1
|
Cho H, Kim I, Kim D. Implantable multilayer interdigitated triboelectric nanogenerator with nano-micro fibrous membrane and embedded switch-controlled capacitor for neck motion energy harvesting. Biosens Bioelectron 2025; 279:117389. [PMID: 40132284 DOI: 10.1016/j.bios.2025.117389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/28/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
Implantable electronic devices are increasingly recognized as indispensable technologies for a future-oriented humanity. The challenge of power supply is widely recognized as a significant hurdle, requiring interdisciplinary research efforts for its resolution. In this work, a multilayer interdigitated triboelectric nanogenerator (MI-TENG) is introduced, enhancing electrical output by laminating multiple layers of an interdigitated electrode structure. This structure enables multiple electrical output peaks from a single sliding reciprocating motion. For the contact layer, an electrospun nano-micro fibrous poly (methyl methacrylate) membrane is employed, resulting in a sixfold increase in open-circuit voltage (VOC) peak and an 8.2-fold increase in short-circuit current (ISC) peak. Notably, the current output at the end of each operation is amplified by integrating an embedded switch-controlled capacitor into the MI-TENG. The ISC peak reaches 1.51 mA, a 1454.7-fold increase compared to the original ISC peak of 1.038 μA. The voltage is regulated at 2.55 V, and an instantaneous power density of 1.18 W/m2 is achieved at 5 kΩ. The fabricated MI-TENG is applied in neck motion harvesting, where energy is scavenged from various movements on the sternohyoid region. Applications are extended beyond wearable electronics to implantable electronics in a porcine model, demonstrating high potential as a bioenergy harvesting electronic device through real-time energy storage and generation verification.
Collapse
Affiliation(s)
- Hyunwoo Cho
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104, Republic of Korea
| | - Inkyum Kim
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104, Republic of Korea
| | - Daewon Kim
- Department of Semiconductor Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104, Republic of Korea; Department of Electronic Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, 17104, Republic of Korea.
| |
Collapse
|
2
|
Kim D, Han CS. Self-Powered Strain Sensing via Ion Physisorption at PVC Ion Gel─Metal Interfaces. ACS Sens 2025. [PMID: 40434262 DOI: 10.1021/acssensors.5c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Self-powered strain sensors are crucial for wearable technology and low-power applications, where continuous operation with minimal energy is essential. Conventional sensors typically require external power, leading to bulky designs, limited battery life, and frequent maintenance, which hinder seamless integration into wearable devices. This study introduces an ion physisorption-based self-powered strain sensor (IPSS) enabling stable, strain-induced voltage measurements without external power. The IPSS leverages the physical adsorption of [EMIM] cations in a PVC ion gel onto electrode surfaces, generating a measurable voltage difference under strain. Potential of zero charge measurements confirmed selective ion adsorption based on electrode work functions, validating the IPSS's operating mechanism. Notably, the IPSS demonstrated a broad operational range of 0-200% strain with a linear response of 2.3 mV/% in the low-strain range (0-40%), highlighting its precision for wearable applications. Using the IPSS's stable, self-powered signal, a CNN-based gesture recognition model achieved 92% accuracy with just 0.00507 GFLOPs, showing the sensor's potential for low-power, high-accuracy applications in wearable and resource-limited environments.
Collapse
Affiliation(s)
- Dokyun Kim
- Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
- Somatosensory Molecular Biomimetics Research Center, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Chang-Soo Han
- Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
- Somatosensory Molecular Biomimetics Research Center, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
He J, Qian Z, Hu Z, Guo M. Transparent and Extremely Stretchable Piezoelectric Device for Sensors and Energy Harvesters. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40375384 DOI: 10.1021/acsami.5c05660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Piezoelectric devices have garnered significant interests due to their dual functionality as both sensors and energy harvesters, as well as the rapid development in Internet of Things (IoT) and artificial intelligence (AI). However, the fabrication of stretchable and transparent piezoelectric devices remains a great challenge, largely due to the inherent crystalline nature of piezoelectric materials and electrodes. In this work, for the first time, we report the fabrication of a highly transparent and stretchable piezoelectric device based entirely on polyurethane-urea (PUU) elastomers/composites. Specifically, nano ZnO hybrid hydrophobic PUU serves as the elastic inner piezoelectric layer; conductive ionic liquid composite hydrophilic PUU forms the middle electrode layer; and hydrophobic PUU elastomer acts as the outer encapsulation layer. The obtained device exhibits exceptional stretchability (elongation at break >1000%) and excellent optical transparency (∼86%). It can generate distinct, stable, and reliable output signals for monitoring both small- and large-scale mechanical motions along with a mechanical energy output of 48 μW m-2 at a pressure of 38.2 kPa, highlighting its outstanding sensing and energy harvesting capabilities. This work presents valuable new insights into the design and development of novel, reliable, transparent, and stretchable piezoelectric devices, paving the way for the new generation of flexible electronics.
Collapse
Affiliation(s)
- Jian He
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zihao Qian
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhijun Hu
- Key Laboratory of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Laboratory of Modern Optical Technologies of Education Ministry of China, School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Mingyu Guo
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Paul S, Pal A, Ghosh S, Datta A. Low-Power Piezoelectric Energy From Chiral Supramolecular Polymer of a Donor-Acceptor-Donor Conjugated π-System. Chemistry 2025; 31:e202500540. [PMID: 40170440 DOI: 10.1002/chem.202500540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Soft piezoelectric systems have high demands in flexible, shape conformable and biocompatible low-power electronics. This paper explores chiral supramolecular polymerization of an ambipolar donor-acceptor-donor (DAD)-type π-system showing emerging piezoelectric properties for harvesting micro energies. The DAD molecule is designed with two conjugated thiophene donors with a central naphthalene-diimide (NDI) acceptor chromophore to facilitate intra-molecular charge-transfer, evident from a prominent absorption band in the visible region. This chromophore is further appended with two chiral benzamide-wedges for homochiral supramolecular polymerization. The ambipolar character of the chiral DAD chromophore is manifest from the cyclic voltammogram. Extended H-bonding among the amide groups leads to homochiral supramolecular polymerization in methyl-cyclohexane, which is retained in the solid film. The impeccable piezoelectricity in poled DAD film revealed a d33 ∼ 7 pm/V as measured by the piezoforce microscopy. Poled piezo DAD devices under optimized periodic external impact force, frequencies and supplied electric field generate a viable output voltage and current density of 1.3 V, 0.8 µA/cm2, and Poutput ∼ 1.6 µW/cm2, respectively. As a proof-of-concept demonstration, stacked and poled supramolecular π-conjugated DAD devices are shown to viably illuminate a light emitting diode through charging a series of micro capacitors, indicating the potential utility for low power technologies.
Collapse
Affiliation(s)
- Swadesh Paul
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India
| | - Aritri Pal
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India
- Technical Research Centre, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India
| | - Anuja Datta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India
- Technical Research Centre, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India
| |
Collapse
|
5
|
Kim JH, Yoon H, Viswanath S, Dagdeviren C. Conformable Piezoelectric Devices and Systems for Advanced Wearable and Implantable Biomedical Applications. Annu Rev Biomed Eng 2025; 27:255-282. [PMID: 40310886 DOI: 10.1146/annurev-bioeng-020524-121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
With increasing demands for continuous health monitoring remotely, wearable and implantable devices have attracted considerable interest. To fulfill such demands, novel materials and device structures have been investigated, since commercial biomedical devices are not compatible with flexible and conformable form factors needed for soft tissue monitoring and intervention. Among various materials, piezoelectric materials have been widely adopted for multiple applications including sensing, energy harvesting, neurostimulation, drug delivery, and ultrasound imaging owing to their unique electromechanical conversion properties. In this review, we provide a comprehensive overview of piezoelectric-based wearable and implantable biomedical devices. We first provide the basic principles of piezoelectric devices and device design strategies for wearable and implantable form factors. Then, we discuss various state-of-the-art applications of wearable and implantable piezoelectric devices and their design strategies. Finally, we demonstrate several challenges and outlooks for designing piezoelectric-based conformable biomedical devices.
Collapse
Affiliation(s)
- Jin-Hoon Kim
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Hyeokjun Yoon
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Shrihari Viswanath
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
6
|
Wang F, Song Z, Cai X, Guo K, Pan X, Ren C, Li B. External strategies for enhanced sensing performance of self-powered polyvinylidene fluoride-based sensors. NANOSCALE 2025; 17:6981-6992. [PMID: 39980468 DOI: 10.1039/d4nr05200e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The era of the Internet of Things has created an increasing demand for self-powered, flexible sensors. Among various intelligent materials, poly(vinylidene fluoride) (PVDF) has emerged as a promising candidate due to its flexibility, processability, biocompatibility, and unique electroactive properties. PVDF's distinctive piezoelectric, pyroelectric and triboelectric characteristics make it particularly suitable for self-powered flexible sensing applications. While research has primarily focused on enhancing the electroactive β phase, PVDF-based sensors still face limitations in their piezoelectric and pyroelectric performance. External strategies such as electrode design, stress/heat transfer improvements, microstructure optimization, and multifunctional synergy show great potential for improving sensing performance. Although numerous reviews address PVDF's polar phase enhancement, there is limited literature overviewing external strategies for performance optimization. This review focuses on external strategies for enhancing the sensing performance of PVDF-based sensors and their emerging applications. It also addresses practical challenges and future directions in PVDF-based sensor development.
Collapse
Affiliation(s)
- Fang Wang
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Zixuan Song
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xinchen Cai
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Kai Guo
- School of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xiaoyu Pan
- College of Integrated Circuits, Nanjing University of Aeronautics and Astronautics, and Key Laboratory of Aerospace Integrated Circuits and Microsystem, Ministry of Industry and Information Technology, Nanjing 211106, China.
| | - Chuanlai Ren
- Department of Materials Science and Engineering and Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Li
- College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, China.
- Department of Materials Science and Engineering and Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
7
|
Zhuang Y, Zhang Q, Wan Z, Geng H, Xue Z, Cao H. Self-powered biomedical devices: biology, materials, and their interfaces. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:022003. [PMID: 39879660 DOI: 10.1088/2516-1091/adaff2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/29/2025] [Indexed: 01/31/2025]
Abstract
Integrating biomedical electronic devices holds profound promise for advancements in healthcare and enhancing individuals' quality of life. However, the persistent challenges associated with the traditional batteries' limited lifespan and bulkiness hinder these devices' long-term functionality and consistent power supply. Here, we delve into the biology and material interfaces in self-powered medical devices by summarizing the intrinsic electric demands in humans, analyzing material and biological mechanisms for electricity generation and storage, and discussing the pathways toward self-chargeable powering. As a result, the current challenges in material designs and biological integrations emerged to shape the future directions in advancing self-powered medical devices. This paper calls on the community to integrate biology and material science to develop self-powering medical devices and improve their clinical prospects.
Collapse
Affiliation(s)
- Yuan Zhuang
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Quan Zhang
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhanxun Wan
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hao Geng
- Advanced Carbon Materials Research Center, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Zhongying Xue
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Huiliang Cao
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
8
|
Zeng X, Wang Y, Morishima K. Asymmetric-bifurcation snapping, all-or-none motion of Venus flytrap. Sci Rep 2025; 15:4805. [PMID: 39922820 PMCID: PMC11807200 DOI: 10.1038/s41598-024-82156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/03/2024] [Indexed: 02/10/2025] Open
Abstract
The Venus flytrap is a carnivorous plant that catches insects by snapping rapidly and reopening slowly. To understand the mechanism underlying this asymmetrically reversible motion, a three-dimensional laser profiler was used to measure both static morphological information and dynamic movements (500 frames per second) of the Venus flytrap, including its rapid closure and slow re-opening. The mean-curvature differences between the open and closed lobes were recorded and used for morphology and energy evaluations. The effects of geometric parameters such as the length, width, height, and thickness of the lobes on the closing time were analyzed, and the all-or-none motion of the Venus flytrap was examined. Moreover, a mathematical asymmetric-bifurcation buckling model was developed. The Venus flytrap has asymmetric energy states for the closing and opening conditions; therefore, storage of a larger amount of energy makes the re-opening motion slower. These pre-programmed movements of plants can facilitate the development of more intelligent soft robots.
Collapse
Affiliation(s)
- Xiangli Zeng
- Department of Mechanical Engineering, Osaka University, Osaka, Japan
| | - Yingzhe Wang
- Department of Mechanical Engineering, Osaka University, Osaka, Japan
| | - Keisuke Morishima
- Department of Mechanical Engineering, Osaka University, Osaka, Japan.
| |
Collapse
|
9
|
Wang Y, Sun M, Kwon SH, Dong L. Advancements in flexible biomechanical energy harvesting for smart health applications. Chem Commun (Camb) 2025; 61:2424-2449. [PMID: 39744849 DOI: 10.1039/d4cc05917d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Advancing flexible electronics enables timely smart health management and diagnostic interventions. However, current health electronics typically rely on replaceable batteries or external power sources, requiring direct contact with the human skin or organs. This setup often results in rigid and bulky devices, reducing user comfort during long-term use. Flexible biomechanical energy harvesting technology, based on triboelectric or piezoelectric strategies, offers a promising approach for continuous and comfortable smart health applications, providing a sustainable power supply and self-powered sensing. This review systematically examines biomechanical energy sources around the human body, explores various energy harvesting mechanisms and their applications in smart health, and concludes with insights and future perspectives in this field.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Mengdie Sun
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Sun Hwa Kwon
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Lin Dong
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
10
|
Ge W, Wei Q, Wang X, Lu C, Han H, Liu Y. Cellulose nanocrystal composite films for contactless moisture-electric conversion. RSC Adv 2025; 15:2651-2656. [PMID: 39871969 PMCID: PMC11770411 DOI: 10.1039/d4ra08459d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
The ability to convert moisture signals into electrical signals through contactless control underpins a wide range of applications, including health monitoring, disaster warning, and energy harvesting. Despite its potential, the effective utilization of low-grade energy remains challenging, as it often requires complex device architectures that limit scalability and integration, particularly in wearable technologies. Here, we present a soft, flexible moisture-electric converter made from cellulose nanocrystals and polyvinyl alcohol composite films, designed for a novel touchless interactive platform. The device autonomously generates an electric output voltage of 200-700 mV in response to ambient moisture variations without requiring an external energy source. Its design, featuring a soft-adhered conductive carbon strip coupled with the composite film, provides high flexibility and portability. This configuration facilitates the creation of a non-contact control interface that seamlessly interacts with biological moisture from the human body, demonstrated by a mask that detects breathing conditions and a panel that measures contact distance. These advancements offer a promising pathway for developing flexible, intelligent electronic devices for wearable and touchless technologies.
Collapse
Affiliation(s)
- Wenna Ge
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 P. R. China
| | - Quanmao Wei
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 P. R. China
| | - Xu Wang
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 P. R. China
| | - Chenguang Lu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 P. R. China
| | - Hu Han
- School of Mechanical & Vehicle Engineering, Linyi University Linyi Shandong 276000 P. R. China
| | - Yahua Liu
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 P. R. China
- Department of Anaesthesiology, Central Hospital of Dalian University of Technology Dalian 116033 P. R. China
| |
Collapse
|
11
|
Zhang J, Liu C, Li J, Yu T, Ruan J, Yang F. Advanced Piezoelectric Materials, Devices, and Systems for Orthopedic Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410400. [PMID: 39665130 PMCID: PMC11744659 DOI: 10.1002/advs.202410400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Harnessing the robust electromechanical couplings, piezoelectric materials not only enable efficient bio-energy harvesting, physiological sensing and actuating but also open enormous opportunities for therapeutic treatments through surface polarization directly interacting with electroactive cells, tissues, and organs. Known for its highly oriented and hierarchical structure, collagen in natural bones produces local electrical signals to stimulate osteoblasts and promote bone formation, inspiring the application of piezoelectric materials in orthopedic medicine. Recent studies showed that piezoelectricity can impact microenvironments by regulating molecular sensors including ion channels, cytoskeletal elements, cell adhesion proteins, and other signaling pathways. This review thus focuses on discussing the pioneering applications of piezoelectricity in the diagnosis and treatment of orthopedic diseases, aiming to offer valuable insights for advancing next-generation medical technologies. Beginning with an introduction to the principles of piezoelectricity and various piezoelectric materials, this review paper delves into the mechanisms through which piezoelectric materials accelerated osteogenesis. A comprehensive overview of piezoelectric materials, devices, and systems enhancing bone tissue repair, alleviating inflammation at infection sites, and monitoring bone health is then provided, respectively. Finally, the major challenges faced by applications of piezoelectricity in orthopedic conditions are thoroughly discussed, along with a critical outlook on future development trends.
Collapse
Affiliation(s)
- Jingkai Zhang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chang Liu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Jun Li
- Department of Materials Science and EngineeringUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Tao Yu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jing Ruan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai JiaoTong University School of MedicineShanghai200011China
| | - Fan Yang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Research Institute of Frontier ScienceSouthwest Jiaotong UniversityChengduSichuan610031China
| |
Collapse
|
12
|
Gao X, Zheng M, Hou B, Wu J, Zhu M, Zhang Y, Wang K, Han B. Recent Progress in the Auxiliary Phase Enhanced Flexible Piezocomposites. ENERGY & ENVIRONMENTAL MATERIALS 2025; 8. [DOI: 10.1002/eem2.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/07/2024] [Indexed: 10/28/2024]
Abstract
Piezocomposites with both flexibility and electromechanical conversion characteristics have been widely applied in various fields, including sensors, energy harvesting, catalysis, and biomedical treatment. In the composition of piezocomposites or their preparation process, a category of materials is commonly employed that do not possess piezoelectric properties themselves but play a crucial role in performance enhancement. In this review, the concept of auxiliary phase is first proposed to define these materials, aiming to provide a new perspective for designing high‐performance piezocomposites. Three different categories of modulation forms of auxiliary phase in piezocomposites are systematically summarized, including the modification of piezo‐matrix, the modification of piezo‐fillers, and the construction of special structures. Each category emphasizes the role of the auxiliary phase and systematically discusses the latest advancements and the physical mechanisms of the auxiliary phase enhanced flexible piezocomposites. Finally, a summary and future outlook of piezocomposites based on the auxiliary phase are provided.
Collapse
Affiliation(s)
- Xin Gao
- College of Materials Science and Engineering Beijing University of Technology Beijing 100124 China
| | - Mupeng Zheng
- College of Materials Science and Engineering Beijing University of Technology Beijing 100124 China
| | - Boyue Hou
- School of Basic Medical Sciences Capital Medical University Beijing 100069 China
| | - Junshu Wu
- College of Materials Science and Engineering Beijing University of Technology Beijing 100124 China
| | - Mankang Zhu
- College of Materials Science and Engineering Beijing University of Technology Beijing 100124 China
| | - Yunfan Zhang
- Department of Orthodontics Peking University School and Hospital of Stomatology & National Center of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & NMPA Key Laboratory for Dental Materials Beijing 100089 China
| | - Ke Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Bing Han
- Department of Orthodontics Peking University School and Hospital of Stomatology & National Center of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & NMPA Key Laboratory for Dental Materials Beijing 100089 China
| |
Collapse
|
13
|
Yea J, Ha J, Lim KS, Lee H, Oh S, Jekal J, Yu TS, Jung HH, Park JU, Lee T, Jeong JW, Kim HJ, Keum H, Lee YK, Jang KI. Curvature-Specific Coupling Electrode Design for a Stretchable Three-Dimensional Inorganic Piezoelectric Nanogenerator. ACS NANO 2024; 18:34096-34106. [PMID: 39636428 DOI: 10.1021/acsnano.4c09933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Structures such as 3D buckling have been widely used to impart stretchability to devices. However, these structures have limitations when applied to piezoelectric devices due to the uneven distribution of internal strain during deformation. When strains with opposite directions simultaneously affect piezoelectric materials, the electric output can decrease due to cancellation. Here, we report an electrode design tailored to the direction of strain and a circuit configuration that prevents electric output cancellation. These designs not only provide stretchability to piezoelectric nanogenerators (PENGs) but also effectively minimize electric output loss, achieving stretchable PENGs with minimal energy loss. These improvements were demonstrated using an inorganic piezoelectric material (PZT thin film) with a high piezoelectric coefficient, achieving a substantial maximum output power of 8.34 mW/cm3. Theoretical modeling of the coupling between mechanical and electrical properties demonstrates the dynamics of energy harvesting, emphasizing the electrode design. In vitro and in vivo experiments validate the device's effectiveness in biomechanical energy harvesting. These results represent a significant advancement in stretchable PENGs, offering robust and efficient solutions for wearable electronics and biomedical devices.
Collapse
Affiliation(s)
- Junwoo Yea
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jeongdae Ha
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Hyeokjun Lee
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Saehyuck Oh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Janghwan Jekal
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Tae Sang Yu
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Han Hee Jung
- Department of Information and Communication Engineering, Hannam University, Daejeon 34430, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Taeyoon Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hoe Joon Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hohyun Keum
- Industrial Transformation Technology Department, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Yoon Kyeung Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
14
|
Zhao J, Yang Y, Bo L, Qi J, Zhu Y. Research Progress on Applying Intelligent Sensors in Sports Science. SENSORS (BASEL, SWITZERLAND) 2024; 24:7338. [PMID: 39599115 PMCID: PMC11598178 DOI: 10.3390/s24227338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Smart sensors represent a significant advancement in modern sports science, and their effective use enhances the ability to monitor and analyze athlete performance in real time. The integration of these sensors has enhanced the accuracy of data collection related to physical activity, biomechanics, and physiological responses, thus providing valuable insights for performance optimization, injury prevention, and rehabilitation. This paper provides an overview of the research progress in the application of smart sensors in the field of sports science; highlights the current advances, challenges, and future directions in the deployment of smart sensor technologies; and anticipates their transformative impact on sports science and athlete development.
Collapse
Affiliation(s)
- Jingjing Zhao
- Physical Education Teaching Department, China University of Petroleum (East China), Qingdao 266580, China;
| | - Yulong Yang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.Y.); (Y.Z.)
| | - Leng Bo
- College of Education, Beijing Sports University, Beijing 100091, China;
| | - Jiantao Qi
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.Y.); (Y.Z.)
| | - Yongqiang Zhu
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (Y.Y.); (Y.Z.)
| |
Collapse
|
15
|
Yang L, Guo L, Wang Z, Meng C, Wu J, Chen X, Musa AA, Jiang X, Cheng H. Stretchable Triboelectric Nanogenerator Based on Liquid Metal with Varying Phases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405792. [PMID: 39136149 PMCID: PMC11497018 DOI: 10.1002/advs.202405792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Indexed: 10/25/2024]
Abstract
Stretchable triboelectric nanogenerators (TENGs) represent a new class of energy-harvesting devices for powering wearable devices. However, most of them are associated with poor stretchability, low stability, and limited substrate material choices. This work presents the design and demonstration of highly stretchable and stable TENGs based on liquid metalel ectrodes with different phases. The conductive and fluidic properties of eutectic gallium-indium (EGaIn) in the serpentine microfluidic channel ensure the robust performance of the EGaIn-based TENG upon stretching over several hundred percent. The bi-phasic EGaIn (bGaIn) from oxidation lowers surface tension and increases adhesion for printing on diverse substrates with high output performance parameters. The optimization of the electrode shapes in the bGaIn-based TENGs can reduce the device footprint and weight, while enhancing stretchability. The applications of the EGaIn- and bGaIn-based TENG include smart elastic bands for human movement monitoring and smart carpets with integrated data transmission/processing modules for headcount monitoring/control. Combining the concept of origami in the paper-based bGaIn TENG can reduce the device footprint to improve output performance per unit area. The integration of bGaIn-TENG on a self-healing polymer substrate with corrosion resistance against acidic and alkaline solutions further facilitates its use in various challenging and extreme environments.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentSchool of Health Sciences and Biomedical EngineeringHebei University of TechnologyTianjin300130China
| | - Langang Guo
- State Key Laboratory for Reliability and Intelligence of Electrical EquipmentHebei Key Laboratory of Smart Sensing and Human‐Robot InteractionSchool of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Zihan Wang
- State Key Laboratory for Reliability and Intelligence of Electrical EquipmentHebei Key Laboratory of Smart Sensing and Human‐Robot InteractionSchool of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Chuizhou Meng
- State Key Laboratory for Reliability and Intelligence of Electrical EquipmentHebei Key Laboratory of Smart Sensing and Human‐Robot InteractionSchool of Mechanical EngineeringHebei University of TechnologyTianjin300401China
| | - Jinrong Wu
- State Key Laboratory of Polymer Material EngineeringCollege of Polymer Science and EngineeringSichuan UniversityChengdu610065China
| | - Xue Chen
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentKey Laboratory of Bioelectromagnetics and Neuroengineering of Hebei ProvinceSchool of Electrical EngineeringHebei University of TechnologyTianjin300130China
| | - Abdullah Abu Musa
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity Park16802USA
| | - Xiaoqi Jiang
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentSchool of Health Sciences and Biomedical EngineeringHebei University of TechnologyTianjin300130China
| | - Huanyu Cheng
- Department of Engineering Science and MechanicsThe Pennsylvania State UniversityUniversity Park16802USA
| |
Collapse
|
16
|
Chen Y, Zhang X, Lu C. Flexible piezoelectric materials and strain sensors for wearable electronics and artificial intelligence applications. Chem Sci 2024:d4sc05166a. [PMID: 39355228 PMCID: PMC11440360 DOI: 10.1039/d4sc05166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/14/2024] [Indexed: 10/03/2024] Open
Abstract
With the rapid development of artificial intelligence, the applications of flexible piezoelectric sensors in health monitoring and human-machine interaction have attracted increasing attention. Recent advances in flexible materials and fabrication technologies have promoted practical applications of wearable devices, enabling their assembly in various forms such as ultra-thin films, electronic skins and electronic tattoos. These piezoelectric sensors meet the requirements of high integration, miniaturization and low power consumption, while simultaneously maintaining their unique sensing performance advantages. This review provides a comprehensive overview of cutting-edge research studies on enhanced wearable piezoelectric sensors. Promising piezoelectric polymer materials are highlighted, including polyvinylidene fluoride and conductive hydrogels. Material engineering strategies for improving sensitivity, cycle life, biocompatibility, and processability are summarized and discussed focusing on filler doping, fabrication techniques optimization, and microstructure engineering. Additionally, this review presents representative application cases of smart piezoelectric sensors in health monitoring and human-machine interaction. Finally, critical challenges and promising principles concerning advanced manufacture, biological safety and function integration are discussed to shed light on future directions in the field of piezoelectrics.
Collapse
Affiliation(s)
- Yanyu Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials, Soochow University Suzhou Jiangsu 215123 China
| | - Chao Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
17
|
He QW, Wang JH, Zhu DY, Tang DS, Lv Z, Guo F, Wang XC. Strong Vertical Piezoelectricity and Broad-pH-Value Photocatalyst in Ferroelastic Y 2Se 2BrF Monolayer. NANO LETTERS 2024; 24:8979-8987. [PMID: 38994924 DOI: 10.1021/acs.nanolett.4c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
With the development of miniaturized devices, there is an increasing demand for 2D multifunctional materials. Six ferroelastic semiconductors, Y2Se2XX' (X, X' = I, Br, Cl, or F; X ≠ X') monolayers, are theoretically predicted here. Their in-plane anisotropic band structure, elastic and piezoelectric properties can be switched by ferroelastic strain. Moderate energy barriers can prevent the undesired ferroelastic switching that minor interferences produce. These monolayers exhibit high carrier mobilities (up to 104 cm2 V-1 s-1) with strong in-plane anisotropy. Furthermore, their wide bandgaps and high potential differences make them broad-pH-value and high-performance photocatalysts at pH value of 0-14. Strikingly, Y2Se2BrF possesses outstanding d33 (d33 = -405.97 pm/V), greatly outperforming CuInP2S6 by 4.26 times. Overall, the nano Y2Se2BrF is a hopeful candidate for multifunctional devices to generate a direct current and achieve solar-free photocatalysis. This work provides a new paradigm for the design of multifunctional energy materials.
Collapse
Affiliation(s)
- Qi-Wen He
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Jun-Hui Wang
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Dan-Yang Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Dai-Song Tang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Zengtao Lv
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Feng Guo
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Xiao-Chun Wang
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
18
|
Yang R, Ma Y, Cui J, Liu M, Wu Y, Zheng H. Nano PDA@Tur-Modified Piezoelectric Sensors for Enhanced Sensitivity and Energy Harvesting. ACS Sens 2024; 9:3137-3149. [PMID: 38812068 DOI: 10.1021/acssensors.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Tourmaline is known for its natural negative ion effect and far-infrared radiation function, which promote human blood circulation, relieve pain, regulate the endocrine system, and enhance immunity and other functions. These functions motivate the use of this material for enhanced sensitivity of wearable sensors. In this work, taking advantage of the unique multifunctions of tourmaline nanoparticles (Tur), highly boosted piezoelectricity was achieved by incorporating polydopamine (PDA)-modified Tur in PVDF. The PDA@Tur nanofillers not only effectively increased the β-phase content of PVDF but also played a major role in significantly enhancing piezoelectricity, wettability, elasticity, air permeability, and stability of the piezoelectric sensors. Especially, the maximum output voltage of the fiber membrane with 0.5 wt % PDA@Tur reached 31.0 V, being 4 times that of the output voltage of the pure PVDF fiber membrane. Meanwhile, the sensitivity reached 0.7011 V/kPa at 1-10 N, which was 3.6 times that of pure PVDF film (0.196 V/kPa). The power intensity reached 8 μW/cm2, being 5.55 times that of the pristine PVDF PENG (1.44 μW/cm2), and the piezoelectric coefficient from d33 m/PFM is 5.5 pC/N, higher than that of pristine PVDF PENG (3.1 pC/N). Output signal graphs corresponding to flapping, finger, knee, and elbow movements were detected. The response/recovery time of the sensor device was 24/19 ms. The piezoelectric nanogenerator (PENG) was capable of charging multiple capacitors to 2 V within a short time and lighting up 15 light-emitting diodes bulbs (LEDs) simultaneously with a single beat. In addition, a 4 × 4 row-column multiplexed sensor array was made of PENGs, which showed distinct responses to different stress areas in different sensor modules. This study demonstrated high-performance PDA@Tur PVDF-based PENG being capable of energy harvesting and sensing, providing a guideline for the design and buildup of wearable self-powered devices in healthcare and human-computer interaction.
Collapse
Affiliation(s)
- Ruiyong Yang
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yulin Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jinghui Cui
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Mingming Liu
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yongling Wu
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Hongyu Zheng
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| |
Collapse
|
19
|
Tian G, Deng W, Yang T, Zhang J, Xu T, Xiong D, Lan B, Wang S, Sun Y, Ao Y, Huang L, Liu Y, Li X, Jin L, Yang W. Hierarchical Piezoelectric Composites for Noninvasive Continuous Cardiovascular Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313612. [PMID: 38574762 DOI: 10.1002/adma.202313612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Continuous monitoring of blood pressure (BP) and multiparametric analysis of cardiac functions are crucial for the early diagnosis and therapy of cardiovascular diseases. However, existing monitoring approaches often suffer from bulky and intrusive apparatus, cumbersome testing procedures, and challenging data processing, hampering their applications in continuous monitoring. Here, a heterogeneously hierarchical piezoelectric composite is introduced for wearable continuous BP and cardiac function monitoring, overcoming the rigidity of ceramic and the insensitivity of polymer. By optimizing the hierarchical structure and components of the composite, the developed piezoelectric sensor delivers impressive performances, ensuring continuous and accurate monitoring of BP at Grade A level. Furthermore, the hemodynamic parameters are extracted from the detected signals, such as local pulse wave velocity, cardiac output, and stroke volume, all of which are in alignment with clinical results. Finally, the all-day tracking of cardiac function parameters validates the reliability and stability of the developed sensor, highlighting its potential for personalized healthcare systems, particularly in early diagnosis and timely intervention of cardiovascular disease.
Collapse
Affiliation(s)
- Guo Tian
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Weili Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tao Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Jieling Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tianpei Xu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Da Xiong
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Boling Lan
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shenglong Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yue Sun
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yong Ao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Longchao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yang Liu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xuelan Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Long Jin
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Research Institute of Frontier Science, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
20
|
Hatami-Fard G, Anastasova-Ivanova S. Advancements in Cerebrospinal Fluid Biosensors: Bridging the Gap from Early Diagnosis to the Detection of Rare Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:3294. [PMID: 38894085 PMCID: PMC11174891 DOI: 10.3390/s24113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Cerebrospinal fluid (CSF) is a body fluid that can be used for the diagnosis of various diseases. However, CSF collection requires an invasive and painful procedure called a lumbar puncture (LP). This procedure is applied to any patient with a known risk of central nervous system (CNS) damage or neurodegenerative disease, regardless of their age range. Hence, this can be a very painful procedure, especially in infants and elderly patients. On the other hand, the detection of disease biomarkers in CSF makes diagnoses as accurate as possible. This review aims to explore novel electrochemical biosensing platforms that have impacted biomedical science. Biosensors have emerged as techniques to accelerate the detection of known biomarkers in body fluids such as CSF. Biosensors can be designed and modified in various ways and shapes according to their ultimate applications to detect and quantify biomarkers of interest. This process can also significantly influence the detection and diagnosis of CSF. Hence, it is important to understand the role of this technology in the rapidly progressing field of biomedical science.
Collapse
Affiliation(s)
- Ghazal Hatami-Fard
- The Hamlyn Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
21
|
Sun L, He L, Yu G, Zheng X, Wang H, Yu D, Lin J. Recent developments in wearable piezoelectric energy harvesters. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:041501. [PMID: 38607263 DOI: 10.1063/5.0159073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Wearable piezoelectric energy harvesters (WPEHs) have gained popularity and made significant development in recent decades. The harvester is logically built by the movement patterns of various portions of the human body to harvest the movement energy and immediately convert it into usable electrical energy. To directly power different microelectronic devices on the human body, a self-powered device that does not require an additional power supply is being created. This Review provides an in-depth review of WPEHs, explaining the fundamental concepts of piezoelectric technology and the materials employed in numerous widely used piezoelectric components. The harvesters are classed according to the movement characteristics of several portions of a person's body, such as pulses, joints, skin, and shoes (feet). Each technique is introduced, followed by extensive analysis. Some harvesters are compared, and the benefits and drawbacks of each technique are discussed. Finally, this Review presents future goals and objectives for WPEH improvement, and it will aid researchers in understanding WPEH to the point of more efficient wireless energy delivery to wearable electronic components.
Collapse
Affiliation(s)
- Lei Sun
- Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing (Jilin Province), School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Lipeng He
- Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing (Jilin Province), School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, Changchun, Jilin 130022, China
| | - Gang Yu
- Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing (Jilin Province), School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Xiaotian Zheng
- Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing (Jilin Province), School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Hongxin Wang
- Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing (Jilin Province), School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Dahai Yu
- School of Electronic and Information, Changchun Guanghua University, Changchun, Jilin 130033, China
| | - Jieqiong Lin
- Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing (Jilin Province), School of Mechatronic Engineering, Changchun University of Technology, Changchun, Jilin 130012, China
| |
Collapse
|
22
|
Che L, Hu X, Xu H, Liu Y, Lv C, Kang Z, Wu M, Wen R, Wu H, Cui J, Li K, Qi G, Luo Y, Ma X, Sun F, Li M, Liu J. Soap Film Transfer Printing for Ultrathin Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308312. [PMID: 37992249 DOI: 10.1002/smll.202308312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Flexible and stretchable electronics have attractive applications inaccessible to conventional rigid electronics. However, the mainstream transfer printing techniques have challenges for electronic films in terms of thickness and size and limitations for target substrates in terms of curvature, depth, and interfacial adhesion. Here a facile, damage-free, and contamination-free soap film transfer printing technique is reported that enables the wrinkle-free transfer of ultrathin electronic films, precise alignment in a transparent manner, and conformal and adhesion-independent printing onto various substrates, including those too topographically and adhesively challenging by existing methods. In principle, not only the pattern, resolution, and thickness of transferred films, but also the curvature, depth, and adhesion of target substrates are unlimited, while the size of transferred films can be as high as meter-scale. To demonstrate the capabilities of soap film transfer printing, pre-fabricated ultrathin electronics with multiple patterns, single micron resolution, sub-micron thickness, and centimeter size are conformably integrated onto the ultrathin web, ultra-soft cotton, DVD-R disk with the minimum radius of curvature of 131 nm, interior cavity of Klein bottle and dandelion with ultralow adhesion. The printed ultrathin sensors show superior conformabilities and robust adhesion, leading to engineering opportunities including electrocardiogram (ECG) signal acquisition and temperature measurement in aqueous environments.
Collapse
Affiliation(s)
- Lixuan Che
- State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaoguang Hu
- State Key Laboratory of High-performance Precision Manufacturing, Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Hechen Xu
- Department of Engineering Mechanics and Center for Nano and Micro Mechanics, AML, Tsinghua University, Beijing, 100084, China
| | - Yuanbo Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Dalian University of Technology, Dalian, 116024, China
| | - Cunjing Lv
- Department of Engineering Mechanics and Center for Nano and Micro Mechanics, AML, Tsinghua University, Beijing, 100084, China
| | - Zhan Kang
- State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Mengxi Wu
- State Key Laboratory of High-performance Precision Manufacturing, Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Rongfu Wen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Dalian University of Technology, Dalian, 116024, China
| | - Huaping Wu
- College of Mechanical Engineering, Zhejiang University of Technology, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Hangzhou, 310032, China
| | - Jiayi Cui
- State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Kun Li
- Department of Engineering Mechanics and Center for Nano and Micro Mechanics, AML, Tsinghua University, Beijing, 100084, China
| | - Guangliang Qi
- State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yangjun Luo
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Dalian University of Technology, Dalian, 116024, China
| | - Feiyi Sun
- Department of Medical Ultrasound, Health Medical Department, Central Hospital of Dalian University of Technology, Dalian, 116024, China
| | - Ming Li
- State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Junshan Liu
- State Key Laboratory of High-performance Precision Manufacturing, Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
23
|
Li X, Qiu J, Cui H, Chen X, Yu J, Zheng K. Machine Learning Accelerated Discovery of Functional MXenes with Giant Piezoelectric Coefficients. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38421155 DOI: 10.1021/acsami.3c14610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Efficient and rapid screening of target materials in a vast material space remains a significant challenge in the field of materials science. In this study, first-principles calculations and machine learning algorithms are performed to search for high out-of-plane piezoelectric stress coefficient materials in the MXene functional database among the 1757 groups of noncentrosymmetric MXenes with nonzero band gaps, which meet the criteria for piezoelectric properties. For the monatomic MXene testing set, the random forest regression (RFR), gradient boosting regression (GBR), support vector regression (SVR), and multilayer perceptron regression (MLPR) exhibit R2 values of 0.80, 0.80, 0.89, and 0.87, respectively. Expanding our analysis to the entire MXene data set, the best active learning cycle finds more than 140 and 22 MXenes with out-of-plane piezoelectric stress coefficients (e31) exceeding 3 × 10-10 and 5 × 10-10 C/m, respectively. Moreover, thermodynamic stabilities were confirmed in 22 MXenes with giant piezoelectric stress coefficients and 9 MXenes with both large in-plane (d11 > 15 pm/V) and out-of-plane (d31 > 2 pm/V) piezoelectric strain coefficients. These findings highlight the remarkable capabilities of machine learning and its optimization algorithms in accelerating the discovery of novel piezoelectric materials, and MXene materials emerge as highly promising candidates for piezoelectric materials.
Collapse
Affiliation(s)
- Xiaowen Li
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
| | - Jian Qiu
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
| | - Heping Cui
- The Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074 Aachen, Germany
| | - Xianping Chen
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
- School of Electrical Engineering and State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, 400044 Chongqing, China
| | - Jiabing Yu
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
| | - Kai Zheng
- College of Optoelectronic Engineering and Key Laboratory of Optoelectronic Technology & Systems Education Ministry of China, Chongqing University, 400044 Chongqing, China
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Lei X, Du H, Lu P, Zhang H, Zhang M. Na xSb Alloy-Based Low-Frequency Mechanical Energy Harvesters for Virtual Taste Sensations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6048-6056. [PMID: 38286994 DOI: 10.1021/acsami.3c14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Batteries can be activated by external mechanical force and generate current, enabling a smart class of electrochemical-mechanical strain energy harvesters therefrom. Here, we have developed a NaxSb alloy-based harvester that is able to electrochemically convert low-frequency bending or pressing mechanical energy into electrical energy. The device is designed as a flexible symmetric cell incorporating two sodiated antimony nanoflake electrodes, whose peak power and energy output are more than twice those of other sodium-alloyed electrochemical-mechanical strain energy harvesters reported. We demonstrate that the open-circuit voltage of the device is an asymptotic function of the curvature radius in the bending mode and a linear function of pressure in the pressing mode. Taking advantage of the tunability of voltage, we present a new technology that simulates various tastes by releasing low-voltage electrical signals from the harvester. This technology can not only help people with impaired taste but also be integrated into a virtual reality system to create immersive taste experiences.
Collapse
Affiliation(s)
- Xinyu Lei
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Hao Du
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Pengxian Lu
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, Zhengzhou, Henan 450001, China
| | - Hanlu Zhang
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, Zhengzhou, Henan 450001, China
| | - Meng Zhang
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
- Henan Province Engineering Laboratory for High Temperature and Wear-resistant Materials, Zhengzhou, Henan 450001, China
| |
Collapse
|
25
|
Gołąbek J, Strankowski M. A Review of Recent Advances in Human-Motion Energy Harvesting Nanogenerators, Self-Powering Smart Sensors and Self-Charging Electronics. SENSORS (BASEL, SWITZERLAND) 2024; 24:1069. [PMID: 38400228 PMCID: PMC10891842 DOI: 10.3390/s24041069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
In recent years, portable and wearable personal electronic devices have rapidly developed with increasing mass production and rising energy consumption, creating an energy crisis. Using batteries and supercapacitors with limited lifespans and environmental hazards drives the need to find new, environmentally friendly, and renewable sources. One idea is to harness the energy of human motion and convert it into electrical energy using energy harvesting devices-piezoelectric nanogenerators (PENGs), triboelectric nanogenerators (TENGs) and hybrids. They are characterized by a wide variety of features, such as lightness, flexibility, low cost, richness of materials, and many more. These devices offer the opportunity to use new technologies such as IoT, AI or HMI and create smart self-powered sensors, actuators, and self-powered implantable/wearable devices. This review focuses on recent examples of PENGs, TENGs and hybrid devices for wearable and implantable self-powered systems. The basic mechanisms of operation, micro/nano-scale material selection and manufacturing processes of selected examples are discussed. Current challenges and the outlook for the future of the nanogenerators are also discussed.
Collapse
Affiliation(s)
| | - Michał Strankowski
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| |
Collapse
|
26
|
Quinn KN, Tian Y, Budde R, Irazoqui PP, Tuffaha S, Thakor NV. Neuromuscular implants: Interfacing with skeletal muscle for improved clinical translation of prosthetic limbs. Muscle Nerve 2024; 69:134-147. [PMID: 38126120 DOI: 10.1002/mus.28029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
After an amputation, advanced prosthetic limbs can be used to interface with the nervous system and restore motor function. Despite numerous breakthroughs in the field, many of the recent research advancements have not been widely integrated into clinical practice. This review highlights recent innovations in neuromuscular implants-specifically those that interface with skeletal muscle-which could improve the clinical translation of prosthetic technologies. Skeletal muscle provides a physiologic gateway to harness and amplify signals from the nervous system. Recent surgical advancements in muscle reinnervation surgeries leverage the "bio-amplification" capabilities of muscle, enabling more intuitive control over a greater number of degrees of freedom in prosthetic limbs than previously achieved. We anticipate that state-of-the-art implantable neuromuscular interfaces that integrate well with skeletal muscle and novel surgical interventions will provide a long-term solution for controlling advanced prostheses. Flexible electrodes are expected to play a crucial role in reducing foreign body responses and improving the longevity of the interface. Additionally, innovations in device miniaturization and ongoing exploration of shape memory polymers could simplify surgical procedures for implanting such interfaces. Once implanted, wireless strategies for powering and transferring data from the interface can eliminate bulky external wires, reduce infection risk, and enhance day-to-day usability. By outlining the current limitations of neuromuscular interfaces along with potential future directions, this review aims to guide continued research efforts and future collaborations between engineers and specialists in the field of neuromuscular and musculoskeletal medicine.
Collapse
Affiliation(s)
- Kiara N Quinn
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yucheng Tian
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ryan Budde
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Pedro P Irazoqui
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sami Tuffaha
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Yu A, Zhu M, Chen C, Li Y, Cui H, Liu S, Zhao Q. Implantable Flexible Sensors for Health Monitoring. Adv Healthc Mater 2024; 13:e2302460. [PMID: 37816513 DOI: 10.1002/adhm.202302460] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Indexed: 10/12/2023]
Abstract
Flexible sensors, as a significant component of flexible electronics, have attracted great interest the realms of human-computer interaction and health monitoring due to their high conformability, adjustable sensitivity, and excellent durability. In comparison to wearable sensor-based in vitro health monitoring, the use of implantable flexible sensors (IFSs) for in vivo health monitoring offers more accurate and reliable vital sign information due to their ability to adapt and directly integrate with human tissue. IFSs show tremendous promise in the field of health monitoring, with unique advantages such as robust signal reading capabilities, lightweight design, flexibility, and biocompatibility. Herein, a review of IFSs for vital signs monitoring is detailly provided, highlighting the essential conditions for in vivo applications. As the prerequisites of IFSs, the stretchability and wireless self-powered properties of the sensor are discussed, with a special attention paid to the sensing materials which can maintain prominent biosafety (i.e., biocompatibility, biodegradability, bioresorbability). Furthermore, the applications of IFSs monitoring various parts of the body are described in detail, with a summary in brain monitoring, eye monitoring, and blood monitoring. Finally, the challenges as well as opportunities in the development of next-generation IFSs are presented.
Collapse
Affiliation(s)
- Aoxi Yu
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Mingye Zhu
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Congkai Chen
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Yang Li
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Haixia Cui
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Qiang Zhao
- College of Electronic and Optical Engineering, and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan, Nanjing, 210023, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays, and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
28
|
Olivier DN, Wang W, Liu C, Wang Z, Ding B. Survey on Energy Harvesting for Biomedical Devices: Applications, Challenges and Future Prospects for African Countries. SENSORS (BASEL, SWITZERLAND) 2023; 24:163. [PMID: 38203025 PMCID: PMC11326079 DOI: 10.3390/s24010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Self-powered biomedical devices, which are the new vision of Internet Of Things (IOT) healthcare, are facing many technical and application challenges. Many research works have reported biomedical devices and self-powered applications for healthcare, along with various strategies to improve the monitoring time of self-powered devices or to eliminate the dependence on electrochemical batteries. However, none of these works have especially assessed the development and application of healthcare devices in an African context. This article provides a comprehensive review of self-powered devices in the biomedical research field, introduces their applications for healthcare, evaluates their status in Africa by providing a thorough review of existing biomedical device initiatives and available financial and scientific cooperation institutions in Africa for the biomedical research field, and highlights general challenges for implementing self-powered biomedical devices and particular challenges related to developing countries. The future perspectives of the aforementioned research field are provided, as well as an architecture for improving this research field in developing countries.
Collapse
Affiliation(s)
- Djakou Nekui Olivier
- Tianjin Key Laboratory of Nonlinear Dynamics and Control, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Wei Wang
- Tianjin Key Laboratory of Nonlinear Dynamics and Control, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Cheng Liu
- Tianjin Key Laboratory of Nonlinear Dynamics and Control, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Zhixia Wang
- Tianjin Key Laboratory of Nonlinear Dynamics and Control, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Bei Ding
- Tianjin Key Laboratory of Nonlinear Dynamics and Control, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
29
|
Ali F, Koc M. 3D Printed Polymer Piezoelectric Materials: Transforming Healthcare through Biomedical Applications. Polymers (Basel) 2023; 15:4470. [PMID: 38231894 PMCID: PMC10708359 DOI: 10.3390/polym15234470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024] Open
Abstract
Three-dimensional (3D) printing is a promising manufacturing platform in biomedical engineering. It offers significant advantages in fabricating complex and customized biomedical products with accuracy, efficiency, cost-effectiveness, and reproducibility. The rapidly growing field of three-dimensional printing (3DP), which emphasizes customization as its key advantage, is actively searching for functional materials. Among these materials, piezoelectric materials are highly desired due to their linear electromechanical and thermoelectric properties. Polymer piezoelectrics and their composites are in high demand as biomaterials due to their controllable and reproducible piezoelectric properties. Three-dimensional printable piezoelectric materials have opened new possibilities for integration into biomedical fields such as sensors for healthcare monitoring, controlled drug delivery systems, tissue engineering, microfluidic, and artificial muscle actuators. Overall, this review paper provides insights into the fundamentals of polymer piezoelectric materials, the application of polymer piezoelectric materials in biomedical fields, and highlights the challenges and opportunities in realizing their full potential for functional applications. By addressing these challenges, integrating 3DP and piezoelectric materials can lead to the development of advanced sensors and devices with enhanced performance and customization capabilities for biomedical applications.
Collapse
Affiliation(s)
- Fawad Ali
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar;
| | | |
Collapse
|
30
|
Hu H, Zhang C, Ding Y, Chen F, Huang Q, Zheng Z. A Review of Structure Engineering of Strain-Tolerant Architectures for Stretchable Electronics. SMALL METHODS 2023; 7:e2300671. [PMID: 37661591 DOI: 10.1002/smtd.202300671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Stretchable electronics possess significant advantages over their conventional rigid counterparts and boost game-changing applications such as bioelectronics, flexible displays, wearable health monitors, etc. It is, nevertheless, a formidable task to impart stretchability to brittle electronic materials such as silicon. This review provides a concise but critical discussion of the prevailing structural engineering strategies for achieving strain-tolerant electronic devices. Not only the more commonly discussed lateral designs of structures such as island-bridge, wavy structures, fractals, and kirigami, but also the less discussed vertical architectures such as strain isolation and elastoplastic principle are reviewed. Future opportunities are envisaged at the end of the paper.
Collapse
Affiliation(s)
- Hong Hu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Chi Zhang
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yichun Ding
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Fan Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
31
|
Yan B, Zhao Y, Peng H. Tissue-Matchable and Implantable Batteries Toward Biomedical Applications. SMALL METHODS 2023; 7:e2300501. [PMID: 37469190 DOI: 10.1002/smtd.202300501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/30/2023] [Indexed: 07/21/2023]
Abstract
Implantable electronic devices can realize real-time and reliable health monitoring, diagnosis, and treatment of human body, which are expected to overcome important bottlenecks in the biomedical field. However, the commonly used energy supply devices for them are implantable batteries based on conventional rigid device design with toxic components, which both mechanically and biologically mismatch soft biological tissues. Therefore, the development of highly soft, safe, and implantable tissue-matchable flexible batteries is of great significance and urgency for implantable bioelectronics. In this work, the recent advances of tissue-matchable and implantable flexible batteries are overviewed, focusing on the design strategies of electrodes/batteries and their biomedical applications. The mechanical flexibility, biocompatibility, and electrochemical performance in vitro and in vivo of these flexible electrodes/batteries are then discussed. Finally, perspectives are provided on the current challenges and possible directions of this field in the future.
Collapse
Affiliation(s)
- Bing Yan
- Institute of Flexible Electronics and Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yang Zhao
- Institute of Flexible Electronics and Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
32
|
Ghanim R, Kaushik A, Park J, Abramson A. Communication Protocols Integrating Wearables, Ingestibles, and Implantables for Closed-Loop Therapies. DEVICE 2023; 1:100092. [PMID: 38465200 PMCID: PMC10923538 DOI: 10.1016/j.device.2023.100092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Body-conformal sensors and tissue interfacing robotic therapeutics enable the real-time monitoring and treatment of diabetes, wound healing, and other critical conditions. By integrating sensors and drug delivery devices, scientists and engineers have developed closed-loop drug delivery systems with on-demand therapeutic capabilities to provide just-in-time treatments that correspond to chemical, electrical, and physical signals of a target morbidity. To enable closed-loop functionality in vivo, engineers utilize various low-power means of communication that reduce the size of implants by orders of magnitude, increase device lifetime from hours to months, and ensure the secure high-speed transfer of data. In this review, we highlight how communication protocols used to integrate sensors and drug delivery devices, such as radio frequency communication (e.g., Bluetooth, near-field communication), in-body communication, and ultrasound, enable improved treatment outcomes.
Collapse
Affiliation(s)
- Ramy Ghanim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anika Kaushik
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jihoon Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alex Abramson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
33
|
Aguirre-Corona RW, Del Ángel-Sánchez K, Ulloa-Castillo NA, Rodríguez-Salinas JJ, Olvera-Trejo D, Perales-Martínez IA, Martínez-Romero O, Elías-Zúñiga A. β-Phase Enhancement of Force Spun Composite Nanofibers for Sensing Applications. Polymers (Basel) 2023; 15:3580. [PMID: 37688207 PMCID: PMC10490387 DOI: 10.3390/polym15173580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
In this study, a piezoelectric harvesting device was developed using polyvinylidene fluoride (PVDF) nanofibers reinforced with either BaTiO3 nanoparticles or graphene powder. BaTiO3 nanoparticles were synthesized through the sol-gel method with an average size of approximately 32 nm. The PVDF nanofibers, along with the nanoparticle composites in an acetone-N,N-dimethylformamide mixture, were produced using a centrifugal Forcespinning™ machine, resulting in a heterogeneous arrangement of fiber meshes, with an average diameter of 1.6 μm. Experimental tests revealed that the electrical performance of the fabricated harvester reached a maximum value of 35.8 Voc, demonstrating the potential of BaTiO3/ PVDF-based piezoelectric devices for designing wearable applications such as body-sensing and energy-harvesting devices.
Collapse
Affiliation(s)
- Renato Wenceslao Aguirre-Corona
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, N.L., Mexico; (R.W.A.-C.); (K.D.Á.-S.); (D.O.-T.); (I.A.P.-M.)
| | - Karina Del Ángel-Sánchez
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, N.L., Mexico; (R.W.A.-C.); (K.D.Á.-S.); (D.O.-T.); (I.A.P.-M.)
| | - Nicolás Antonio Ulloa-Castillo
- Center for Innovation in Digital Technologies, School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, N.L., Mexico;
| | - Juan José Rodríguez-Salinas
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, N.L., Mexico;
| | - Daniel Olvera-Trejo
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, N.L., Mexico; (R.W.A.-C.); (K.D.Á.-S.); (D.O.-T.); (I.A.P.-M.)
| | - Imperio Anel Perales-Martínez
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, N.L., Mexico; (R.W.A.-C.); (K.D.Á.-S.); (D.O.-T.); (I.A.P.-M.)
| | - Oscar Martínez-Romero
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, N.L., Mexico; (R.W.A.-C.); (K.D.Á.-S.); (D.O.-T.); (I.A.P.-M.)
| | - Alex Elías-Zúñiga
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur 2501, Monterrey 64849, N.L., Mexico; (R.W.A.-C.); (K.D.Á.-S.); (D.O.-T.); (I.A.P.-M.)
| |
Collapse
|
34
|
Khazaee M, Enkeshafi AA, Kavehei O, Riahi S, Rosendahl L, Rezania A. Prospects of self-powering leadless pacemakers using piezoelectric energy harvesting technology by heart kinetic motion. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082843 DOI: 10.1109/embc40787.2023.10340205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
This paper studies the possibility of heart kinetic motion for designing a self-powered intracardiac leadless pacemaker by piezoelectric energy harvesting. A Doppler laser displacement sensor measures in vivo heart kinetic motion. Cantilevered and four-point bending piezoelectric harvesters are studied under the measured in vivo heart kinetic motion. The heart movement is above 15 mm. The cantilevered and four-point bending harvesters generate a maximum voltage of ~ 0.28 V and 0.8 V, respectively with the measured heart motion with a heart rate of 168 beats per minute. Two DC/DC converters, LTC3588 and MAX17220, combined with full-bridge rectifiers and their start-up performance are tested.Clinical Relevance-This paper analyzed the heart kinetic motion and establishes the piezoelectric energy harvesting for a new era of self-powered leadless pacemakers.
Collapse
|
35
|
Li J, Xie Y, Zou X, Li Z, Liu W, Liu G, Ma M, Zheng Y. Ultrasonic/electrical dual stimulation response nanocomposite bioelectret for controlled precision drug release. Mater Today Bio 2023; 20:100665. [PMID: 37229214 PMCID: PMC10205496 DOI: 10.1016/j.mtbio.2023.100665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Electret materials have attracted extensive attention because of their permanent polarization and electrostatic effect. However, it is one of problem that needs to be solved in biological application to manipulate the change of surface charge of electret by external stimulation. In this work, a drug-loaded electret with flexibility and no cytotoxicity was prepared under relatively mild conditions. The electret can release the charge through stress change and ultrasonic stimulation, and the drug release can be accurately controlled with the help of ultrasonic and electric double stimulation response. Here, the dipoles like particles of carnauba wax nanoparticles (nCW) are fixed in the matrix based on the interpenetrating polymer network structure, and "frozen" oriented dipolar particles that are treated by thermal polarization and cooled at high field strength. Subsequently, the charge density of the prepared composite electret can reach 101.1 nC/m2 at the initial stage of polarization and 21.1 nC/m2 after 3 weeks. In addition, the stimulated change of electret surface charge flow under cyclic tensile stress and cyclic compressive stress can generate a current of 0.187 nA and 0.105 nA at most. The ultrasonic stimulation results show that when the ultrasonic emission power was 90% (Pmax = 1200 W), the current of 0.472 nA can be generated. Finally, the drug release characteristics and biocompatibility of the nCW composite electret containing curcumin were tested. The results showed that it not only had the ability to accurately control the release by ultrasound, but also triggered the electrical effect of the material. The prepared drug loaded composite bioelectret provides a new way for the construction, design and testing of the bioelectret. Its ultrasonic and electrical double stimulation response can be accurately controlled and released as required, and it has broad application prospects.
Collapse
Affiliation(s)
- Junfei Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoran Zou
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhengze Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbo Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Center for Medical Device Evaluation, National Medical Products Administration, Intellectual Property Publishing House Mansion, Qixiang Road, Haidian District, Beijing, China
| | - Guodong Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Mengjiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
36
|
Yuan Y, Zhu H, Wang X, Zhang G, Qiu L. Enhancing the Elasticity of Conjugated Polymers through Precise Control of the Spacing between the Backbone and Siloxane Side-Chains. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22341-22350. [PMID: 37102202 DOI: 10.1021/acsami.3c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Intrinsically stretchable conjugated polymers (CPs) have extensively been studied for the development of novel flexible electronic devices. In this work, a method to control the elastic properties of CPs has been proposed via regulation of spacer length between the siloxane side-chain and the backbone. The target polymers were CP films with the structure P(mC-Si) for four different numbers of the spacer methylene groups, namely, m = 5, 6, 7, and 8. The effect of spacer length on the aggregation state as well as on electrical and elastic properties of the prepared films was then investigated. An adjustable lamellar spacing (dL-L), in addition to improved elastic properties, was achieved as the spacer length was changed in the prepared polymer films. Moreover, P(7C-Si) has a sufficient dL-L value of 35.77 Å, which provides enough space for inter-chain sliding to dissipate stress. This facilitated the dissipation of stress during the straining process. At a strain value of 100% in the vertical direction, the mobility of the P(7C-Si) film was 0.79 cm2 V-1 s-1 and reduced to 84.0% of the initial value without any applied strain. The study provides clear evidence that tuning the spacer length between the silicone endgroup and backbone is an effective way to improve the intrinsic stretchability of CPs with siloxane side chains.
Collapse
Affiliation(s)
- Ye Yuan
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Haoran Zhu
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Xiaohong Wang
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Longzhen Qiu
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
37
|
Tu R, Sodano HA. Highly Stretchable Printed Poly(vinylidene fluoride) Sensors through the Formation of a Continuous Elastomer Phase. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22320-22331. [PMID: 37119527 DOI: 10.1021/acsami.3c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Stretchable piezoelectric stress/strain sensing materials have attracted substantial research interest in the fields of wearable health monitoring, motion capturing, and soft robotics. These sensors require operation under dynamic loading conditions with high strain range, changing strain/loading rates, and varying pre-stretch states, which are challenging conditions for existing sensors to produce reliable measurements. To overcome these challenges, an intrinsically stretchable poly(vinylidene fluoride) (PVDF) sensor is developed through the polymer blending of PVDF and acrylonitrile butadiene rubber (NBR). Through precipitation printing and vulcanization, the resulting PVDF/NBR blends exhibit strong β phase PVDF and a blend morphology with submicron-level phase separation, but also strains up to 544%. Both the blend morphology and the mechanical properties indicate that this PVDF/NBR blend can be considered as a continuous elastomer phase above micron scale. After electric poling and adding electrodes, the PVDF/NBR blends have excellent piezoelectric properties to be used as both stretching mode strain sensors and compression mode stress/force sensors. The stretching mode sensors can measure strain up to 70% without strain rate and pre-stretch dependence, while the compression mode sensors have a loading-rate-independent linear voltage-stress relationship up to 4.8 MPa stress and a negligible pre-stretch dependence. Therefore, the PVDF/NBR sensors can provide accurate and reliable stress/strain measurements when attached to soft structures, which paves the way for sensing and calibration of soft robots under dynamic loading conditions.
Collapse
Affiliation(s)
- Ruowen Tu
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry A Sodano
- Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
38
|
Wang Y, Hong M, Venezuela J, Liu T, Dargusch M. Expedient secondary functions of flexible piezoelectrics for biomedical energy harvesting. Bioact Mater 2023; 22:291-311. [PMID: 36263099 PMCID: PMC9556936 DOI: 10.1016/j.bioactmat.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Flexible piezoelectrics realise the conversion between mechanical movements and electrical power by conformally attaching onto curvilinear surfaces, which are promising for energy harvesting of biomedical devices due to their sustainable body movements and/or deformations. Developing secondary functions of flexible piezoelectric energy harvesters is becoming increasingly significant in recent years via aiming at issues that cannot be addressed or mitigated by merely increasing piezoelectric efficiencies. These issues include loose interfacial contact and pucker generation by stretching, power shortage or instability induced by inadequate mechanical energy, and premature function degeneration or failure caused by fatigue fracture after cyclic deformations. Herein, the expedient secondary functions of flexible piezoelectrics to mitigate above issues are reviewed, including stretchability, hybrid energy harvesting, and self-healing. Efforts have been devoted to understanding the state-of-the-art strategies and their mechanisms of achieving secondary functions based on piezoelectric fundamentals. The link between structural characteristic and function performance is unravelled by providing insights into carefully selected progresses. The remaining challenges of developing secondary functions are proposed in the end with corresponding outlooks. The current work hopes to help and inspire future research in this promising field focusing on developing the secondary functions of flexible piezoelectric energy harvesters.
Collapse
Affiliation(s)
- Yuan Wang
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Min Hong
- Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, 4300, Australia
| | - Jeffrey Venezuela
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ting Liu
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Matthew Dargusch
- Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
39
|
Tang L, Yang J, Wang Y, Deng R. Recent Advances in Cardiovascular Disease Biosensors and Monitoring Technologies. ACS Sens 2023; 8:956-973. [PMID: 36892106 DOI: 10.1021/acssensors.2c02311] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Cardiovascular disease (CVD) causes significant mortality and remains the leading cause of death globally. Thus, to reduce mortality, early diagnosis by measurement of cardiac biomarkers and heartbeat signals presents fundamental importance. Traditional CVD examination requires bulky hospital instruments to conduct electrocardiography recording and immunoassay analysis, which are both time-consuming and inconvenient. Recently, development of biosensing technologies for rapid CVD marker screening attracted great attention. Thanks to the advancement in nanotechnology and bioelectronics, novel biosensor platforms are developed to achieve rapid detection, accurate quantification, and continuous monitoring throughout disease progression. A variety of sensing methodologies using chemical, electrochemical, optical, and electromechanical means are explored. This review first discusses the prevalence and common categories of CVD. Then, heartbeat signals and cardiac blood-based biomarkers that are widely employed in clinic, as well as their utilizations for disease prognosis, are summarized. Emerging CVD wearable and implantable biosensors and monitoring bioelectronics, allowing these cardiac markers to be continuously measured are introduced. Finally, comparisons of the pros and cons of these biosensing devices along with perspectives on future CVD biosensor research are presented.
Collapse
Affiliation(s)
- Lichao Tang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, 60208, Illinois, United States
| | - Jiyuan Yang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47906, Indiana, United States
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, Sichuan, China
- Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
40
|
Zhao X, Zhao S, Zhang X, Su Z. Recent progress in flexible pressure sensors based on multiple microstructures: from design to application. NANOSCALE 2023; 15:5111-5138. [PMID: 36852534 DOI: 10.1039/d2nr06084a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flexible pressure sensors (FPSs) have been widely studied in the fields of wearable medical monitoring and human-machine interaction due to their high flexibility, light weight, sensitivity, and easy integration. To better meet these application requirements, key sensing properties such as sensitivity, linear sensing range, pressure detection limits, response/recovery time, and durability need to be effectively improved. Therefore, researchers have extensively and profoundly researched and innovated on the structure of sensors, and various microstructures have been designed and applied to effectively improve the sensing performance of sensors. Compared with single microstructures, multiple microstructures (MMSs) (including hierarchical, multi-layered and hybrid microstructures) can improve the sensing performance of sensors to a greater extent. This paper reviews the recent research progress in the design and application of FPSs with MMSs and systematically summarizes the types, sensing mechanisms, and preparation methods of MMSs. In addition, we summarize the applications of FPSs with MMSs in the fields of human motion detection, health monitoring, and human-computer interaction. Finally, we provide an outlook on the prospects and challenges for the development of FPSs.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Shujing Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
41
|
Shao M, Sheng H, Lin L, Ma H, Wang Q, Yuan J, Zhang X, Chen G, Li W, Su Q, Xie E, Wang J, Zhang Z, Lan W. High-Performance Biodegradable Energy Storage Devices Enabled by Heterostructured MoO 3 -MoS 2 Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205529. [PMID: 36508711 DOI: 10.1002/smll.202205529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Biodegradable implantable devices are of growing interest in biosensors and bioelectronics. One of the key unresolved challenges is the availability of power supply. To enable biodegradable energy-storage devices, herein, 2D heterostructured MoO3 -MoS2 nanosheet arrays are synthesized on water-soluble Mo foil, showing a high areal capacitance of 164.38 mF cm-2 (at 0.5 mA cm-2 ). Employing the MoO3 -MoS2 composite as electrodes of a symmetric supercapacitor, an asymmetric Zn-ion hybrid supercapacitor, and an Mg primary battery are demonstrated. Benefiting from the advantages of MoO3 -MoS2 heterostructure, the Zn-ion hybrid supercapacitors deliver a high areal capacitance (181.86 mF cm-2 at 0.5 mA cm-2 ) and energy density (30.56 µWh cm-2 ), and the Mg primary batteries provide a stable high output voltage (≈1.6 V) and a long working life in air/liquid environment. All of the used materials exhibit desirable biocompatibility, and these fabricated devices are also fully biodegradable. Demonstration experiments display their potential applications as biodegradable power sources for various electronic devices.
Collapse
Affiliation(s)
- Mingjiao Shao
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hongwei Sheng
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Liqi Lin
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hongyun Ma
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Qi Wang
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jiao Yuan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Xuetao Zhang
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Gang Chen
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenquan Li
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai, 810008, China
| | - Qing Su
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jing Wang
- School of Stomatology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhibin Zhang
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala, 75237, Sweden
| | - Wei Lan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
42
|
Sood A, Desseigne M, Dev A, Maurizi L, Kumar A, Millot N, Han SS. A Comprehensive Review on Barium Titanate Nanoparticles as a Persuasive Piezoelectric Material for Biomedical Applications: Prospects and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206401. [PMID: 36585372 DOI: 10.1002/smll.202206401] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Stimulation of cells with electrical cues is an imperative approach to interact with biological systems and has been exploited in clinical practices over a wide range of pathological ailments. This bioelectric interface has been extensively explored with the help of piezoelectric materials, leading to remarkable advancement in the past two decades. Among other members of this fraternity, colloidal perovskite barium titanate (BaTiO3 ) has gained substantial interest due to its noteworthy properties which includes high dielectric constant and excellent ferroelectric properties along with acceptable biocompatibility. Significant progression is witnessed for BaTiO3 nanoparticles (BaTiO3 NPs) as potent candidates for biomedical applications and in wearable bioelectronics, making them a promising personal healthcare platform. The current review highlights the nanostructured piezoelectric bio interface of BaTiO3 NPs in applications comprising drug delivery, tissue engineering, bioimaging, bioelectronics, and wearable devices. Particular attention has been dedicated toward the fabrication routes of BaTiO3 NPs along with different approaches for its surface modifications. This review offers a comprehensive discussion on the utility of BaTiO3 NPs as active devices rather than passive structural unit behaving as carriers for biomolecules. The employment of BaTiO3 NPs presents new scenarios and opportunity in the vast field of nanomedicines for biomedical applications.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Margaux Desseigne
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Atul Dev
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California Davis, 2921 Stockton Boulevard, Sacramento, CA, 95817, USA
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS/Université Bourgogne Franche-Comté, 9 Avenue Alain Savary, BP 47870, Dijon, 21078, France
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan, 38541, South Korea
| |
Collapse
|
43
|
Flexible sensing enabled agri-food cold chain quality control: A review of mechanism analysis, emerging applications, and system integration. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
44
|
Zhu Q, Wu T, Wang N. From Piezoelectric Nanogenerator to Non-Invasive Medical Sensor: A Review. BIOSENSORS 2023; 13:113. [PMID: 36671948 PMCID: PMC9856170 DOI: 10.3390/bios13010113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Piezoelectric nanogenerators (PENGs) not only are able to harvest mechanical energy from the ambient environment or body and convert mechanical signals into electricity but can also inform us about pathophysiological changes and communicate this information using electrical signals, thus acting as medical sensors to provide personalized medical solutions to patients. In this review, we aim to present the latest advances in PENG-based non-invasive sensors for clinical diagnosis and medical treatment. While we begin with the basic principles of PENGs and their applications in energy harvesting, this review focuses on the medical sensing applications of PENGs, including detection mechanisms, material selection, and adaptive design, which are oriented toward disease diagnosis. Considering the non-invasive in vitro application scenario, discussions about the individualized designs that are intended to balance a high performance, durability, comfortability, and skin-friendliness are mainly divided into two types: mechanical sensors and biosensors, according to the key role of piezoelectric effects in disease diagnosis. The shortcomings, challenges, and possible corresponding solutions of PENG-based medical sensing devices are also highlighted, promoting the development of robust, reliable, scalable, and cost-effective medical systems that are helpful for the public.
Collapse
Affiliation(s)
- Qiliang Zhu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Tong Wu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- National Institute of Metrology, Beijing 100029, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
45
|
Wang Q, Sun X, Liu C, Wang C, Zhao W, Zhu Z, Ma S, Zhang S. Current development of stretchable self-powered technology based on nanomaterials toward wearable biosensors in biomedical applications. Front Bioeng Biotechnol 2023; 11:1164805. [PMID: 37113667 PMCID: PMC10126507 DOI: 10.3389/fbioe.2023.1164805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
In combination with the growing fields of artificial intelligence and Internet-of-things (IoT), the innovation direction of next-generation biosensing systems is toward intellectualization, miniaturization, and wireless portability. Enormous research efforts have been made in self-powered technology due to the gradual decline of traditional rigid and cumbersome power sources in comparison to wearable biosensing systems. Research progress on various stretchable self-powered strategies for wearable biosensors and integrated sensing systems has demonstrated their promising potential in practical biomedical applications. In this review, up-to-date research advances in energy harvesting strategies are discussed, together with a future outlook and remaining challenges, shedding light on the follow-up research priorities.
Collapse
Affiliation(s)
- Qianqian Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xu Sun
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
| | - Chunge Wang
- School of Mechanical and Energy Engineering, NingboTech University, Ningbo, China
| | - Wenjie Zhao
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Zehui Zhu
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Sainan Ma
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- *Correspondence: Sheng Zhang, ; Sainan Ma,
| | - Sheng Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
- *Correspondence: Sheng Zhang, ; Sainan Ma,
| |
Collapse
|
46
|
Wang X, Huang J, Liu Y, Tan J, Chen S, Avila R, Xie Z. Design of protective and high sensitivity encapsulation layers in wearable devices. SCIENCE CHINA. TECHNOLOGICAL SCIENCES 2022; 66:223-232. [PMID: 36593863 PMCID: PMC9798368 DOI: 10.1007/s11431-022-2034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/17/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED Elastomeric encapsulation layers are widely used in soft, wearable devices to physically isolate rigid electronic components from external environmental stimuli (e.g., stress) and facilitate device sterilization for reusability. In devices experiencing large deformations, the stress-isolation effect of the top encapsulation layer can eliminate the damage to the electronic components caused by external forces. However, for health monitoring and sensing applications, the strain-isolation effect of the bottom encapsulation layer can partially block the physiological signals of interest and degrade the measurement accuracy. Here, an analytic model is developed for the strain- and stress-isolation effects present in wearable devices with elastomeric encapsulation layers. The soft, elastomeric encapsulation layers and main electronic components layer are modeled as transversely isotropic-elastic mediums and the strain- and stress-isolation effects are described using isolation indexes. The analysis and results show that the isolation effects strongly depend on the thickness, density, and elastic modulus of both the elastomeric encapsulation layers and the main electronic component layer. These findings, combined with the flexible mechanics design strategies of wearable devices, provide new design guidelines for future wearable devices to protect them from external forces while capturing the relevant physiological signals underneath the skin. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available in the online version of this article at 10.1007/s11431-022-2034-y.
Collapse
Affiliation(s)
- XiuFeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 China
| | - JieLong Huang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 China
| | - YangChengYi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 China
| | - JinYuan Tan
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 China
| | - ShangDa Chen
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105 China
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 USA
| | - ZhaoQian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
47
|
Khalil AM, Hassanin AH, El-kaliuoby MI, Omran N, Gamal M, El-Khatib AM, Kandas I, Shehata N. Innovative antibacterial electrospun nanofibers mats depending on piezoelectric generation. Sci Rep 2022; 12:21788. [PMID: 36526645 PMCID: PMC9758172 DOI: 10.1038/s41598-022-25212-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
This paper introduces a new approach of testing piezoelectric nanofibers as antibacterial mat. In this work, both Polyvinylidene fluoride (PVDF) and PVDF embedded with thermoplastic polyurethane nanofibers are synthesized as nanofibers mat via electrospinning technique. Then, such mat is analyzed as piezoelectric material to generate electric voltage under different mechanical excitations. Furthermore, morphological and chemical characteristics have been operated to prove the existence of beta sheets piezoelectricity of the synthesized nanofibers mats. Then, the synthesized nanofibers surfaces have been cyclically stretched and exposed to bacteria specimen. It has been noticed that the generated voltage and the corresponding localized electric field positively affect the growth of bacteria and reduces the formation of K. penomenue samples bacteria colonies. In addition, the effect of both stretching frequency and pulses numbers have been studied on the bacteria count, growth kinetics, and protein leakage. Our contribution here is to introduce an innovative way of the direct impact of the generated electric field from piezoelectric nanofibers on the reduction of bacteria growth, without depending on traditional anti-bacterial nanoparticles. This work can open a new trend of the usability of piezoelectric nanofibers through masks, filters, and wound curing mats within anti-bacterial biological applications.
Collapse
Affiliation(s)
- Alaa M. Khalil
- grid.442603.70000 0004 0377 4159Basic Sciences Department, Faculty of Engineering, Pharos University in Alexandria, Alexandria, 21544 Egypt
| | - Ahmed H. Hassanin
- grid.7155.60000 0001 2260 6941Center of Smart Materials, Nanotechnology and Photonics (CSMNP), Smart CI Research Center, Alexandria University, Alexandria, 21544 Egypt ,grid.440864.a0000 0004 5373 6441Materials Science and Engineering Department, School of Innovative Design Engineering, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934 Egypt ,grid.7155.60000 0001 2260 6941Department of Textile Engineering, Faculty of Engineering, Alexandria University, Alexandria, 21544 Egypt
| | - Mai. I. El-kaliuoby
- grid.7155.60000 0001 2260 6941Physics and Chemistry Department, Faculty of Education, Alexandria University, Alexandria, 21544 Egypt
| | - Nada Omran
- grid.7155.60000 0001 2260 6941Center of Smart Materials, Nanotechnology and Photonics (CSMNP), Smart CI Research Center, Alexandria University, Alexandria, 21544 Egypt
| | - Mohammed Gamal
- grid.7155.60000 0001 2260 6941Center of Smart Materials, Nanotechnology and Photonics (CSMNP), Smart CI Research Center, Alexandria University, Alexandria, 21544 Egypt
| | - Ahmed. M. El-Khatib
- grid.7155.60000 0001 2260 6941Physics Department, Faculty of Science, Alexandria University, Alexandria, 21544 Egypt
| | - Ishac Kandas
- grid.7155.60000 0001 2260 6941Center of Smart Materials, Nanotechnology and Photonics (CSMNP), Smart CI Research Center, Alexandria University, Alexandria, 21544 Egypt ,grid.7155.60000 0001 2260 6941Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria, 21544 Egypt
| | - Nader Shehata
- grid.7155.60000 0001 2260 6941Center of Smart Materials, Nanotechnology and Photonics (CSMNP), Smart CI Research Center, Alexandria University, Alexandria, 21544 Egypt ,grid.7155.60000 0001 2260 6941Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria, 21544 Egypt ,grid.510476.10000 0004 4651 6918Kuwait College of Science and Technology (KCST), 13133 Doha District, Kuwait ,grid.53857.3c0000 0001 2185 8768USTAR Bioinnovations Center, Faculty of Science, Utah State University, Logan, UT 84341 USA
| |
Collapse
|
48
|
Improved performance of stretchable piezoelectric energy harvester based on stress rearrangement. Sci Rep 2022; 12:19149. [PMID: 36352018 PMCID: PMC9646885 DOI: 10.1038/s41598-022-23005-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
With the development of wearable devices and soft electronics, the demand for stretchable piezoelectric energy harvesters (SPEHs) has increased. Energy harvesting can provide energy when large batteries or power sources cannot be employed, and stretchability provides a user-friendly experience. However, the performance of SPEHs remains low, which limits their application. In this study, a wearable SPEH is developed by adopting a kirigami structure on a polyvinylidene fluoride film. The performance of the SPEH is improved by rearranging the stress distribution throughout the film. This is conducted using two approaches: topological depolarization, which eliminates the opposite charge generation by thermal treatment, and optimization of the neutral axis, which maximizes the stress applied at the surface of the piezoelectric film. The SPEH performance is experimentally measured and compared with that of existing SPEHs. Using these two approaches, the stress was rearranged in both the x-y plane and z-direction, and the output voltage increased by 21.57% compared with that of the original film with the same stretching motion. The generated energy harvester was successfully applied to smart transmittance-changing contact lenses.
Collapse
|
49
|
Deng HT, Wen DL, Feng T, Wang YL, Zhang XR, Huang P, Zhang XS. Silicone Rubber Based-Conductive Composites for Stretchable "All-in-One" Microsystems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39681-39700. [PMID: 36006298 DOI: 10.1021/acsami.2c08333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wearable electronics with development trends such as miniaturization, multifunction, and smart integration have become an important part of the Internet of Things (IoT) and have penetrated various sectors of modern society. To meet the increasing demands of wearable electronics in terms of deformability and conformability, many efforts have been devoted to overcoming the nonstretchable and poor conformal properties of traditional functional materials and endowing devices with outstanding mechanical properties. One of the promising approaches is composite engineering in which traditional functional materials are incorporated into the various polymer matrices to develop different kinds of functional composites and construct different functions of stretchable electronics. Herein, we focus on the approach of composite engineering and the polymer matrix of silicone rubber (SR), and we summarize the state-of-the-art details of silicone rubber-based conductive composites (SRCCs), including a summary of their conductivity mechanisms and synthesis methods and SRCC applications for stretchable electronics. For conductivity mechanisms, two conductivity mechanisms of SRCC are emphasized: percolation theory and the quantum tunneling mechanism. For synthesis methods of SRCCs, four typical approaches to synthesize different kinds of SRCCs are investigated: mixing/blending, infiltration, ion implantation, and in situ formation. For SRCC applications, different functions of stretchable electronics based on SRCCs for interconnecting, sensing, powering, actuating, and transmitting are summarized, including stretchable interconnects, sensors, nanogenerators, antennas, and transistors. These functions reveal the feasibility of constructing a stretchable all-in-one self-powered microsystem based on SRCC-based stretchable electronics. As a prospect, this microsystem is expected to integrate the functional sensing modulus, the energy harvesting modulus, and the process and response modulus together to sense and respond to environmental stimulations and human physiological signals.
Collapse
Affiliation(s)
- Hai-Tao Deng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dan-Liang Wen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tao Feng
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi-Lin Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xin-Ran Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | | |
Collapse
|
50
|
Flexible self-powered integrated sensing system based on a rechargeable zinc-ion battery by using a multifunctional polyacrylamide/carboxymethyl chitosan/LiCl ionic hydrogel. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|