1
|
Lu T, Ji S, Jin W, Yang Q, Luo Q, Ren TL. Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. SENSORS (BASEL, SWITZERLAND) 2023; 23:2991. [PMID: 36991702 PMCID: PMC10054135 DOI: 10.3390/s23062991] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 06/19/2023]
Abstract
Sensors enable the detection of physiological indicators and pathological markers to assist in the diagnosis, treatment, and long-term monitoring of diseases, in addition to playing an essential role in the observation and evaluation of physiological activities. The development of modern medical activities cannot be separated from the precise detection, reliable acquisition, and intelligent analysis of human body information. Therefore, sensors have become the core of new-generation health technologies along with the Internet of Things (IoTs) and artificial intelligence (AI). Previous research on the sensing of human information has conferred many superior properties on sensors, of which biocompatibility is one of the most important. Recently, biocompatible biosensors have developed rapidly to provide the possibility for the long-term and in-situ monitoring of physiological information. In this review, we summarize the ideal features and engineering realization strategies of three different types of biocompatible biosensors, including wearable, ingestible, and implantable sensors from the level of sensor designing and application. Additionally, the detection targets of the biosensors are further divided into vital life parameters (e.g., body temperature, heart rate, blood pressure, and respiratory rate), biochemical indicators, as well as physical and physiological parameters based on the clinical needs. In this review, starting from the emerging concept of next-generation diagnostics and healthcare technologies, we discuss how biocompatible sensors revolutionize the state-of-art healthcare system unprecedentedly, as well as the challenges and opportunities faced in the future development of biocompatible health sensors.
Collapse
Affiliation(s)
- Tian Lu
- School of Integrated Circuit and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Shourui Ji
- School of Integrated Circuit and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qisheng Yang
- School of Integrated Circuit and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tian-Ling Ren
- School of Integrated Circuit and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Sun Z, Yang L, Xu C, Cai C, Li L. Zwitterionic nanocapsules with pH- and thermal- responsiveness for drug-controlled release. NANOTECHNOLOGY 2023; 34:155101. [PMID: 36630705 DOI: 10.1088/1361-6528/acb215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The construction of an environmentally responsive drug-release system is of great significance for the treatment of special diseases. In particular, the construction of nanomaterials with pH- and thermal-responsiveness, which can effectively encapsulate drugs and control drug release, is becoming hot research. In this study, zwitterionic nanocapsules with stable core-shell structures were synthesized by inverse reversible addition-fragmentation transfer miniemulsion interfacial polymerization. To further study the structure and performance of the nanocapsules, the prepared nanocapsules were characterized by transmission electron microscopy, dynamic light dispersion, and zeta potential analysis. It was found that the nanocapsules had dual pH- and thermal- responsiveness, and the average particle size ranged from 178 to 142 nm when the temperature changed from 25 °C to 40 °C. In addition, bovine serum albumin (BSA) was encapsulated into nanocapsules, and sustained release experiments were conducted at 10 °C and 40 °C. The results showed that nanocapsules as carriers of BSA could achieve the purpose of sustained release of drugs, and showed different sustained release curves at different temperatures. Finally,in vitrocytotoxicity tests were performed to demonstrate the feasibility of their biomedical application. It is believed that the dual pH- and thermal- responsive nanocapsules are promising for drug-controlled release.
Collapse
Affiliation(s)
- Zhijuan Sun
- The Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, People's Republic of China
| | - Lei Yang
- The Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, People's Republic of China
| | - Chenchen Xu
- The Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, People's Republic of China
| | - Chenxin Cai
- The Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, People's Republic of China
| | - Li Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital(Affiliated People's Hospital, Hangzhou Medical College), Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou, Zhejiang Province 310014, People's Republic of China
| |
Collapse
|
3
|
Enzymatic biosensor based on dendritic gold nanostructure and enzyme precipitation coating for glucose sensing and detection. Enzyme Microb Technol 2023; 162:110132. [DOI: 10.1016/j.enzmictec.2022.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
|
4
|
Ma T, Mu W, Meng J, Song Q, Liu W, Wen D. Site-directed capture of laccase at edge-rich graphene via an interfacial hydrophobicity effect for direct electrochemistry study. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Kim S, Haque AMJ, Ahn K, Wee Y, Hwang H, Huh Y, Bang J, Kim J, Kim J. Controlled growth of redox polymer network on single enzyme molecule for stable and sensitive enzyme electrode. Biosens Bioelectron 2022; 215:114576. [PMID: 35863134 DOI: 10.1016/j.bios.2022.114576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
The electrochemical applications of enzymes are often hampered by poor enzyme stability and low electron conductivity. In this work, a novel enzyme nanogel based on atom transfer radical polymerization (ATRP) has been developed for highly sensitive detection of glucose based on ferrocene (Fc) embedded in crosslinked polymer network nanogel. Enzyme surfaces are successively modified with Br initiator, and then in situ atom transfer radical polymerization (ATRP) was performed to build up crosslinked polyacrylamide network. The resulting single enzyme nanogel (ATRP-SEG) is uniform in size fairly. ATRP-SEG reveals bi-phasic inactivation, and the half-life of stable ATRP-SEG after 18-day incubation at 50 °C is 47 days, which is 197 times longer than that of free Gox (5.7 h). By introducing a ferrocene (Fc) containing redox polymer, poly(acrylamide-co-vinylferrocene), the half-life of Fc-ATRP-SEG after 18-day incubation at 50 °C is 49 days. Fc-ATRP-SEG is used for preparation of glucose-sensing electrode, and the sensitivity of Fc-ATRP-SEG electrode is 111 μA cm-2 mM-1, which is 366 and 1270 times higher than those of free GOx (0.303 μA cm-2 mM-1) and ATRP-SEG (0.0874 μA cm-2 mM-1), respectively. Fc-ATRP-SEG electrode maintained 90% of initial current density under 4 °C storage condition and repetitive usages every day for 7 days. Even the electrode repeatedly used in continuous harsh condition (250 rpm, room temperature), the current density maintained 96% after 12 h incubation at operational condition.
Collapse
Affiliation(s)
- Seungkeun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | | | - Kyungmin Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Youngho Wee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyojin Hwang
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yoon Huh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Mostafa-Hedeab G, Allayeh AK, Elhady HA, Eledrdery AY, Mraheil MA, Mostafa A. Viral Eco-Genomic Tools: Development and Implementation for Aquatic Biomonitoring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7707. [PMID: 35805367 PMCID: PMC9265447 DOI: 10.3390/ijerph19137707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/17/2022]
Abstract
Enteric viruses (EVs) occurrence within aquatic environments varies and leads to significant risk on public health of humans, animals, and diversity of aquatic taxa. Early and efficacious recognition of cultivable and fastidious EVs in aquatic systems are important to ensure the sanitary level of aquatic water and implement required treatment strategies. Herein, we provided a comprehensive overview of the conventional and up-to-date eco-genomic tools for aquatic biomonitoring of EVs, aiming to develop better water pollution monitoring tools. In combination with bioinformatics techniques, genetic tools including cloning sequencing analysis, DNA microarray, next-generation sequencing (NGS), and metagenomic sequencing technologies are implemented to make informed decisions about the global burden of waterborne EVs-associated diseases. The data presented in this review are helpful to recommend that: (1) Each viral pollution detection method has its own merits and demerits; therefore, it would be advantageous for viral pollution evaluation to be integrated as a complementary platform. (2) The total viral genome pool extracted from aquatic environmental samples is a real reflection of pollution status of the aquatic eco-systems; therefore, it is recommended to conduct regular sampling through the year to establish an updated monitoring system for EVs, and quantify viral peak concentrations, viral typing, and genotyping. (3) Despite that conventional detection methods are cheaper, it is highly recommended to implement molecular-based technologies to complement aquatic ecosystems biomonitoring due to numerous advantages including high-throughput capability. (4) Continuous implementation of the eco-genetic detection tools for monitoring the EVs in aquatic ecosystems is recommended.
Collapse
Affiliation(s)
- Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Skaka 11564, Saudi Arabia
| | - Abdou Kamal Allayeh
- Water Pollution Department, Virology Laboratory, National Research Centre, Dokki, Giza 12622, Egypt;
| | | | - Abozer Y. Eledrdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 11564, Saudi Arabia;
| | - Mobarak Abu Mraheil
- German Center for Infection Research (DZIF), Institute of Medical Microbiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
7
|
Xu C, Li G, Zhou M, Hu Z. Carbon nanorods assembled coral-like hierarchical meso-macroporous carbon as sustainable materials for efficient biosensing and biofuel cell. Anal Chim Acta 2022; 1220:339994. [DOI: 10.1016/j.aca.2022.339994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/01/2022]
|
8
|
Mini-Review: Recent Technologies of Electrode and System in the Enzymatic Biofuel Cell (EBFC). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Enzymatic biofuel cells (EBFCs) is one of the branches of fuel cells that can provide high potential for various applications. However, EBFC has challenges in improving the performance power output. Exploring electrode materials is one way to increase enzyme utilization and lead to a high conversion rate so that efficient enzyme loading on the electrode surface can function correctly. This paper briefly presents recent technologies developed to improve bio-catalytic properties, biocompatibility, biodegradability, implantability, and mechanical flexibility in EBFCs. Among the combinations of materials that can be studied and are interesting because of their properties, there are various nanoparticles, carbon-based materials, and conductive polymers; all three have the advantages of chemical stability and enhanced electron transfer. The methods to immobilize enzymes, and support and substrate issues are also covered in this paper. In addition, the EBFC system is also explored and developed as suitable for applications such as self-pumping and microfluidic EBFC.
Collapse
|
9
|
Rong G, Zheng Y, Sawan M. Energy Solutions for Wearable Sensors: A Review. SENSORS 2021; 21:s21113806. [PMID: 34072770 PMCID: PMC8197793 DOI: 10.3390/s21113806] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Wearable sensors have gained popularity over the years since they offer constant and real-time physiological information about the human body. Wearable sensors have been applied in a variety of ways in clinical settings to monitor health conditions. These technologies require energy sources to carry out their projected functionalities. In this paper, we review the main energy sources used to power wearable sensors. These energy sources include batteries, solar cells, biofuel cells, supercapacitors, thermoelectric generators, piezoelectric and triboelectric generators, and radio frequency (RF) energy harvesters. Additionally, we discuss wireless power transfer and some hybrids of the above technologies. The advantages and drawbacks of each technology are considered along with the system components and attributes that make these devices function effectively. The objective of this review is to inform researchers about the latest developments in this field and present future research opportunities.
Collapse
Affiliation(s)
- Guoguang Rong
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou 310024, China; (G.R.); (Y.Z.)
- CenBRAIN Lab., Institute for Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuqiao Zheng
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou 310024, China; (G.R.); (Y.Z.)
- CenBRAIN Lab., Institute for Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Mohamad Sawan
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou 310024, China; (G.R.); (Y.Z.)
- CenBRAIN Lab., Institute for Advanced Study, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Correspondence: ; Tel.: +86-571-8738-1206
| |
Collapse
|