded chitosan nanofiber developed using pluronic F127. Int J Biol Macromol 2023; 240:124427. [PMID: 37060977 DOI: 10.1016/j.ijbiomac.2023.124427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
One of the goals of wound repairing is to mimic the function and architecture of the native extracellular matrix (ECM). To this end, for the first time, we used pluronic F127 and mesoporous rod-like hydroxyapatite nanoparticles (mr-HAP NPs) simultaneously to prepare a novel low-diameter electrospun ECM-mimicking wound dressing based on a mixture of chitosan and polyethylene oxide. F127 is used as a surface tension regulator of the polymer solution. In addition, F127 has the special ability to reduce the size of nanofibers. mr-HAP NPs are used as cell proliferation accelerators which also improve the mechanical properties and water uptake capacity of the as-prepared dressing. The average size of nanofibers in the presence of F127 was about 110 nm which was >2.5 times lower than nanofibers prepared without F127. The water uptake capacity was evaluated to investigate the wound exudate absorption capacity of the wound dressing. It was observed that the incorporation of mr-HAP NPs into wound dressing structure increases the water uptake capacity by >2.5 times. Alongside the evaluation of cytocompatibility through in vitro cell viability assay, the wound healing efficacy was also determined in full-thickness skin wounds in a rat model for 15 days. The cytocompatible wound dressing showed significantly higher wound closure efficacy than the control group so the wounds healed entirely on the last day of the treatment period. As well, the pathology analysis proved better granulation tissue development and greater re-epithelialization. These findings are by virtue of the improved mechanical properties, accelerated cell migration and proliferation, proper environment for oxygen exchange, and enhanced exudate uptake of the wound dressing. These all are due to the presence of F127 and mr-HAP.
Collapse
Affiliation(s)
- Mansooreh Derakhshi
- Nano Pajoohan Derakhshan Limited Liability Company, Mashhad 9158754156, Iran
| | - Mahdi Naseri
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Vafaeipour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer molecular pathology research center, Mashhad University of medical science, Mashhad, Iran
| | - Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Synthesis and characterization of sensitive molecularly imprinting electrochemical sensor based on chitosan modified aminoated hierarchical porous silica-supported gold for detection of 2, 4-dichlorophenoxyacetic acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Li F, Gao X, Wang X, Guo Y, Sun X, Yang Q, Zhang Y. Ultrasensitive sandwich RNA-aptasensor based on dual-signal amplification strategy for highly sensitive neomycin detection. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Gessner I, Park JH, Lin HY, Lee H, Weissleder R. Magnetic Gold Nanoparticles with Idealized Coating for Enhanced Point-Of-Care Sensing. Adv Healthc Mater 2022; 11:e2102035. [PMID: 34747576 PMCID: PMC8770610 DOI: 10.1002/adhm.202102035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/20/2021] [Indexed: 01/03/2023]
Abstract
Magnetic nanoparticles with hybrid sensing functions are in wide use for bioseparation, sensing, and in vivo imaging. Yet, nonspecific protein adsorption to the particle surface continues to present a technical challenge and diminishes the theoretical protein detection capabilities. Here, a magneto-plasmonic nanoparticle synthesis is developed that minimizes nonspecific protein adsorption. Building on the success of zwitterionic polymers, a highly stable and anergic nanomaterial, magnetic gold nanoparticles with idealized coating (MAGIC) is obtained with significantly lower serum protein adsorption compared to control nanoparticles coated with commonly used polymers (polyethylene glycol, polyethylenimine, or polyallylamine hydrochloride). MAGIC nanoparticles are able to sense specific bladder cancer biomarkers at low levels and in the presence of other proteins. This strategy may find wide spread applications for in vitro and in vivo sensing as well as isolations.
Collapse
Affiliation(s)
- Isabel Gessner
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Jin-Ho Park
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Hsing-Ying Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu City, 300, Taiwan
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA, 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA
| |
Collapse
|
12
|
Chen Y, Ren T, Bramlitt S, Seitz WR. Silica covered stannic oxide nanoparticles-an easily prepared robust substrate for optical sensors. NANOTECHNOLOGY 2021; 33:105704. [PMID: 34818641 DOI: 10.1088/1361-6528/ac3ce3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
This paper describes a facile way to prepare a photophysically inert sensor substrate. Stannic oxide encapsulated silica nanoparticles with average diameters between 30 and 70 nm have been prepared by one-pot reverse-phase emulsion methodology. The constituents and core/shell morphology of the nanoparticles were demonstrated by electron microscopic technology, energy-dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. X-ray diffraction was employed to provide additional constitutional and structural information. It has been shown that nanoparticles prepared by this method are optically clear in suspension. After anchoring optical indicators, this nanoparticle can be utilized as a sensor module both in biology and other analytical areas.
Collapse
Affiliation(s)
- Yuan Chen
- Chemistry Department, College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH 03824, United States of America
| | - Tianyu Ren
- Chemistry Department, College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH 03824, United States of America
| | - Sarah Bramlitt
- Chemistry Department, College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH 03824, United States of America
| | - W Rudolf Seitz
- Chemistry Department, College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH 03824, United States of America
| |
Collapse
|
13
|
Sheng A, Khuje S, Yu J, Petit D, Parker T, Zhuang CG, Kester L, Ren S. Ultrahigh Temperature Copper-Ceramic Flexible Hybrid Electronics. NANO LETTERS 2021; 21:9279-9284. [PMID: 34709842 DOI: 10.1021/acs.nanolett.1c02942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Advanced high-temperature materials, metals and ceramics, have been widely sought after for printed flexible electronics under extreme conditions. However, the thermal stability and electronic performance of these materials generally diminish under extreme environments. Additionally, printable electronics typically utilize nanoscale materials, which further exacerbate the problems with oxidation and corrosion at those extreme conditions. Here we report superior thermal and electronic stability of printed copper-flexible ceramic electronics by means of integral hybridization and passivation strategies. High electric conductivity (5.6 MS/m) and thermal stability above 400 °C are achieved in the printed graphene-passivated copper platelet features, while thermal management and stability above 1000 °C of printed electronics can be achieved by using either ultrathin alumina or flexible alumina aerogel sheets. The findings shown here provide a pathway toward printed, extreme electronic applications for harsh service conditions.
Collapse
Affiliation(s)
- Aaron Sheng
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Saurabh Khuje
- Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jian Yu
- Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Donald Petit
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Thomas Parker
- Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Cheng-Gang Zhuang
- Corning Research and Development Corporation, New York 14830, United States
| | - Lanrik Kester
- Corning Research and Development Corporation, New York 14830, United States
| | - Shenqiang Ren
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Mechanical and Aerospace Engineering, Research and Education in Energy Environment & Water Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
14
|
Wang M, Wang M, Zheng G, Dai Z, Ma Y. Recent progress in sensing application of metal nanoarchitecture-enhanced fluorescence. NANOSCALE ADVANCES 2021; 3:2448-2465. [PMID: 36134167 PMCID: PMC9417471 DOI: 10.1039/d0na01050b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/13/2021] [Indexed: 05/21/2023]
Abstract
Fluorescence analytical methods, as real time and in situ analytical approaches to target analytes, can offer advantages of high sensitivity/selectivity, great versatility, non-invasive measurement and easy transmission over long distances. However, the conventional fluorescence assay still suffers from low specificity, insufficient sensitivity, poor reliability and false-positive responses. By exploiting various metal nanoarchitectures to manipulate fluorescence, both increased fluorescence quantum yield and improved photostability can be realized. This metal nanoarchitecture-enhanced fluorescence (MEF) phenomenon has been extensively studied and used in various sensors over the past years, which greatly improved their sensing performance. Thus in this review, we primarily give a general overview of MEF based sensors from mechanisms to state-of-the-art applications in environmental assays, biological/medical analysis and diagnosis areas. Finally, their pros and cons as well as further development directions are also discussed.
Collapse
Affiliation(s)
- Meiling Wang
- Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University Hefei 230039 China
| | - Min Wang
- Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University Hefei 230039 China
| | - Ganhong Zheng
- Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University Hefei 230039 China
| | - Zhenxiang Dai
- Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University Hefei 230039 China
| | - Yongqing Ma
- Anhui Key Laboratory of Information Materials and Devices, School of Physics and Materials Science, Anhui University Hefei 230039 China
- Institute of Physical Science and Information Technology, Anhui University Hefei 230039 China
| |
Collapse
|
15
|
Su L, Wang L, Xu J, Wang Z, Yao X, Sun J, Wang J, Zhang D. Competitive Lateral Flow Immunoassay Relying on Au-SiO 2 Janus Nanoparticles with an Asymmetric Structure and Function for Furazolidone Residue Monitoring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:511-519. [PMID: 33373219 DOI: 10.1021/acs.jafc.0c06016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gold nanoparticles (AuNPs) are the most commonly used signal materials in lateral flow immunoassay (LFIA). However, the assay sensitivity of traditional AuNP-based LFIA is usually limited by the incomplete competition between free target analytes and immobilized antigens for the binding of AuNP-labeled antibodies. To unfreeze this limitation, here, asymmetric Au-SiO2 Janus NPs (about 66 nm) were designed and synthesized. Au-SiO2 Janus NPs can assemble into snowman-like anisotropic structures and combine two different physicochemical properties at their opposite sides, where the AuNP side mainly possesses the antibody conjugating and signal providing functions and the SiO2 side primarily offers the stable function. In virtue of the unique asymmetric nanostructure, only the AuNP side can interact with target analytes by specific antigen-antibody interactions, which could significantly improve the efficiency of competition. Selecting furazolidone as a model analyte, the immunoassay biosensor showed a limit of detection as low as 0.08 ng/mL, 10-fold decreased than that of the AuNPs-LFIA. Moreover, the Au-SiO2 Janus NP lateral flow immunoassay was well applied in chicken, pork, honey, and beef food samples with visual detection limits of 0.8 ng/g, 0.16 ng/g, 0.4 ng/mL, and 0.16 ng/g, respectively. The Au-SiO2 Janus NPs possess the advantages of both materials, which will broaden their applications as a potential alternative in the rapid and sensitive detection of antibiotic residues.
Collapse
Affiliation(s)
- Lihong Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Lulu Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jingke Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Zonghan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Xiaolin Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| |
Collapse
|
16
|
Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2556. [PMID: 33352731 PMCID: PMC7766190 DOI: 10.3390/nano10122556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Multifunctional nanomaterials, defined as those able to achieve a combined effect or more than one function through their multiple functionalization or combination with other materials, are gaining increasing attention in the last years in many relevant fields, including cargo targeted delivery, tissue engineering, in vitro and/or in vivo diseases imaging and therapy, as well as in the development of electrochemical (bio)sensors and (bio)sensing strategies with improved performance. This review article aims to provide an updated overview of the important advances and future opportunities exhibited by electrochemical biosensing in connection to multifunctional nanomaterials. Accordingly, representative aspects of recent approaches involving metal, carbon, and silica-based multifunctional nanomaterials are selected and critically discussed, as they are the most widely used multifunctional nanomaterials imparting unique capabilities in (bio)electroanalysis. A brief overview of the main remaining challenges and future perspectives in the field is also provided.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | | - Susana Campuzano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | |
Collapse
|
17
|
Malecka K, Kaur B, Cristaldi DA, Chay CS, Mames I, Radecka H, Radecki J, Stulz E. Silver or gold? A comparison of nanoparticle modified electrochemical genosensors based on cobalt porphyrin-DNA. Bioelectrochemistry 2020; 138:107723. [PMID: 33360955 DOI: 10.1016/j.bioelechem.2020.107723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/18/2022]
Abstract
We applied a cobalt-porphyrin modified DNA as electrochemical marker, which was attached to nanoparticles, to detect specific DNA sequences. We compare the performance of gold and silver NPs in oligonucleotide sensors to determine if a change in metal will lead to either higher sensitivity or different selectivity, based on the redox behaviour of silver vs. gold. Surprisingly, we find that using either gold or silver NPs yields very similar overall performance. The electrochemical measurements of both types of sensors show the same redox behaviour which is dominated by the cobalt porphyrin, indicating that the electron pathway does not include the NP, but there is direct electron transfer between the porphyrin and the electrode. Both sensors show a linear response in the range of 5 × 10-17-1 × 10-16 M; the limit of detection (LOD) is 3.8 × 10-18 M for the AuNP sensor, and 5.0 × 10-18 M for the AgNP sensor, respectively, which corresponds to the detection of about 20-50 DNA molecules in the analyte. Overall, the silver system results in a better DNA economy and using cheaper starting materials for the NPs, thus shows better cost-effectivness and could be more suitable for the mass-production of highly sensitive DNA sensors.
Collapse
Affiliation(s)
- Kamila Malecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Balwinder Kaur
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - D Andrea Cristaldi
- School of Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Clarissa S Chay
- School of Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Iwona Mames
- School of Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Eugen Stulz
- School of Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK.
| |
Collapse
|
18
|
Abstract
Ionic liquids (ILs) are a group of non-conventional salts with melting points below 100 °C. Apart from their negligible vapor pressure at room temperature, high thermal stability, and impressive solvation properties, ILs are characterized by their tunability. Given such nearly infinite combinations of cations and anions, and the easy modification of their structures, ILs with specific properties can be synthesized. These characteristics have attracted attention regarding their use as extraction phases in analytical sample preparation methods, particularly in liquid-phase extraction methods. Given the liquid nature of most common ILs, their incorporation in analytical sample preparation methods using solid sorbents requires the preparation of solid derivatives, such as polymeric ILs, or the combination of ILs with other materials to prepare solid IL-based composites. In this sense, many solid composites based on ILs have been prepared with improved features, including magnetic particles, carbonaceous materials, polymers, silica materials, and metal-organic frameworks, as additional materials forming the composites. This review aims to give an overview on the preparation and applications of IL-based composites in analytical sample preparation in the period 2017–2020, paying attention to the role of the IL material in those composites to understand the effect of the individual components in the sorbent.
Collapse
|