1
|
Xiong S, Zhu C, Wang C, Dong P, Wu X. SERS-based pump-free microfluidic chip sensor for highly sensitive competitive immunoassay of cortisol in human sweat. LAB ON A CHIP 2024. [PMID: 39564866 DOI: 10.1039/d4lc00858h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Cortisol, known as the "stress hormone", is secreted by the adrenal cortex. Measuring cortisol levels in body fluids is essential for evaluating stress levels, adrenal function, hormone imbalance, and psychological well-being. Early diagnosis and management of related conditions depend on this measurement. A rapid detection method that combines immunoassay and surface-enhanced Raman scattering (SERS) technology has become widely used in bioanalysis, offering benefits such as fast detection, high throughput, integrated microsystems, and high specificity. This study introduces a pump-free microfluidic chip integrating a solid-state SERS substrate to detect trace amounts of cortisol in bodily fluids through immunoassay. The method relies on a competitive reaction between cortisol and SERS tags with cortisol antigens immobilized on gold nanostructured substrates in a microfluidic environment. Two detection channels are used to provide controls and enhance measurement efficiency and accuracy. Solid-state gold nanostructured substrates offer a larger surface area for antibody capture and act as SERS-active substrates, which significantly enhance the Raman signal and improve the microsystem's sensitivity and applicability. Driven by a capillary pump, the sample can be loaded within 60 seconds, with the entire detection process taking less than 10 min, significantly reducing the detection time. Results indicate that the detection limit for cortisol is 10 pg mL-1, meeting clinical biomarker thresholds. The integrated SERS microfluidic chip shows great promise as an analytical tool for the rapid and sensitive diagnosis of cortisol in bodily fluids.
Collapse
Affiliation(s)
- Siyue Xiong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| | - Chushu Zhu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| | - Chengxuan Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| | - Peitao Dong
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| | - Xuezhong Wu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, China.
| |
Collapse
|
2
|
Armero L, Plou J, Valera PS, Serna S, García I, Liz-Marzán LM. Multiplex Determination of Glycan Profiles on Urinary Prostate-Specific Antigen by Quartz-Crystal Microbalance Combined with Surface-Enhanced Raman Scattering. ACS Sens 2024; 9:4811-4821. [PMID: 39213515 PMCID: PMC11443522 DOI: 10.1021/acssensors.4c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Prostate cancer remains a major health concern, with prostate-specific antigen (PSA) being a key biomarker for its detection and monitoring. However, PSA levels often fall into a "gray zone", where PSA levels are not clearly indicative of cancer, thus complicating early diagnosis and treatment decisions. Glycosylation profiles, which often differ between healthy and diseased cells, have emerged as potential biomarkers to enhance the specificity and sensitivity of cancer diagnosis in these ambiguous cases. We propose the integration of two complementary techniques, namely quartz-crystal microbalance with dissipation (QCM-D) and surface-enhanced Raman scattering (SERS) to study PSA glycan profiles. QCM-D offers real-time operation, PSA mass quantification, and label-free detection with high sensitivity, as well as enhanced specificity and reduced cross-reactivity when using nucleic acid aptamers as capture ligands. Complementary SERS sensing enables the determination of the glycosylation pattern on PSA, at low concentrations and without the drawbacks of photobleaching, thereby facilitating multiplexed glycosylation pattern analysis. This integrated setup could retrieve a data set comprising analyte concentrations and associated glycan profiles in relevant biological samples, which may eventually improve early disease detection and monitoring. Prostate-specific antigen (PSA), a glycoprotein secreted by prostate epithelial cells, serves as our proof-of-concept analyte. Our platform allows multiplex targeting of PSA multiplex glycosylation profiles of PSA at "gray zone" concentrations for prostate cancer diagnosis. We additionally show the use of SERS for glycan analysis in PSA secreted from prostate cancer cell lines after androgen-based treatment. Differences in PSA glycan profiles from resistant cell lines after androgen-based treatment may eventually improve cancer treatment.
Collapse
Affiliation(s)
- Laura Armero
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Department
of Applied Chemistry, University of the
Basque Country, Donostia-San Sebastián 20018, Spain
| | - Javier Plou
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- CIC
nanoGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20018, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Pablo S. Valera
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Department
of Applied Chemistry, University of the
Basque Country, Donostia-San Sebastián 20018, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), Donostia-San Sebastián 20014, Spain
- CIC
bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Spain
| | - Sonia Serna
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
| | - Isabel García
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Biomedical
Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), Donostia-San Sebastián 20014, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48009, Spain
- Cinbio, Universidade de Vigo, Vigo 36310, Spain
| |
Collapse
|
3
|
Fateixa S, Martins ALF, Colaço B, António M, Daniel-da-Silva AL. Integrated magneto-plasmonic nanostructures-based immunoassay for galectin-3 detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5212-5222. [PMID: 39007190 DOI: 10.1039/d4ay00972j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Cardiovascular diseases remain a leading cause of global mortality, highlighting the need for accurate diagnostic tools and the detection of specific cardiac biomarkers. Surface-enhanced Raman scattering (SERS) spectroscopy has proved to be a promising alternative diagnostic tool to detect relevant biomarkers compared to traditional methods. To our knowledge, SERS methodology has never been used to detect galectin-3 (Gal-3), a crucial biomarker for cardiovascular conditions. Our study aimed to develop plasmonic and magneto-plasmonic nanoplatforms for the sensitive immunodetection of Gal-3 using SERS. Spherical gold nanoparticles (AuNPs) were synthesized and functionalized with 11-mercaptoundecanoic acid (MUDA) to enable antibody binding and 4-mercaptobenzoic acid (4MBA) that served as a Raman reporter due to its intense Raman signal. Following bioconjugation with Gal-3 antibody, the AuNPs were employed in the immunodetection of Gal-3 in phosphate-buffer saline (PBS) solution, offering a limit of detection (LOD) of 12.2 ng mL-1 and a working range up to 120 ng mL-1. Furthermore, our SERS-based immunosystem demonstrated selectivity for Gal-3 (40 ng mL-1) in the presence of other biomolecules such as α-amylase, bovine serum albumin and human C-reactive protein. As a proof of concept, we developed magneto-plasmonic nanoparticles composed of silica-coated magnetite decorated with the bioconjugated AuNPs aimed at enhancing the uptake and detection of Gal-3 via SERS coupled with Raman imaging. Our findings underscore the potential of SERS-based techniques for the sensitive and specific detection of biomarkers, holding significant implications for improved diagnosis and surveillance of cardiovascular diseases. Future research will focus on further optimizing these nanoplatforms and their translation into clinical settings.
Collapse
Affiliation(s)
- Sara Fateixa
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana L F Martins
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Beatriz Colaço
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria António
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Lee S, Dang H, Moon JI, Kim K, Joung Y, Park S, Yu Q, Chen J, Lu M, Chen L, Joo SW, Choo J. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem Soc Rev 2024; 53:5394-5427. [PMID: 38597213 DOI: 10.1039/d3cs01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Advances in surface-enhanced Raman scattering (SERS) detection have helped to overcome the limitations of traditional in vitro diagnostic methods, such as fluorescence and chemiluminescence, owing to its high sensitivity and multiplex detection capability. However, for the implementation of SERS detection technology in disease diagnosis, a SERS-based assay platform capable of analyzing clinical samples is essential. Moreover, infectious diseases like COVID-19 require the development of point-of-care (POC) diagnostic technologies that can rapidly and accurately determine infection status. As an effective assay platform, SERS-based bioassays utilize SERS nanotags labeled with protein or DNA receptors on Au or Ag nanoparticles, serving as highly sensitive optical probes. Additionally, a microdevice is necessary as an interface between the target biomolecules and SERS nanotags. This review aims to introduce various microdevices developed for SERS detection, available for POC diagnostics, including LFA strips, microfluidic chips, and microarray chips. Furthermore, the article presents research findings reported in the last 20 years for the SERS-based bioassay of various diseases, such as cancer, cardiovascular diseases, and infectious diseases. Finally, the prospects of SERS bioassays are discussed concerning the integration of SERS-based microdevices and portable Raman readers into POC systems, along with the utilization of artificial intelligence technology.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Joung-Il Moon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China.
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
5
|
Troncoso-Afonso L, Vinnacombe-Willson GA, García-Astrain C, Liz-Márzan LM. SERS in 3D cell models: a powerful tool in cancer research. Chem Soc Rev 2024; 53:5118-5148. [PMID: 38607302 PMCID: PMC11104264 DOI: 10.1039/d3cs01049j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 04/13/2024]
Abstract
Unraveling the cellular and molecular mechanisms underlying tumoral processes is fundamental for the diagnosis and treatment of cancer. In this regard, three-dimensional (3D) cancer cell models more realistically mimic tumors compared to conventional 2D cell cultures and are more attractive for performing such studies. Nonetheless, the analysis of such architectures is challenging because most available techniques are destructive, resulting in the loss of biochemical information. On the contrary, surface-enhanced Raman spectroscopy (SERS) is a non-invasive analytical tool that can record the structural fingerprint of molecules present in complex biological environments. The implementation of SERS in 3D cancer models can be leveraged to track therapeutics, the production of cancer-related metabolites, different signaling and communication pathways, and to image the different cellular components and structural features. In this review, we highlight recent progress in the use of SERS for the evaluation of cancer diagnosis and therapy in 3D tumoral models. We outline strategies for the delivery and design of SERS tags and shed light on the possibilities this technique offers for studying different cellular processes, through either biosensing or bioimaging modalities. Finally, we address current challenges and future directions, such as overcoming the limitations of SERS and the need for the development of user-friendly and robust data analysis methods. Continued development of SERS 3D bioimaging and biosensing systems, techniques, and analytical strategies, can provide significant contributions for early disease detection, novel cancer therapies, and the realization of patient-tailored medicine.
Collapse
Affiliation(s)
- Lara Troncoso-Afonso
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Gipuzkoa, Spain
| | - Gail A Vinnacombe-Willson
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
| | - Clara García-Astrain
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Luis M Liz-Márzan
- BioNanoPlasmonics Laboratory, CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales, y Nanomedicina (CIBER-BBN), Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
6
|
Li C, Hu J, Hu N, Zhao J, Li Q, Han Y, Liu Y, Hu X, Zheng L, Cao Q. Aptamer-aided plasmonic nano-urchins for reporter-free surface-enhanced Raman spectroscopy analysis of cortisol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38683672 DOI: 10.1039/d4ay00401a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cortisol is a vital glucocorticoid hormone reflecting stress levels and related disease processes. In this study, we report an aptamer-functionalized plasmonic nano-urchin (α-FeOOH@Au-aptamer)-aided cortisol-capturing and surface-enhanced Raman spectroscopy (SERS) analysis approach. The designed α-FeOOH@Au-aptamer exhibits a well-patterned plasma structure, which combines the good SERS enhancement ability of reduced nanogaps between the Au plasma and the hot spot-favored structure of anisotropic tips from α-FeOOH urchins, with the high affinity of the aptamer towards cortisol molecules. The α-FeOOH@Au-aptamer achieved reporter-free SERS quantification for cortisol with good sensitivity (limit of detection <0.28 μmol L-1), robust salt (1.0 mol per L NaCl) and protein (5.0 mg per mL bovine serum protein) tolerance, favorable reproducibility, as well as good reusability. We further demonstrated the good cortisol-capturing ability and SERS efficacy of the α-FeOOH@Au-aptamer profiling in the serum and urine samples. Our approach provides an alternative tool for cortisol analysis and a reference strategy for report-free SERS detection of small molecules.
Collapse
Affiliation(s)
- Chengyu Li
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Jing Hu
- Clinical Psychology Department, Zhongshan Third People's Hospital, Zhongshan, Guangdong, 528451, China
| | - Nan Hu
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Jianjun Zhao
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Qianwen Li
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Yanhui Han
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Yanxiong Liu
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Xufang Hu
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Liyan Zheng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| | - Qiue Cao
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
7
|
Xi Z, Zhang R, Kiessling F, Lammers T, Pallares RM. Role of Surface Curvature in Gold Nanostar Properties and Applications. ACS Biomater Sci Eng 2024; 10:38-50. [PMID: 37249042 DOI: 10.1021/acsbiomaterials.3c00249] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gold nanostars (AuNSs) are nanoparticles with intricate three-dimensional structures and shape-dependent optoelectronic properties. For example, AuNSs uniquely display three distinct surface curvatures, i.e. neutral, positive, and negative, which provide different environments to adsorbed ligands. Hence, these curvatures are used to introduce different surface chemistries in nanoparticles. This review summarizes and discusses the role of surface curvature in AuNS properties and its impact on biomedical and chemical applications, including surface-enhanced Raman spectroscopy, contrast agent performance, and catalysis. We examine the main synthetic approaches to generate AuNSs, control their morphology, and discuss their benefits and drawbacks. We also describe the optical characteristics of AuNSs and discuss how these depend on nanoparticle morphology. Finally, we analyze how AuNS surface curvature endows them with properties distinctly different from those of other nanoparticles, such as strong electromagnetic fields at the tips and increased hydrophilic environments at the indentations, together making AuNSs uniquely useful for biosensing, imaging, and local chemical manipulation.
Collapse
Affiliation(s)
- Zhongqian Xi
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Rui Zhang
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Roger M Pallares
- Biohybrid Nanomedical Materials Group, Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| |
Collapse
|
8
|
Khachornsakkul K, Del-Rio-Ruiz R, Zeng W, Sonkusale S. Highly Sensitive Photothermal Microfluidic Thread-Based Duplex Immunosensor for Point-of-Care Monitoring. Anal Chem 2023; 95:12802-12810. [PMID: 37578458 DOI: 10.1021/acs.analchem.3c01778] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Herein, we successfully developed a thread-based analytical device (μTAD) for simultaneous immunosensing of two biomolecules with attomolar sensitivity by using a photothermal effect. A photothermal effect exploits a strong light-to-heat energy conversion of plasmonic metallic nanoparticles at localized surface plasmon resonance. The key innovation is to utilize the cotton thread to realize this sensor and the use of chitosan modification for enhancing the microfluidic properties, for improving the efficiency of photothermal conversion, and for sensor stability. The developed μTAD sensor consists of (i) a sample zone, (ii) a conjugation zone coated with gold nanoparticles bound with an antibody (AuNPs-Ab2), and (iii) a test zone immobilized with a capture antibody (anti-Ab1). The prepared μTAD is assembled in a custom three-dimensional (3D) printed device which holds the laser for illumination and the thermometer for readout. The 3D-printed supportive device enhances signal response by focusing light and localizing the heat generated. For proof of concept, simultaneous sensing of two key stress and inflammation biomarkers, namely, cortisol and interleukin-6 (IL-6), are monitored using this technique. Under optimization, this device exhibited a detection linear range of 2.0-14.0 ag/mL (R2 = 0.9988) and 30.0-360.0 fg/mL (R2 = 0.9942) with a detection limit (LOD) of 1.40 ag/mL (∼3.86 amol/L) and 20.0 fg/mL (∼950.0 amol/L) for cortisol and IL-6, respectively. Furthermore, the analysis of both biomolecules in human samples indicated recoveries in the range of 98.8%-102.88% with the highest relative standard deviation being 3.49%, offering great accuracy and precision. These results are the highest reported sensitivity for these analytes using an immunoassay method. Our PT-μTAD strategy is therefore a promising approach for detecting biomolecules in resource-limited point-of-care settings.
Collapse
Affiliation(s)
- Kawin Khachornsakkul
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Ruben Del-Rio-Ruiz
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Wenxin Zeng
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| | - Sameer Sonkusale
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Nano Lab, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
9
|
Dos Santos DP, Sena MM, Almeida MR, Mazali IO, Olivieri AC, Villa JEL. Unraveling surface-enhanced Raman spectroscopy results through chemometrics and machine learning: principles, progress, and trends. Anal Bioanal Chem 2023; 415:3945-3966. [PMID: 36864313 PMCID: PMC9981450 DOI: 10.1007/s00216-023-04620-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has gained increasing attention because it provides rich chemical information and high sensitivity, being applicable in many scientific fields including medical diagnosis, forensic analysis, food control, and microbiology. Although SERS is often limited by the lack of selectivity in the analysis of samples with complex matrices, the use of multivariate statistics and mathematical tools has been demonstrated to be an efficient strategy to circumvent this issue. Importantly, since the rapid development of artificial intelligence has been promoting the implementation of a wide variety of advanced multivariate methods in SERS, a discussion about the extent of their synergy and possible standardization becomes necessary. This critical review comprises the principles, advantages, and limitations of coupling SERS with chemometrics and machine learning for both qualitative and quantitative analytical applications. Recent advances and trends in combining SERS with uncommonly used but powerful data analysis tools are also discussed. Finally, a section on benchmarking and tips for selecting the suitable chemometric/machine learning method is included. We believe this will help to move SERS from an alternative detection strategy to a general analytical technique for real-life applications.
Collapse
Affiliation(s)
- Diego P Dos Santos
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Marcelo M Sena
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Bioanalítica (INCT Bio), Campinas, SP, 13083-970, Brazil
| | - Mariana R Almeida
- Departamento de Química, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Italo O Mazali
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil
| | - Alejandro C Olivieri
- Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Instituto de Química Rosario (IQUIR-CONICET), Suipacha 531, 2000, Rosario, Argentina
| | - Javier E L Villa
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
10
|
Kusov PA, Kotelevtsev YV, Drachev VP. Cortisol Monitoring Devices toward Implementation for Clinically Relevant Biosensing In Vivo. Molecules 2023; 28:2353. [PMID: 36903600 PMCID: PMC10005364 DOI: 10.3390/molecules28052353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cortisol is a steroid hormone that regulates energy metabolism, stress reactions, and immune response. Cortisol is produced in the kidneys' adrenal cortex. Its levels in the circulatory system are regulated by the neuroendocrine system with a negative feedback loop of the hypothalamic-pituitary-adrenal axis (HPA-axis) following circadian rhythm. Conditions associated with HPA-axis disruption cause deteriorative effects on human life quality in numerous ways. Psychiatric, cardiovascular, and metabolic disorders as well as a variety of inflammatory processes accompanying age-related, orphan, and many other conditions are associated with altered cortisol secretion rates and inadequate responses. Laboratory measurements of cortisol are well-developed and based mainly on the enzyme linked immunosorbent assay (ELISA). There is a great demand for a continuous real-time cortisol sensor that is yet to be developed. Recent advances in approaches that will eventually culminate in such sensors have been summarized in several reviews. This review compares different platforms for direct cortisol measurements in biological fluids. The ways to achieve continuous cortisol measurements are discussed. A cortisol monitoring device will be essential for personified pharmacological correction of the HPA-axis toward normal cortisol levels through a 24-h cycle.
Collapse
Affiliation(s)
- Pavel A. Kusov
- Center for Engineering Physics, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Yuri V. Kotelevtsev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Vladimir P. Drachev
- Center for Engineering Physics, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| |
Collapse
|
11
|
Markina NE, Markin AV, Cialla-May D. Cyclodextrin-assisted SERS determination of fluoroquinolone antibiotics in urine and blood plasma. Talanta 2023; 254:124083. [PMID: 36462278 DOI: 10.1016/j.talanta.2022.124083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
This paper describes the use of cyclodextrins (CDs) to improve the determination of fluoroquinolone antibiotics in human body fluids using surface-enhanced Raman spectroscopy (SERS). CDs were used to (i) prepare the CD-SERS substrate (synthesis and stabilization of silver nanoparticles), (ii) increase the sensitivity of the assay by enhancing the interaction between analyte molecules and the substrate, and (iii) improve the analysis accuracy by reducing the interaction between the substrate and endogenous components of body fluids. Two native CDs (α-CD and β-CD) and two of their derivatives with hydroxypropyl groups were tested, and the best results were obtained with CD-SERS substrate prepared using native β-CD. The CD-SERS assay has been developed and optimized for the determination of commonly used and structurally related fluoroquinolones (ciprofloxacin, norfloxacin, pefloxacin, and levofloxacin) in urine and blood plasma samples. Importantly, the non-significant difference in the interaction of the CD-modified SERS substrate with various fluoroquinolones has been successfully used to develop a versatile assay suitable for the analyte-class-specific analysis. Calibration plots were obtained for concentration ranges suitable for the determination of the antibiotics in urine (50-500 μg mL-1) and blood plasma (1-6 μg mL-1). The following figures of merit were obtained (for urine and blood plasma, respectively): RSD values are ≤15% and ≤23%, LOD values are 2.9-5.8 and 0.05-0.34 μg mL-1, recovery ranges are 96-105% and 91-111%. In addition, the influence of excessive concentrations of some main endogenous components of the body fluids on the analytical signal was studied. This step was used to evaluate possible limitations of the assay associated with the deviation of the composition of the body fluid matrix. Therefore, accounting for the short analysis time (≤15 min) and the use of a portable Raman spectrometer, the proposed assay can be suggested for therapeutic drug monitoring in hospitals.
Collapse
Affiliation(s)
- Natalia E Markina
- Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia
| | - Alexey V Markin
- Saratov State University, Astrakhanskaya 83, 410012, Saratov, Russia.
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of the Leibniz Research Alliance "Leibniz Health Technologies", Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| |
Collapse
|
12
|
Huang H, Zhang Z, Li G. A Review of Magnetic Nanoparticle-Based Surface-Enhanced Raman Scattering Substrates for Bioanalysis: Morphology, Function and Detection Application. BIOSENSORS 2022; 13:30. [PMID: 36671865 PMCID: PMC9855913 DOI: 10.3390/bios13010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a kind of popular non-destructive and water-free interference analytical technology with fast response, excellent sensitivity and specificity to trace biotargets in biological samples. Recently, many researches have focused on the preparation of various magnetic nanoparticle-based SERS substrates for developing efficient bioanalytical methods, which greatly improved the selectivity and accuracy of the proposed SERS bioassays. There has been a rapid increase in the number of reports about magnetic SERS substrates in the past decade, and the number of related papers and citations have exceeded 500 and 2000, respectively. Moreover, most of the papers published since 2009 have been dedicated to analytical applications. In the paper, the recent advances in magnetic nanoparticle-based SERS substrates for bioanalysis were reviewed in detail based on their various morphologies, such as magnetic core-shell nanoparticles, magnetic core-satellite nanoparticles and non-spherical magnetic nanoparticles and their different functions, such as separation and enrichment, recognition and SERS tags. Moreover, the typical application progress on magnetic nanoparticle-based SERS substrates for bioanalysis of amino acids and protein, DNA and RNA sequences, cancer cells and related tumor biomarkers, etc., was summarized and introduced. Finally, the future trends and prospective for SERS bioanalysis by magnetic nanoparticle-based substrates were proposed based on the systematical study of typical and latest references. It is expected that this review would provide useful information and clues for the researchers with interest in SERS bioanalysis.
Collapse
Affiliation(s)
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Andrew R, Stimson RH. Mapping endocrine networks by stable isotope tracing. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100381. [PMID: 39185272 PMCID: PMC11344083 DOI: 10.1016/j.coemr.2022.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Hormones regulate metabolic homeostasis through interlinked dynamic networks of proteins and small molecular weight metabolites, and state-of-the-art chemical technologies have been developed to decipher these complex pathways. Stable-isotope tracers have largely replaced radiotracers to measure flux in humans, building on advances in nuclear magnetic resonance spectroscopy and mass spectrometry. These technologies are now being applied to localise molecules within tissues. Radiotracers are still highly valuable both preclinically and in 3D imaging by positron emission tomography. The coming of age of vibrational spectroscopy in conjunction with stable-isotope tracing offers detailed cellular insights to map complex biological processes. Together with computational modelling, these approaches are poised to coalesce into multi-modal platforms to provide hitherto inaccessible dynamic and spatial insights into endocrine signalling.
Collapse
Affiliation(s)
- Ruth Andrew
- University/ British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| | - Roland H Stimson
- University/ British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, United Kingdom
| |
Collapse
|
14
|
Panahi Z, Ren T, Halpern JM. Nanostructured Cyclodextrin-Mediated Surface for Capacitive Determination of Cortisol in Multiple Biofluids. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42374-42387. [PMID: 35918826 PMCID: PMC9504479 DOI: 10.1021/acsami.2c07701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The aim of this work is to develop a reusable polypropylene glycol (PPG):β-cyclodextrin (βCD) biosensor for cortisol detection. To achieve the most stable support for βCD, we developed two PPG surfaces. The first surface is based on a gold surface modified with SAM of 3-mercaptopropionic acid (3MPA), and the second surface is based on a glassy carbon surface grafted with 4-carboxyphenyl diazonium salt. We characterized both surfaces by EIS, XPS, and ATR-FTIR and evaluated the stability and reusability of each surface. We found the GC-carboxyphenyl-PPG:βCD is stable for at least 1 month. We have also demonstrated the reusability of the surface up to 10 times. In detecting cortisol, we used a nonfaradaic electrochemical impedance capacitive model to interpret the surface confirmation changes. We achieved sensitive detection of cortisol in PBS buffer, urine, and saliva with limit of detection of 2.13, 1.29, and 1.33 nM, respectively.
Collapse
Affiliation(s)
- Zahra Panahi
- Department
of Chemical Engineering and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Tianyu Ren
- Department
of Chemical Engineering and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Jeffrey Mark Halpern
- Department
of Chemical Engineering and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
15
|
Controlled nano-agglomerates as stabile SERS reporters for unequivocal labelling. Sci Rep 2022; 12:8977. [PMID: 35643864 PMCID: PMC9142785 DOI: 10.1038/s41598-022-12989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/19/2022] [Indexed: 11/08/2022] Open
Abstract
Biosensors, especially those with a SERS readout, are required for an early and precise healthcare diagnosis. Unreproducible SERS platforms hamper clinical SERS. Here we report a synthetic procedure to obtain stabile, reproducible and robust highly-SERS performing nanocomposites for labelling. We controlled the NPs agglomeration and codification which resulted in an increased number of hot spots, thus exhibiting reproducible and superior Raman enhancement. We studied fundamental aspects affecting the plasmonic thiol bond resulting in pH exhibiting a determining role. We validated their biosensing performance by designing a SERS-based detection assay model for SARS-CoV-2. The limit of detection of our assay detecting the spike RBD was below 10 ng/mL.
Collapse
|
16
|
Nilghaz A, Mahdi Mousavi S, Amiri A, Tian J, Cao R, Wang X. Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5463-5476. [PMID: 35471937 DOI: 10.1021/acs.jafc.2c00089] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been identified as a fundamental surface-sensitive technique that boosts Raman scattering by adsorbing target molecules on specific surfaces. The application of SERS highly relies on the development of smart SERS substrates, and thus the fabrication of SERS substrates has been constantly improved. Herein, we investigate the impacts of different substrates on SERS technology including plasmonic metal nanoparticles, semiconductors, and hybrid systems in quantitative food safety and quality analysis. We first discuss the fundamentals, substrate designs, and applications of SERS. We then provide a critical review of the recent progress of SERS in its usage for screening and detecting chemical and biological contaminants including fungicides, herbicides, insecticides, hazardous colorants, and biohazards in food samples to assess the analytical capabilities of this technology. Finally, we investigate the future trends and provide practical techniques that could be used to fulfill the requirements for rapid analysis of food at a low cost.
Collapse
Affiliation(s)
- Azadeh Nilghaz
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| | | | - Amir Amiri
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Junfei Tian
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rong Cao
- Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 571199, China
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
17
|
Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater 2022; 144:1-14. [PMID: 35358734 DOI: 10.1016/j.actbio.2022.03.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
As nanoscale extracellular vesicles, exosomes are secreted by various cell types, and they are widely distributed in multiple biological fluids. Studies have shown that tumor-derived exosomes can carry a variety of primary tumor-specific molecules, which may represent a novel tool for the early detection of cancer. However, the clinical translation of exosomes remains a challenge due to the requirement of large quantities of samples when enriching the cancer-related exosomes in biological fluids, the insufficiency of traditional techniques for exosome subpopulations, and the complex exosome isolation of the current commercially available exosome phenotype profiling approaches. The evolving surface-enhanced Raman scattering (SERS) technology, with properties of unique optoelectronics, easy functionalization, and the particular interaction between light and nanoscale metallic materials, can achieve sensitive detection of exosomes without large quantities of samples and multiplexed phenotype profiling, providing a new mode of real-time and noninvasive analysis for cancer patients. In the present review, we mainly discussed exosome detection based on SERS, especially SERS immunoassay. The basic structure and function of exosomes were firstly introduced. Then, recent studies using the SERS technique for cancer detection were critically reviewed, which mainly included various SERS substrates, biological modification of SERS substrates, SERS-based exosome detection, and the combination of SERS and other technologies for cancer diagnosis. This review systematically discussed the essential aspects, limitations, and considerations of applying SERS technology in the detection and analysis of cancer-derived exosomes, which could provide a valuable reference for the early diagnosis of cancer through SERS technology. STATEMENT OF SIGNIFICANCE: Surface-enhanced Raman scattering (SERS) has been applied to exosomes detection to obtain better diagnostic results. In past three years, several reviews have been published in exosome detection, which were narrowly focus on methods of exosome detection. Selection and surface functionalization of the substrate and the combination detection with different methods based on SERS will provide new strategies for the detection of exosomes. This review will focus on the above aspects. This emerging detection method is constantly evolving and contributing to the early discovery of diseases in the future.
Collapse
|
18
|
Xu Y, Shi L, Jing X, Miao H, Zhao Y. SERS-Active Composites with Au-Ag Janus Nanoparticles/Perovskite in Immunoassays for Staphylococcus aureus Enterotoxins. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3293-3301. [PMID: 34994197 DOI: 10.1021/acsami.1c21063] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The accurate detection of Staphylococcus aureus enterotoxins (SEs) is vital for food safety owing to their high pathogenicity, which may be performed with surface-enhanced Raman scattering (SERS) if SERS-active nanostructures are used. Herein, a Au-Ag Janus nanoparticle (NPs)/perovskite composite-engineered SERS immunoassay was developed for SEC detection. Plasmonic Au-Ag Janus NPs demonstrated inherent SERS activity from the 2-mercaptobenzoimidazole-5-carboxylic acid ligands. CsPbBr3@mesoporous silica nanomaterials (MSNs) were prepared and transformed into CsPb2Br5@MSNs in the aqueous phase. Paired SEC antibody-antigen-driven plasmonic Au-Ag Janus NP-CsPb2Br5@MSN composites were prepared. They showed amplified SERS activity, attributed to the depressed plasmonic decay due to electromagnetic field enhancement and the electron transfer mechanism. A positive relationship was established between SERS signals of composites and the SEC concentration. An additive-free SERS immunoassay was developed for simple, sensitive, and reproducible SEC detection. This study will be extended to develop multiple additive-free SERS-active plasmonic NP/perovskite composites that will open up the possibility of exploring more SERS detection probes for food safety monitoring.
Collapse
Affiliation(s)
- Yinjuan Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lixia Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaohui Jing
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongyan Miao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
19
|
Pan R, Li G, Liu S, Zhang X, Liu J, Su Z, Wu Y. Emerging nanolabels-based immunoassays: Principle and applications in food safety. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Chiodini I, Gennari L. Grand Challenge in Adrenal Endocrinology: Is the Legacy of the Past a Challenge for the Future of Precision Medicine? Front Endocrinol (Lausanne) 2021; 12:747006. [PMID: 34539585 PMCID: PMC8446680 DOI: 10.3389/fendo.2021.747006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 01/06/2023] Open
Affiliation(s)
- Iacopo Chiodini
- Department of Endocrine and Metabolic Diseases, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
21
|
Preparation of a magnetic molecularly imprinted polymer for non-invasive determination of cortisol. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02659-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Qu Q, Wang J, Zeng C, Wang M, Qi W, He Z. AuNP array coated substrate for sensitive and homogeneous SERS-immunoassay detection of human immunoglobulin G. RSC Adv 2021; 11:22744-22750. [PMID: 35480431 PMCID: PMC9034334 DOI: 10.1039/d1ra02404c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
Owing to the high sensitivity, fast responsiveness and high specificity, immunoassays using surface-enhanced Raman scattering (SERS) as the readout signal displayed great potential in disease diagnosis. In this study, we developed a SERS-immunoassay method for the detection of human immunoglobulin G (HIgG). Upon involving well-ordered AuA on a SERSIA substrate, the LSPR effect was further enhanced to generate a strong and uniform Raman signal through the formation of sandwich structure with the addition of target HIgG and SERSIA tag. Optimization of the assay provided a wide linear range (0.1–200 μg mL−1) and low limit of detection (0.1 μg mL−1). In addition, the SERS-immunoassay method displayed excellent specificity and was homogeneous, which guaranteed the practical use of this method in the quantitative detection of HIgG. To validate this assay, human serum was analysed, which demonstrated the potential advantages of SERS-immunoassay technology in clinical diagnostics. An AuNP array coated substrate was developed for the SERS-immunoassay detection of human immunoglobulin G.![]()
Collapse
Affiliation(s)
- Qi Qu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China
| | - Jing Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China
| | - Chuan Zeng
- Technical Center of Zhuhai Entry-Exit Inspection and Quarantine Bureau Zhuhai P. R. China
| | - Mengfan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China .,Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin 300350 P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China .,The Co-Innovation Centre of Chemistry and Chemical Engineering of Tianjin Tianjin 300072 P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology Tianjin 300350 P. R. China
| | - Zhimin He
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University Tianjin 300350 P. R. China
| |
Collapse
|
23
|
Competitive immunosensor for sensitive and optical anti-interference detection of imidacloprid by surface-enhanced Raman scattering. Food Chem 2021; 358:129898. [PMID: 33933961 DOI: 10.1016/j.foodchem.2021.129898] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/04/2021] [Accepted: 04/16/2021] [Indexed: 11/23/2022]
Abstract
The sensitive detection of pesticides in complex environment is important but still challenging in presence of organic-rich water sample and food matrix. Herein, we reported a nitrile-mediated SERS immunosensor for sensitive and optical anti-interference determination of imidacloprid. Raman tag contained CN bond could provide a sharp characteristic peak in the Raman-silent spectral window (1800 ~ 2800 cm-1), which could resist the optical noises from the fingerprint region (<1800 cm-1). Aucore-Agshell bimetallic nanocuboid (AuNR@Ag) connected with antigen and Raman tag was used as Raman probe, while Fe3O4 magnetic nanoparticle functionalized with anti-imidacloprid antibody was applied as signal enhancer. Owing to the specific recognition ability between antigen and antibody, the competitive system with imidacloprid was formed. Under the optimal condition, the linear relationship was developed in the range of 10-400 nM. Finally, the SERS immunosensor was successfully applied to determine imidacloprid in real samples with recoveries from 96.8% to 100.5%.
Collapse
|
24
|
Mu Y, Liu M, Li J, Zhang X. Plasmonic hollow fibers with distributed inner-wall hotspots for direct SERS detection of flowing liquids. OPTICS LETTERS 2021; 46:1369-1372. [PMID: 33720189 DOI: 10.1364/ol.415733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Plasmonic hollow fibers are fabricated by coating silver-/ gold-alloyed nanoparticles (Ag-Au-ANPs) onto the inner walls of hollow fibers. In this Letter, the Ag-Au-ANPs were synthesized chemically and dissolved in acetone to prepare a colloidal solution, flowed subsequently through the hollow fiber multiple times so that a thin layer of colloidal Ag-Au-ANPs was produced on the inner wall. Annealing at 400°C enabled melting/aggregation of the metallic nanoparticles and consequent formation of closely arranged plasmonic nanostructures fixed solidly on the inner wall. A surface-enhanced Raman scattering (SERS) mechanism was thus established for the liquids flowing through the hollows. The SERS measurements show an enhancement factor >104 for such plasmonic hollow fibers in the direct detection of R6G/ethanol solutions. Confinement of the excitation laser energy inside the hollow space represents an additional contribution to the enhancement mechanism. This is a promising design for the direct on-site SERS detection of molecules in flowing liquids with low concentrations.
Collapse
|
25
|
Er E, Sánchez-Iglesias A, Silvestri A, Arnaiz B, Liz-Marzán LM, Prato M, Criado A. Metal Nanoparticles/MoS 2 Surface-Enhanced Raman Scattering-Based Sandwich Immunoassay for α-Fetoprotein Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8823-8831. [PMID: 33583183 PMCID: PMC7908013 DOI: 10.1021/acsami.0c22203] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 05/14/2023]
Abstract
The detection of cancer biomarkers at an early stage of tumor development is vital for effective diagnosis and treatment of cancer. Current diagnostic tools can often detect cancer only when the biomarker levels are already too high, so that the tumors have spread and treatments are less effective. It is urgent therefore to develop highly sensitive assays for the detection of such biomarkers at the lowest possible concentration. In this context, we developed a sandwich immunoassay based on surface-enhanced Raman scattering (SERS) for the ultrasensitive detection of α-fetoprotein (AFP), which is typically present in human serum as a biomarker indicative of early stages of hepatocellular carcinoma. In the immunoassay design, molybdenum disulfide (MoS2) modified with a monoclonal antibody was used as a capture probe for AFP. A secondary antibody linked to an SERS-encoded nanoparticle was employed as the Raman signal reporter, that is, the transducer for AFP detection. The sandwich immunocomplex "capture probe/target/SERS tag" was deposited on a silicon wafer and decorated with silver-coated gold nanocubes to increase the density of "hot spots" on the surface of the immunosensor. The developed SERS immunosensor exhibits a wide linear detection range (1 pg mL-1 to 10 ng mL-1) with a limit of detection as low as 0.03 pg mL-1 toward AFP with good reproducibility (RSD < 6%) and stability. These parameters demonstrate that the proposed immunosensor has the potential to be used as an analytical platform for the detection of early-stage cancer biomarkers in clinical applications.
Collapse
Affiliation(s)
- Engin Er
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Ana Sánchez-Iglesias
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
| | - Alessandro Silvestri
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Blanca Arnaiz
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
- Department
of Applied Chemistry, University of the
Basque Country, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, Universitá Degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Alejandro Criado
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| |
Collapse
|