1
|
Srinivas S, Sekar M, Thirumurugan K, Senthil Kumar A. Hemozoin anchored MWCNTs for mediated reduction of hydrogen peroxide and real-time intracellular oxidative stress monitoring in colon cancer cells. J Mater Chem B 2025; 13:985-996. [PMID: 39625643 DOI: 10.1039/d4tb01902d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Hemozoin (HZ, a malarial pigment) is an insoluble crystalline byproduct formed during the intraerythrocytic breakdown of hemoglobin by some blood-feeding parasites, such as Plasmodium falciparum. It consists of polymerized iron-porphyrin molecular units linked by carboxylic bonds. Due to the rigid molecular structure, studying the electron transfer activity of HZ is challenging. In this work, we report the development of a redox-active HZ-functionalized multi-walled carbon nanotube (MWCNT) modified glassy carbon electrode (GCE/MWCNT@HZ-redox). Here, HZ-redox refers to the redox-active form of hemozoin. This electrode is designed to study the electron transfer activity and mimic the peroxidase enzyme's ability to mediate hydrogen peroxide reduction in a neutral pH solution. The modified electrode exhibited a stable and well-defined redox peak at -0.385 V vs. Ag/AgCl in N2-purged PBS (pH 7.0) with a surface excess value of 1.64 × 10-9 mol cm-2. The MWCNT@HZ-redox was characterized using Raman spectroscopy, FT-IR, and FESEM techniques. This biomimicking electrode showed excellent electrocatalytic reduction of H2O2 using cyclic voltammetry. Batch-injection analysis coupled with a screen-printed electrode demonstrated the electroanalytical performance for H2O2 sensing. The electrode exhibited a linear concentration range of 50-300 μM, with a sensitivity of 21 μA μM-1 and a detection limit of 220 nM. As a bioanalytical application, we successfully demonstrated the in situ monitoring of H2O2 within the reactive oxygen species of HCT-116 colon cancer cells under stimulated conditions.
Collapse
Affiliation(s)
- Sakthivel Srinivas
- Nano and Bioelectrochemistry Research Laboratory, Carbon dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore-632 014, India.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, India
| | - Mouliganesh Sekar
- Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kavitha Thirumurugan
- Structural Biology Lab, Pearl Research Park, School of Biosciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Carbon dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore-632 014, India.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632 014, India
| |
Collapse
|
2
|
Bukhari QUA, Della Pelle F, Alvarez-Diduk R, Scroccarello A, Nogués C, Careta O, Compagnone D, Merkoci A. Laser-assembled conductive 3D nanozyme film-based nitrocellulose sensor for real-time detection of H 2O 2 released from cancer cells. Biosens Bioelectron 2024; 262:116544. [PMID: 38963952 DOI: 10.1016/j.bios.2024.116544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
In this work, a nanostructured conductive film possessing nanozyme features was straightforwardly produced via laser-assembling and integrated into complete nitrocellulose sensors; the cellulosic substrate allows to host live cells, while the nanostructured film nanozyme activity ensures the enzyme-free real-time detection of hydrogen peroxide (H2O2) released by the sames. In detail, a highly exfoliated reduced graphene oxide 3D film decorated with naked platinum nanocubes was produced using a CO2-laser plotter via the simultaneous reduction and patterning of graphene oxide and platinum cations; the nanostructured film was integrated into a nitrocellulose substrate and the complete sensor was manufactured using an affordable semi-automatic printing approach. The linear range for the direct H2O2 determination was 0.5-80 μM (R2 = 0.9943), with a limit of detection of 0.2 μM. Live cell measurements were achieved by placing the sensor in the culture medium, ensuring their adhesion on the sensors' surface; two cell lines were used as non-tumorigenic (Vero cells) and tumorigenic (SKBR3 cells) models, respectively. Real-time detection of H2O2 released by cells upon stimulation with phorbol ester was carried out; the nitrocellulose sensor returned on-site and real-time quantitative information on the H2O2 released proving useful sensitivity and selectivity, allowing to distinguish tumorigenic cells. The proposed strategy allows low-cost in-series semi-automatic production of paper-based point-of-care devices using simple benchtop instrumentation, paving the way for the easy and affordable monitoring of the cytopathology state of cancer cells.
Collapse
Affiliation(s)
- Qurat U A Bukhari
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain; Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy
| | - Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy
| | - Ruslan Alvarez-Diduk
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain.
| | - Annalisa Scroccarello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy
| | - Carme Nogués
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociencies, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Oriol Careta
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biociencies, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100, Teramo, Italy.
| | - Arben Merkoci
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.
| |
Collapse
|
3
|
Chen WT, Yan CF, Yu CJ, Liao YC, Chen CF. Highly catalytic Prussian blue analogues and their application on the three-dimensional origami paper-based sweat sensors. Biosens Bioelectron 2024; 254:116188. [PMID: 38484412 DOI: 10.1016/j.bios.2024.116188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Prussian blue analogues (PBAs) are promising materials due to their rich active sites and straightforward synthesis. However, their limited conductivity and electron transfer inefficiency hinder practical applications. This study utilizes a simple one-pot synthesis approach to produce a tungsten-disulfide (WS2) and iron-cobalt Prussian blue analogue composite (WS2-PBA), enhancing conductivity and electron transfer rate performance. Through the inclusion of sodium citrate into the solution, the S-edge site concentration of WS2 increases. This augmentation introduces additional active sites and defects into the catalyst, enhancing its catalytic activity. The effectiveness of the WS2-PBA 3D-Origami paper device for lactate detection in sweat is also evaluated for biomedical applications. The device demonstrated a robust relationship between the lactate concentration and current intensity (R2 = 0.997), with a detection limit of 1.83 mM. Additionally, this platform has successfully detected lactate in clinical sweat, correlating with the high-performance liquid chromatography test results, suggesting promising prospects for clinical diagnosis. In the future, the excellent catalytic and Rct performance of the WS2-PBA will enable its use in biomedical applications.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Chi-Fong Yan
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan
| | - Cheng-Ju Yu
- Department of Applied Physics and Chemistry, University of Taipei, Taipei, 100, Taiwan
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei, 106, Taiwan; Graduate School of Advanced Technology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
4
|
Pidal JMG, Fiori S, Scroccarello A, Della Pelle F, Maggio F, Serio A, Ferraro G, Escarpa A, Compagnone D. Laser-induced 2D/0D graphene-nanoceria freestanding paper-based films for on-site hydrogen peroxide monitoring in no-touch disinfection treatments. Mikrochim Acta 2024; 191:361. [PMID: 38822891 PMCID: PMC11144143 DOI: 10.1007/s00604-024-06427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/10/2024] [Indexed: 06/03/2024]
Abstract
A one-shot CO2 laser-based strategy to generate conductive reduced graphene oxide (rGO) decorated with nanoceria (nCe) is proposed. The 2D/0D rGO-nCe films, integrated as catalytic sensing layers in paper-based sensors, were employed for on-site monitoring of indoor fogging treatments against Listeria monocytogenes (Lm), a ubiquitous pathogenic bacterium. The rGO-nCe laser-assisted synthesis was optimized to preserve the rGO film morphological and electron-transfer features and simultaneously integrate catalytic nCe. The films were characterized by microscopical (SEM), spectroscopical (EDX, Raman, and FTIR), and electrochemical techniques. The most performing film was integrated into a nitrocellulose substrate, and the complete sensor was assembled via a combination of xurography and stencil printing. The rGO-nCe sensor's catalytic activity was proved toward the detection of H2O2, obtaining sensitive determination (LOD = 0.3 µM) and an extended linear range (0.5-1500 µM). Eventually, the rGO-nCe sensor was challenged for the real-time continuous monitoring of hydrogen peroxide aerosol during no-touch fogging treatment conducted following the EU's recommendation for biocidal product use. Treatment effectiveness was proved toward three Lm strains characterized by different origins, i.e., type strain ATCC 7644, clinical strain 338, and food strain 641/6II. The sensor allows for discrimination and quantification treatments at different environmental biocidal amounts and fogging times, and correlates with the microbiological inhibition, promoting the proposed sensor as a useful tool to modulate and monitor no-touch treatments.
Collapse
Affiliation(s)
- José M Gordón Pidal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, 28871, Spain
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Selene Fiori
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Annalisa Scroccarello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy.
| | - Francesca Maggio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy
| | - Giovanni Ferraro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, Florence, I-50019, Italy
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, Madrid, 28871, Spain.
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, Teramo, 64100, Italy.
| |
Collapse
|
5
|
Sun E, Gu Z, Li H, Liu X, Li Y, Xiao F. Flexible Graphene Paper Modified Using Pt&Pd Alloy Nanoparticles Decorated Nanoporous Gold Support for the Electrochemical Sensing of Small Molecular Biomarkers. BIOSENSORS 2024; 14:172. [PMID: 38667165 PMCID: PMC11048118 DOI: 10.3390/bios14040172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
The exploration into nanomaterial-based nonenzymatic biosensors with superb performance in terms of good sensitivity and anti-interference ability in disease marker monitoring has always attained undoubted priority in sensing systems. In this work, we report the design and synthesis of a highly active nanocatalyst, i.e., palladium and platinum nanoparticles (Pt&Pd-NPs) decorated ultrathin nanoporous gold (NPG) film, which is modified on a homemade graphene paper (GP) to develop a high-performance freestanding and flexible nanohybrid electrode. Owing to the structural characteristics the robust GP electrode substrate, and high electrochemically catalytic activities and durability of the permeable NPG support and ultrafine and high-density Pt&Pd-NPs on it, the resultant Pt&Pd-NPs-NPG/GP electrode exhibits excellent sensing performance of low detection limitation, high sensitivity and anti-interference capability, good reproducibility and long-term stability for the detection of small molecular biomarkers hydrogen peroxide (H2O2) and glucose (Glu), and has been applied to the monitoring of H2O2 in different types of live cells and Glu in body fluids such as urine and fingertip blood, which is of great significance for the clinical diagnosis and prognosis in point-of-care testing.
Collapse
Affiliation(s)
- Encheng Sun
- Technology Inspection Center of Shengli Oilfield Branch, Sinopec (Shandong) Testing and Evaluation Research Co. Ltd., China Petrochemical Corporation, Dongying 257000, China; (E.S.); (H.L.); (X.L.); (Y.L.)
- Sinopec (Shandong) Testing and Evaluation Research Co. Ltd., China Petrochemical Corporation, Dongying 257000, China
| | - Zhenqi Gu
- Technology Inspection Center of Shengli Oilfield Branch, Sinopec (Shandong) Testing and Evaluation Research Co. Ltd., China Petrochemical Corporation, Dongying 257000, China; (E.S.); (H.L.); (X.L.); (Y.L.)
| | - Haoran Li
- Technology Inspection Center of Shengli Oilfield Branch, Sinopec (Shandong) Testing and Evaluation Research Co. Ltd., China Petrochemical Corporation, Dongying 257000, China; (E.S.); (H.L.); (X.L.); (Y.L.)
| | - Xiao Liu
- Technology Inspection Center of Shengli Oilfield Branch, Sinopec (Shandong) Testing and Evaluation Research Co. Ltd., China Petrochemical Corporation, Dongying 257000, China; (E.S.); (H.L.); (X.L.); (Y.L.)
| | - Yuan Li
- Technology Inspection Center of Shengli Oilfield Branch, Sinopec (Shandong) Testing and Evaluation Research Co. Ltd., China Petrochemical Corporation, Dongying 257000, China; (E.S.); (H.L.); (X.L.); (Y.L.)
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Jiang Y, Cao Y, Wu J, Bai R, Wan S, Dai L, Su J, Sun H. Au nanozyme-based multifunctional hydrogel for inflammation visible monitoring and treatment. Mater Today Bio 2024; 25:100960. [PMID: 38322658 PMCID: PMC10844747 DOI: 10.1016/j.mtbio.2024.100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Chronic inflammation can delay wound healing, eventually leading to tissue necrosis and even cancer. Developing real-time intelligent inflammation monitoring and treatment to achieve effective wound management is important to promote wound healing. In this study, a smart multifunctional hydrogel (Hydrogel@Au NCs&DG) was proposed to monitor and treat the wound inflammation. It was prepared by mixing 3-carboxy-phenylboronic acid modified chitosan (CS-cPBA), β-glycerophosphate (β-GP), albumin-protected gold nanoclusters (BSA-Au NCs), and dipotassium glycyrrhizinate (DG) about 10 s. In this hydrogel, CS-cPBA and β-GP are crosslinked together by boric acid ester bond and hydrogen bond to form the main hydrogel network, endowing the hydrogel with self-healing and injectable properties to adapt irregular wounds. Importantly, the as-prepared hydrogel with good biocompatibility and excellent adhesion property could directly determine the H2O2 to monitor the wound microenvironment by visible fluorescence change of BSA-Au NCs and then guide the frequency of dressing change to eliminate inflammation. The results demonstrated that the as-prepared smart hydrogel could be expected to serve as an intelligent wound dressing to promote inflammation-infected wound healing.
Collapse
Affiliation(s)
- Yunjing Jiang
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Yuyu Cao
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Jie Wu
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Rongxian Bai
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Shufan Wan
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Lei Dai
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Jiangtao Su
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| | - Hongmei Sun
- Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food, Hubei University of Technology, Wuhan, 430068, China
| |
Collapse
|
7
|
Sun H, Xu Q, Ren M, Kong F. A biocompatible chitosan-based fluorescent polymer for efficient H 2O 2 detection in living cells and water samples. Int J Biol Macromol 2024; 257:128760. [PMID: 38103662 DOI: 10.1016/j.ijbiomac.2023.128760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
As a biomarker of oxidative stress, hydrogen peroxide (H2O2) plays a complex role in organisms, including regulating cell signaling, respiration, the immune system, and other life processes. Therefore, it is important to develop a tool that can simply and effectively monitor H2O2 levels in organisms and the environment. In this work, naphthalene fluorophores with a borate structure were introduced into chitosan (CTS) azide, and a CTS-based fluorescence sensor (CTS-HP) was designed for sensitive H2O2 detection. The biocompatibility and degradability of CTS endowed CTS-HP with reduced biotoxicity compared with organic fluorescent dyes, and the substitution degree of fluorophores on the CTS chains was 0.703. The randomly coiled chain structure of the CTS-HP probe enabled the boronic acid recognition sites on the fluorophores to achieve the enrichment of analyte H2O2 through a synergistic effect. Therefore, the probe CTS-HP (10 μg mL-1) exhibited a 21-fold fluorescence enhancement and good detection limit (LOD = 8.98 nM) in H2O2 solution, reaching the maximum fluorescence response faster (within 16 min). The probe also successfully achieved the fluorescence imaging of endogenous and exogenous H2O2 in zebrafish and living cells and labeled the recovery experiment of H2O2 in real water samples (recoveries rates of 90.93-102.9 % and RSD < 3.09 %).
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Qingyu Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Mingguang Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
8
|
Zhu C, Lu Y, Peng W, Gao H, Cao X, Su M, Wu Z, Huo X, Yu C. Stretchable Sponge-Based Electrochemical Biosensor for Real-Time Sensing of Cells in Three-Dimensional Culture. Anal Chem 2023; 95:16885-16891. [PMID: 37937709 DOI: 10.1021/acs.analchem.3c02676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
For the study of cell biology, real-time information on cell physiological processes will be more accurate and closer to the in vivo condition in a three-dimensional (3D) culture system. Although most reported 3D cell culture scaffolds can better mimic the in vivo dynamic microenvironment, the real-time analysis technique is deficient or lacking. Herein, a stretchable and conductive 3D scaffold is developed to construct an electrochemical biosensor for real-time monitoring of cell release in 3D culture under stimulation of drug stimulant and mechanical force. In our design, the polyurethane sponge (PU) dipped with conductive carbon ink (CC/PU) was used as a conductive scaffold, and gold nanoparticles (nano-Au) were electrodeposited on the CC/PU (nano-Au CC/PU) to improve the electrochemical sensing performance. The prepared nano-Au CC/PU scaffold exhibits a good electrocatalytic ability to H2O2 with a linear range from 20 nM to 43 μM. Due to the great biocompatibility, HeLa cells can be cultured directly on the nano-Au CC/PU and the in situ and real-time tracking of H2O2 secretion from cells was achieved. The results demonstrate that both the drug stimulant and mechanical force can rapidly activate the release of reactive oxygen species. This study indicates that the stretchable 3D sensing scaffold has good potential for cell biology research in an in vivo-like microenvironment and can be extensively used in the fields of tissue engineering, drug screening, and pathological research.
Collapse
Affiliation(s)
- Cailing Zhu
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| | - Yanling Lu
- Qidong Hospital of Traditional Chinese Medicine, Qidong, Jiangsu 226200, China
| | - Wenjing Peng
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| | - Hui Gao
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| | - Xiaoqing Cao
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| | - Mengjie Su
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| | - Zengqiang Wu
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| | - Xiaolei Huo
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| | - Chunmei Yu
- School of Public Health, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
9
|
Silveri F, Paolini D, Della Pelle F, Bollella P, Scroccarello A, Suzuki Y, Fukawa E, Sowa K, Di Franco C, Torsi L, Compagnone D. Lab-made flexible third-generation fructose biosensors based on 0D-nanostructured transducers. Biosens Bioelectron 2023; 237:115450. [PMID: 37343312 DOI: 10.1016/j.bios.2023.115450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023]
Abstract
Herein, we report a scalable benchtop electrode fabrication method to produce highly sensitive and flexible third-generation fructose dehydrogenase amperometric biosensors based on water-dispersed 0D-nanomaterials. The electrochemical platform was fabricated via Stencil-Printing (StPE) and insulated via xurography. Carbon black (CB) and mesoporous carbon (MS) were employed as 0D-nanomaterials promoting an efficient direct electron transfer (DET) between fructose dehydrogenase (FDH) and the transducer. Both nanomaterials were prepared in water-phase via a sonochemical approach. The nano-StPE exhibited enhanced electrocatalytic currents compared to conventional commercial electrodes. The enzymatic sensors were exploited for the determination of D-fructose in model solutions and various food and biological samples. StPE-CB and StPE-MS integrated biosensors showed appreciable sensitivity (∼150 μA cm-2 mM-1) with μmolar limit of detection (0.35 and 0.16 μM, respectively) and extended linear range (2-500 and 1-250 μM, respectively); the selectivity of the biosensors, ensured by the low working overpotential (+0.15 V), has been also demonstrated. Good accuracy (recoveries between 95 and 116%) and reproducibility (RSD ≤8.6%) were achieved for food and urine samples. The proposed approach because of manufacturing versatility and the electro-catalytic features of the water-nanostructured 0D-NMs opens new paths for affordable and customizable FDH-based bioelectronics.
Collapse
Affiliation(s)
- Filippo Silveri
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100 Teramo, Italy
| | - Davide Paolini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100 Teramo, Italy
| | - Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100 Teramo, Italy.
| | - Paolo Bollella
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; Centre for Colloid and Surface Science - University of Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy
| | - Annalisa Scroccarello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100 Teramo, Italy
| | - Yohei Suzuki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Eole Fukawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Keisei Sowa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Cinzia Di Franco
- Istituto di Fotonica e Nanotecnologie CNR, C/o Dipartimento Interateneo di Fisica, University of Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy
| | - Luisa Torsi
- Department of Chemistry, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; Centre for Colloid and Surface Science - University of Bari Aldo Moro, Via Edoardo Orabona 4, 70125 Bari, Italy; Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku Finland
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" Via R. Balzarini 1, 64100 Teramo, Italy.
| |
Collapse
|
10
|
Chen C, Ran B, Liu B, Liu X, Zhang Z, Li Y, Li H, Lan M, Zhu Y. Multiplexed detection of biomarkers using a microfluidic chip integrated with mass-producible micropillar array electrodes. Anal Chim Acta 2023; 1272:341450. [PMID: 37355325 DOI: 10.1016/j.aca.2023.341450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023]
Abstract
Quantifying multiple biomarkers with high sensitivity in tiny biological samples is essential to meet the growing demand for point-of-care testing. This paper reports the development of a novel microfluidic device integrated with mass-producible micropillar array electrodes (μAEs) for multiple biomarker detections. The μAE are mass-fabricated by soft lithography and hot embossing technique. Pt-Pd bimetallic nanoclusters (BNC) are modified on the surface of μAEs by constant potential (CP)/multi-potential step (MPS) electrodeposition strategies to improve the electroanalytical performance. The experimental result displays that Pt-Pd BNC/μAEs have good sensitivity enhancement compared with bare planar electrodes and bare μAEs, the enhancement being 56.5 and 9.5 times respectively, from the results of the H2O2 detection. Furthermore, glucose, uric acid and sarcosine were used as model biomarkers to show the biosensing capability with high sensitivity. The linear range and LOD of the glucose, uric acid and sarcosine detection are 0.1 mM-12 mM, 10 μM-800 μM and 2.5 μM-100 μM, 58.5, 3.4 and 0.4 μM, respectively. In particular, biosensing chips show wide linear ranges covering required detection ranges of glucose, uric acid and sarcosine in human serum, indicating the developed device has great potential in self-health management and clinical requirements.
Collapse
Affiliation(s)
- Chaozhan Chen
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Bin Ran
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Bo Liu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Xiaoxuan Liu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Ziteng Zhang
- Shenzhen Third People's Hospital, Shenzhen, 518112, PR China
| | - Yan Li
- Shenzhen Third People's Hospital, Shenzhen, 518112, PR China
| | - Hongchun Li
- Shenzhen Third People's Hospital, Shenzhen, 518112, PR China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yonggang Zhu
- School of Science, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China; Center for Microflows and Nanoflows, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China.
| |
Collapse
|
11
|
Hernández-Rodríguez JF, López MÁ, Rojas D, Escarpa A. Digital manufacturing for accelerating organ-on-a-chip dissemination and electrochemical biosensing integration. LAB ON A CHIP 2022; 22:4805-4821. [PMID: 36342332 DOI: 10.1039/d2lc00499b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organ on-a-chip (OoC) is a promising technology that aims to recapitulate human body pathophysiology in a more precise way to advance in drug development and complex disease understanding. However, the presence of OoC in biological laboratories is still limited and mainly restricted to laboratories with access to cleanroom facilities. Besides, the current analytical methods employed to extract information from the organ models are endpoint and post facto assays which makes it difficult to ensure that during the biological experiment the cell microenvironment, cellular functionality and behaviour are controlled. Hence, the integration of real-time biosensors is highly needed and requested by the OoC end-user community to provide insight into organ function and responses to stimuli. In this context, electrochemical sensors stand out due to their advantageous features like miniaturization capabilities, ease of use, automatization and high sensitivity and selectivity. Electrochemical sensors have been already successfully miniaturized and employed in other fields such as wearables and point-of-care devices. We have identified that the explanation for this issue may be, to a large extent, the accessibility to microfabrication technologies. These fields employ preferably digital manufacturing (DM), which is a more accessible microfabrication approach regardless of funding and facilities. Therefore, we envision that a paradigm shift in microfabrication that adopts DM instead of the dominating soft lithography for the in-lab microfabrication of OoC devices will contribute to the dissemination of the field and integration of the promising real-time sensing.
Collapse
Affiliation(s)
- Juan F Hernández-Rodríguez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain.
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain.
- Chemical Engineering and Chemical Research Institute "Andres M. Del Río", University of Alcalá, Madrid, Spain
| | - Daniel Rojas
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain.
- Chemical Engineering and Chemical Research Institute "Andres M. Del Río", University of Alcalá, Madrid, Spain
| |
Collapse
|
12
|
Yu Y, Pan M, Peng J, Hu D, Hao Y, Qian Z. A review on recent advances in hydrogen peroxide electrochemical sensors for applications in cell detection. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Tango R, Koeda A, Nagamine K, Tokito S, Niwa O, Ishikawa S, Sugimoto M. Development of a highly sensitive Prussian-blue-based enzymatic biosensor for L-carnitine employing the thiol/disulfide exchange reaction. ANAL SCI 2022; 38:963-968. [PMID: 35578012 DOI: 10.1007/s44211-022-00122-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/23/2022] [Indexed: 11/01/2022]
Abstract
This is the first report of conducting proof-of-concept study for amperometric acetyltransferase-based L-carnitine sensor by employing the thiol/disulfide exchange reaction. The carnitine acetyltransferase (CrAT) catalyzes the reaction between acetyl-CoA and L-carnitine to produce CoA which is difficult to detect directly by electrochemical methods owing to steric hindrance and electrostatic effect of CoA. The thiol/disulfide exchange reaction between CoA and cystamine was mediated in the enzymatic reaction to produce electrochemically detectable low molecular weight of cationic cysteamine. The sensor exhibited high sensitivity and selectivity for L-carnitine in the concentration range 0.28-50 µM with a limit of detection of 0.28 µM. This is a promising strategy for L-carnitine sensing in point-of-care testing applications.
Collapse
Affiliation(s)
- Ryota Tango
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Yamagata, Japan
| | - Aya Koeda
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Yamagata, Japan
| | - Kuniaki Nagamine
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Yamagata, Japan.
| | - Shizuo Tokito
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, Yonezawa, 992-8510, Yamagata, Japan
| | - Osamu Niwa
- Saitama Institute of Technology, 1690, Fusaiji, Fukaya, 369-0293, Saitama, Japan
| | - Shigeo Ishikawa
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, 2-2-2, lida-nishi, Yamagata, 990-9585, Japan
| | - Masahiro Sugimoto
- Research and Development Center for Minimally Invasive Therapies, Institute of Medical Science, Tokyo Medical University, 6-1-1, Shinjuku, Tokyo, 160-0023, Japan
| |
Collapse
|
14
|
Zhang N, Song Z, Sun H, Shi Z, Li C, Guo C. Imidazole-induced manganese oxide nanocrystals on carbon nanofiber hybridized with gold nanoparticles as bifunctional biomimetic enzyme in live-cell assays. J Colloid Interface Sci 2022; 614:288-297. [DOI: 10.1016/j.jcis.2022.01.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
15
|
Dong Q, Jia X, Wang Y, Wang H, Liu Q, Li D, Wang J, Wang E. Sensitive and selective detection of Mucin1 in pancreatic cancer using hybridization chain reaction with the assistance of Fe 3O 4@polydopamine nanocomposites. J Nanobiotechnology 2022; 20:94. [PMID: 35197099 PMCID: PMC8867748 DOI: 10.1186/s12951-022-01289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Pancreatic cancer is characterized as the worst for diagnosis lacking symptoms at the early stage, which results in a low overall survival rate. The frequently used techniques for pancreatic cancer diagnosis rely on imaging and biopsy, which have limitations in requiring experienced personnel to operate the expensive instruments and analyze the results. Therefore, there is a high demand to develop alternative tools or methods to detect pancreatic cancer. Herein, we propose a new strategy to enhance the detection sensitivity of pancreatic cancer cells both in biofluids and on tissues by combining the unique property of dopamine coated Fe3O4 nanoparticles (Fe3O4@DOP NPs) to specifically quench and separate free 6-carboxyfluorescein (FAM) labeled DNA (H1-FAM/H2-FAM), and the key feature of hybridization chain reaction (HCR) amplification. We have determined the limit of detection (LOD) to be 21 ~ 41 cells/mL for three different pancreatic cancer cell lines. It was also discovered that the fluorescence intensity of pancreatic cancer cells was significantly higher than that of HPDE-C7 and HepG-2 cells (control cell lines), which express lower MUC1 protein. Moreover, the HCR amplification system was used to identify the cancer cells on pancreatic tissue, which indicated the versatility of our strategy in clinical application. Therefore, the presented detection strategy shows good sensitivity, specificity and has great potential for the diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Qing Dong
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Xiuna Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Yuling Wang
- ARC Centre of Excellence for Nanoscale BioPhotonics, Department of Molecular Sciences, Macquarie University, Sydney, 2109, Australia
| | - Hao Wang
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China.
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA.
| | - Erkang Wang
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| |
Collapse
|
16
|
Rojas D, Hernández-Rodríguez JF, Della Pelle F, Escarpa A, Compagnone D. New trends in enzyme-free electrochemical sensing of ROS/RNS. Application to live cell analysis. Mikrochim Acta 2022; 189:102. [DOI: 10.1007/s00604-022-05185-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022]
|
17
|
Habibi MM, Mousavi M, Shadman Z, Ghasemi JB. Preparation of a nonenzymatic electrochemical sensor based on g-C3N4/MWO4 (M: Cu, Mn, Co, Ni) composite for the determination of H2O2. NEW J CHEM 2022. [DOI: 10.1039/d1nj05711a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen peroxide (H2O2) has a significant effect on physiological proceedings. In the present research, a g-C3N4-based nanocomposite g-C3N4/MWO4(M: Cu, Mn, Co, Ni) was prepared via the precipitation-calcination method. A...
Collapse
|
18
|
Liu J, Lu W, Lu X, Zhang L, Dong H, Li Y. Versatile Ti 3C 2T x MXene for free-radical scavenging. NANO RESEARCH 2022; 15:2558-2566. [PMID: 34518776 PMCID: PMC8427154 DOI: 10.1007/s12274-021-3751-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 05/04/2023]
Abstract
UNLABELLED MXene, as an emerging two-dimensional (2D) material with ultrathin structure and fascinating physiochemical properties, has been widely explored in broad applications. Versatile functions of MXenes are continuously explored. This work presents distinctive feature of MXene-Ti3C2T x nanosheets for free-radical (FRs) scavenging that never reported before. We demonstrated the mechanism and equation in regard to the reaction between Ti3C2T x and H2O2, which was applied to design colorimetric H2O2 strip assay with good performance. The good FRs scavenging capability of Ti3C2T x , including a series of reactive oxygen species (ROS) and reactive nitrogen species (RNS), was systemically confirmed. The antioxidation capability of Ti3C2T x for protecting cells from oxidative damage was demonstrated using the oxidative damage model of alpha mouse liver 12 (AML-12) cells. This original work provides huge opportunities for MXenes in FR-related biomedical applications. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (further details of the experimental procedures, investigation of the reaction between Ti3C2T x and other oxidants, the characterization of endocytosis of cells for Ti3C2T x , and the comparison of different antioxidants for scavenging free radicals) is available in the online version of this article at 10.1007/s12274-021-3751-y.
Collapse
Affiliation(s)
- Jiang Liu
- Flexible Printed Electronics Technology Center and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
| | - Wei Lu
- Flexible Printed Electronics Technology Center and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
| | - Xifeng Lu
- Department of Physiology, Health Science Center, Shenzhen University, Shenzhen, 518055 China
| | - Lu Zhang
- Flexible Printed Electronics Technology Center and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, Shenzhen, 518055 China
| | - Yingchun Li
- Flexible Printed Electronics Technology Center and School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
| |
Collapse
|
19
|
Silveri F, Della Pelle F, Rojas D, Bukhari QUA, Ferraro G, Fratini E, Compagnone D. (+)-Catechin-assisted graphene production by sonochemical exfoliation in water. A new redox-active nanomaterial for electromediated sensing. Mikrochim Acta 2021; 188:369. [PMID: 34618244 DOI: 10.1007/s00604-021-05018-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/03/2021] [Indexed: 01/21/2023]
Abstract
A new green and effective sonochemical liquid-phase exfoliation (LPE) is proposed wherein a flavonoid compound, catechin (CT), promotes the formation of conductive, redox-active, water-phase stable graphene nanoflakes (GF). To maximize the GF-CT redox activity, the CT concentration and sonication time have been studied, and the best performing nanomaterial-fraction selected. Physicochemical and electrochemical methods have been employed to characterize the morphological, structural, and electrochemical features of the GF-CT nanoflakes. The obtained GF intercalated with CT exhibits fully reversible electrochemistry (ΔEp = 28 mV, ipa/ipc = ⁓1) because of the catecholic adducts. GF-CT-integrated electrochemistry was generated directly during LPE of graphite, with no need of graphene oxide production, nor activation steps, electropolymerization, or ex-post functionalization. The GF-CT electro-mediator ability has been proven towards hydrazine (HY) and β-nicotinamide adenine dinucleotide (NADH) by simply drop-casting the redox-material onto screen-printed electrodes. GF-CT-based electrodes by using amperometry exhibited high sensitivity and extended linear ranges (HY: LOD = 0.1 µM, L.R. 0.5-150 µM; NADH: LOD = 0.6 µM, L.R. 2.5-200 µM) at low overpotential (+ 0.15 V) with no electrode fouling. The GF-CT electrodes are performing significantly better than commercial graphite electrodes and graphene nanoflakes exfoliated with a conventional surfactant, such as sodium cholate. Recoveries of 94-107% with RSD ≤ 8% (n = 3) for determination of HY and NADH in environmental and biological samples were achieved, proving the material functionality also in challenging analytical media. The presented GF-CT is a new functional redox-active material obtainable with a single-pot sustainable strategy, exhibiting standout properties particularly prone to (bio)sensors and cutting-edge device development.
Collapse
Affiliation(s)
- Filippo Silveri
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Flavio Della Pelle
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy.
| | - Daniel Rojas
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Qurat Ul Ain Bukhari
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy
| | - Giovanni Ferraro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3-Sesto Fiorentino, 50019, Florence, Italy
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via Della Lastruccia 3-Sesto Fiorentino, 50019, Florence, Italy
| | - Dario Compagnone
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Campus "Aurelio Saliceti" via R. Balzarini 1, 64100, Teramo, Italy.
| |
Collapse
|
20
|
Zhang W, Li Y, Shi C, Qi R, Hu M. Single-Crystal Lattice Filling in Connected Spaces inside 3D Networks. J Am Chem Soc 2021; 143:6447-6459. [PMID: 33878868 DOI: 10.1021/jacs.0c12545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Connected vessel effects have been widely utilized from ancient times. It is quite interesting to know whether there are any special effects when single-crystal lattices fill the connected spaces inside 3D networks. In some single-crystal and 3D network pairs, there seems to exist a specific rule: when single-crystal lattices fill the connected spaces inside 3D networks, the front of the lattice in each channel is determined by the symmetrical center of the lattice structure. However, this needs to be validated by using various single-crystal lattice to fill the 3D networks with different compositions. Here we report a method to establish a gradient environment which can favor the formation of a micrometer-sized single crystal lattice across various 3D networks. The fronts of the filled lattices form the shapes which are the equilibrium shapes of the single crystals no matter what the single crystals or the 3D networks are, indicating the specific rule while the single-crystal lattices fill the 3D networks. The single crystals filled in the connected spaces inside 3D networks, which are functional materials, and had alternating properties, such as 4-fold higher electronic conductivity, which improve their performance in applications.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yucen Li
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Chunjing Shi
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ruijuan Qi
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ming Hu
- State Key Laboratory of Precision Spectroscopy (East China Normal University), Key Laboratory of Polar Materials and Devices, Ministry of Education, Engineering Research Center for Nanophotonics and Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
21
|
Hernández-Rodríguez JF, Rojas D, Escarpa A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal Chem 2020; 93:167-183. [PMID: 33174738 DOI: 10.1021/acs.analchem.0c04378] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan F Hernández-Rodríguez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Daniel Rojas
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Chemical Research Institute Andres M. del Rio, University of Alcalá, E-28871 Madrid, Spain
| |
Collapse
|