1
|
Wang S, Liu B, Wu X, Jin Z, Zhu Y, Zhang L, Peng Y. Transfer Learning Empowered Multiple-Indicator Optimization Design for Terahertz Quasi-Bound State in the Continuum Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504855. [PMID: 40287969 DOI: 10.1002/advs.202504855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Terahertz metasurface biosensors based on the quasi-bound state in the continuum (QBIC) offer label-free, rapid, and ultrasensitive biomedical detection. Recent advances in deep learning facilitate efficient, fast, and customized design of such metasurfaces. However, prior approaches primarily establish one-to-one mappings between structure and optical response, neglecting the trade-offs among key performance indicators. This study proposes a pioneering method leveraging transfer learning to optimize multiple indicators in metasurface biosensor design. For the first time, multiple-indicator comprehensive optimization of the quality (Q) factor, figure of merit (FoM), and effective sensing area (ESA) is achieved. The two-stage transfer learning method pre-trains on low-dimensional datasets to extract shared features, followed by fine-tuning on complex, high-dimensional tasks. By adopting frequency shift as a unified criterion, the contribution ratios of these indicators are quantified as 26.09% for the Q factor, 48.42% for FoM, and 25.49% for ESA. Compared to conventional deep-learning approaches, the proposed method reduces data requirements by 50%. The biosensor designed using this method detects the biomarker homocysteine, achieving detection at the ng µL-1 level, with experimental results closely matching theoretical predictions. This work establishes a novel paradigm for metasurface biosensor design, paving the way for transformative advances in trace biological detection.
Collapse
Affiliation(s)
- Shengfeng Wang
- Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Shanghai Institute of Intelligent Science and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, Shanghai, 200093, China
| | - Bingwei Liu
- Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Shanghai Institute of Intelligent Science and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, Shanghai, 200093, China
| | - Xu Wu
- Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Shanghai Institute of Intelligent Science and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, Shanghai, 200093, China
| | - Zuanming Jin
- Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Shanghai Institute of Intelligent Science and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, Shanghai, 200093, China
| | - Yiming Zhu
- Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Shanghai Institute of Intelligent Science and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, Shanghai, 200093, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, 1239 Siping Road, Shanghai, Shanghai, 200092, China
| | - Linjie Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, 030006, China
| | - Yan Peng
- Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Shanghai Institute of Intelligent Science and Technology, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, Shanghai, 200093, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, 1239 Siping Road, Shanghai, Shanghai, 200092, China
| |
Collapse
|
2
|
Xu Z, Ma X, Ye J, Hou P, Yuan C, Pan L, Yang D, Li X, Wang P. Visual Detection and Identification of Influenza A Viruses by Nucleic Acid Probe-Enabled Lateral Flow Assay. Chembiochem 2025:e2500216. [PMID: 40267252 DOI: 10.1002/cbic.202500216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/23/2025] [Indexed: 04/25/2025]
Abstract
Diagnosis of influenza A viral infection is crucial for preventing disease transmission and providing effective clinical treatments. There is an increasing need for convenient detection methods to enable simple yet precise identification of viral infections. Herein, a nucleic acid probe-enabled lateral flow assay (NALFA) is developed to realize visual detection and identification of influenza A viral infections (H1N1 and H3N2) of high sensitivity and specificity. Viral RNA targets are recognized by a padlock probe, which is circularized to induce rolling circle amplification (RCA). RCA products are enzymatically cleaved into short amplicons to complex with capture DNA probes for gold colloidal-induced visual lateral flow assay. NALFA achieved attomolar (aM) sensitivity for both standard viral RNAs, along with high specificity. While applying clinical samples (16 H1N1 patients, 12 healthy controls), NALFA exhibited high detection accuracy to successfully discriminate infected samples from noninfected samples. NALFA represents a potent and convenient nucleic acid detection assay that shall find its applications in fields of viral detection and beyond.
Collapse
Affiliation(s)
- Zhihao Xu
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaowei Ma
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jing Ye
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Pengfei Hou
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Caiqing Yuan
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Pan
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xue Li
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Laboratory Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
3
|
Zhou Y, Liu Y, Zong Z, Huang H, Liang L, Yang X, Xin M, Tian H, Xie F, Jin W, Li J, Yang K. Rapid and sensitive detection of exosomal microRNAs by terahertz metamaterials. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125745. [PMID: 39855010 DOI: 10.1016/j.saa.2025.125745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Exosomal microRNAs (miRNAs) are among the most common biomarkers for tumor diagnosis. However, single-miRNA detection lacks ideal sensitivity and specificity for diagnosing a certain tumor in clinics. In this work, we fabricated a convenient multi-miRNA detection platform for sensitive and specific detection on exosomal miRNAs in the plasma of patients using a terahertz (THz) metamaterial biosensor on the basis of strand displacement amplification (SDA) and AuNPs. The proposed multi-miRNA detection platform was highly sensitive to miRNA-15, miRNA-21, miRNA-145, miRNA-155, miRNA-423, and miRNA-451, and the limit of detection (LOD) obtained were 12.54 aM, 19.66 aM, 17.50 aM, 25.40 aM, 24.11 aM and 26.59 aM, respectively. The biosensor we constructed can be used to diagnose pancreatic cancer patients effectively in complex clinical samples. The use of multiple miRNAs demonstrated strong practicality in the combined diagnosis of patients with pancreatic cancer. These studies demonstrate that the multi-RNA detection platform boasts advantages such as low cost, rapid, high sensitivity, and specificity, offering a potential tool for future clinical applications.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yu Liu
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400037, China
| | - Zhen Zong
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Honghao Huang
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Ling Liang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mei Xin
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fengxin Xie
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weidong Jin
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jining Li
- Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Ke Yang
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
4
|
Wu G, Yan F, Liang L, Du X, Wang W, Li T, Tian J, Yan X, Yao H, Wang Z, Wang M. Exciton-Photon Coupling Microcavity as a Selective Biosensing Platform for Nonlocal Terahertz Metamaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416951. [PMID: 40019356 PMCID: PMC12021031 DOI: 10.1002/advs.202416951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/28/2025] [Indexed: 03/01/2025]
Abstract
The strong-coupling microcavity between excitons and photons facilitates efficient modulation and control of light, as well as precise manipulation of photon propagation properties. This phenomenon demonstrates significant potential for diverse applications in quantum information processing, optical sensing, and nonlinear optics. The anapole, as a specific type of captured state, allows for effective control over the electromagnetic field through appropriate distributions of current and charge, generating substantial localized effects within the field. This mechanism provides a novel avenue for investigating the strong-coupling dynamics between photons and excitons in hybrid metamaterial sensing. Here, the rate of energy exchange between the excitons and the optical microcavity of the metamaterial is greater than their individual dissipation rates, resulting in significant Rabi splitting phenomena and pronounced anti-crossing behavior, ultimately forming an "ultrasensitive photoreactive region" suitable for sensing applications. Furthermore, the nonlocal metamaterial, characterized by strong light-matter coupling, can be integrated with functionalized colloidal gold and monoclonal tag antibodies to enable rapid multidimensional detection and identification of total prostate-specific antigen (tPSA) in complex environmental solutions. The proposed strong-coupling resonance microcavity plays a crucial role in the rapid evolution of nonlocal metamaterials, enhancing their applicability in molecular detection and selective recognition of fundamental light-matter interaction phenomena.
Collapse
Affiliation(s)
- Guifang Wu
- School of Electronic and Information EngineeringBeijing Jiaotong UniversityBeijing100044China
| | - Fengping Yan
- School of Electronic and Information EngineeringBeijing Jiaotong UniversityBeijing100044China
| | - Lanju Liang
- School of Opto‐electronic EngineeringZaozhuang UniversityZaozhuang277160China
| | - Xuemei Du
- Beijing Institute of Environmental CharacteristicsNational Key Laboratory of Scattering and RadiationBeijing100854China
| | - Wei Wang
- School of Semiconductor and PhysicsNorth University of ChinaTaiyuan030051China
| | - Ting Li
- School of Physical Science and EngineeringBeijing Jiaotong UniversityBeijing100044China
| | - Junping Tian
- Department of Cardiovascular MedicineBeijing Tiantan HospitalCapital Medical UniversityBeijing100070China
| | - Xin Yan
- School of Opto‐electronic EngineeringZaozhuang UniversityZaozhuang277160China
| | - Haiyun Yao
- School of Opto‐electronic EngineeringZaozhuang UniversityZaozhuang277160China
| | - Ziqun Wang
- School of Opto‐electronic EngineeringZaozhuang UniversityZaozhuang277160China
| | - Meng Wang
- School of Opto‐electronic EngineeringZaozhuang UniversityZaozhuang277160China
| |
Collapse
|
5
|
Zhang M, Jiang L, Wang S, Zhang S, Liu M, Zhang Y, Zhang H, Tian Z. Electrostatic enhanced terahertz metamaterial biosensing via gold nanoparticles integrated with biomolecules. Sci Rep 2025; 15:8585. [PMID: 40075221 PMCID: PMC11903864 DOI: 10.1038/s41598-025-93850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/10/2025] [Indexed: 03/14/2025] Open
Abstract
Terahertz spectroscopy has drawn great interest for the detection and characterization of biological matter, but its limited sensitivity to biomolecules with weak changes in dielectric properties with varying concentration has hinders potential bio-sensing applications. Here, a novel terahertz sensor was developed for enhancing the ability to detect biomolecules based on two electromagnetically induced transparency (EIT) metamaterials coupled with gold nanoparticles (AuNPs) integrated with biomolecules. The electrostatic interaction between AuNPs and positively charged biomolecules generates localized field enhancement at the biomolecule-metamaterial interface, resulting in a threefold increase in sensitivity for positively charged histidine that exhibit weak dielectric property changes with varying concentration. As a contrast, glucose shows a weaker effect due to its electrostatically neutral nature. Experimental studies reveal that by evaluating the modulation depth (MD) and modulation enhancement (ME) factors of the transmission peak for histidine and glucose in the presence of AuNPs, we achieve and enhance intuitive detection and discrimination of these biomolecules. Additionally, a two-EIT metamaterial with a 1 × 2 pixel array enables multiparameter imaging, visualizing the concentration and spatial distribution of biomolecules. Our results not only significantly improve the response sensitivity of biomolecules with weak dielectric properties in the terahertz domain, but also provide a new idea for developing high-sensitivity functionalized terahertz biosensors and advancing multi-biomolecular analysis and imaging techniques.
Collapse
Affiliation(s)
- Min Zhang
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Liwen Jiang
- Center for Terahertz Waves and Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Shuo Wang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Shoujun Zhang
- Center for Terahertz Waves and Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Meng Liu
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Yuping Zhang
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Huiyun Zhang
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, 266510, China.
| | - Zhen Tian
- Center for Terahertz Waves and Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Wei X, Ren C, Liu B, Peng Y, Zhuang S. The theory, technology, and application of terahertz metamaterial biosensors: A review. FUNDAMENTAL RESEARCH 2025; 5:571-585. [PMID: 40242555 PMCID: PMC11997590 DOI: 10.1016/j.fmre.2024.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 04/18/2025] Open
Abstract
Terahertz metamaterial biosensors combine terahertz time-domain spectroscopy with metamaterial sensing to provide a sensitive detection platform for a variety of targets, including biological molecules, proteins, cells, and viruses. These biosensors are characterized by their rapid response, sensitivity, non-destructive, label-free operation, minimal sample requirement, and user-friendly design, which also allows for integration with various technical approaches. Advancing beyond traditional biosensors, terahertz metamaterial biosensors facilitate rapid and non-destructive trace detection in biomedical applications, contributing to timely diagnosis and early screening of diseases. In this paper, the theoretical basis and advanced progress of these biosensors are discussed in depth, focusing on three key areas: improving the sensitivity and specificity, and reducing the influence of water absorption in biological samples. This paper also analyzes the potential and future development of these biosensors for expanded applications. It highlights their potential for multi-band tuning, intelligent operations, and flexible, wearable biosensor applications. This review provides a valuable reference for the follow-up research and application of terahertz metamaterial biosensors in the field of biomedical detection.
Collapse
Affiliation(s)
- Xiaoke Wei
- Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chuanlu Ren
- Department of Clinical Laboratory, The 904th Hospital of Joint Logistic Support Force of PLA, Wuxi 214044, China
| | - Bingwei Liu
- Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Peng
- Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Songlin Zhuang
- Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Terahertz Technology Innovation Research Institute, Terahertz Spectrum and Imaging Technology Cooperative Innovation Center, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Fu X, Huang L, Chen Y, Pi M, Ma L, Cai H, Wang X, Chen Z, Shi H, Yang W, Zhang F, Zhang Y, Jiang H, Zhou Z, Wang C, Huang R, Zhang J, Cheng D, Wu LA, Qian A, Tian Y. Rapid, ultrasensitive, and specific RPA-THz system for pathogenic microorganism detection. BIOMEDICAL OPTICS EXPRESS 2025; 16:949-964. [PMID: 40109535 PMCID: PMC11919348 DOI: 10.1364/boe.549870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 03/22/2025]
Abstract
Pathogenic microorganisms responsible for infectious diseases pose a significant global threat to human health. Existing detection methods, such as qPCR and ELISA, fail to simultaneously meet the requirements for high sensitivity, high specificity, and rapid detection. This study presents an innovative approach for the rapid, specific, and highly sensitive detection of pathogenic microorganisms, particularly Escherichia coli O157:H7 (E. coli O157:H7) and varicella-zoster virus (VZV), by combining recombinase polymerase amplification (RPA) with terahertz time-domain spectroscopy (THz-TDS). The qualitative and quantitative detection method for pathogenic microorganisms was developed and evaluated. The stable and efficient RPA reaction systems were established to specifically amplify the key conserved genes of these pathogens. Then the RPA products were purified, and enriched with MBs. The absorbance spectra were obtained using THz-TDS technology. The linear range of the RPA-THz for detecting E. coli O157:H7 was 0.55 to 5.5 × 104 pg/mL, while for VZV, it was 0.75 to 7.5 × 103 pg/mL. The limit of detection (LOD) for bacteria and viruses was 0.226 pg/mL and 0.528 pg/mL, respectively, demonstrating better sensitivity than the qPCR (550 pg/mL and 750 pg/mL, respectively). In addition, the whole amplification and detection process was completed in about 35 minutes. Compared to traditional pathogen detection techniques, the primary advantage of the developed RPA-THz method exhibited high accuracy, good reproducibility, and short detection times, enabling non-ionizing, label-free analysis for rapid detection with high sensitivity and specificity of pathogenic microorganisms. This study provides a theoretical foundation and practical demonstration for the fast and precise detection of pathogenic microorganisms. It establishes a crucial research basis for further development of RPA-THz sensors, advancing technological progress in the field of food safety, medical diagnostics, environmental monitoring, and public health.
Collapse
Affiliation(s)
- Xupeng Fu
- Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lintao Huang
- Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ying Chen
- Shaanxi Eye Hospital, Xian People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Menglu Pi
- Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lin Ma
- Xi'an Medical University, Xi'an 710068, China
| | - Hu Cai
- Shaanxi Medical Device Quality Testing Institute, Xi'an 712046, China
| | - Xuehao Wang
- Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhihao Chen
- Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hang Shi
- Shaanxi Eye Hospital, Xian People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Wenhui Yang
- Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fulai Zhang
- Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Zhang
- Shaanxi Eye Hospital, Xian People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Huili Jiang
- Shaanxi Eye Hospital, Xian People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Zeming Zhou
- Xi'an Medical University, Xi'an 710068, China
| | - Changhe Wang
- Shaanxi Medical Device Quality Testing Institute, Xi'an 712046, China
| | - Rong Huang
- Shaanxi Medical Device Quality Testing Institute, Xi'an 712046, China
| | - Juan Zhang
- Shaanxi Medical Device Quality Testing Institute, Xi'an 712046, China
| | - Donghao Cheng
- China Academy of Civil Aviation Science and Technology, Beijing 100028, China
| | - Li-An Wu
- Shaanxi Eye Hospital, Xian People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, China
| | - Airong Qian
- Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ye Tian
- Xi'an Key Laboratory of Special Medicine and Health Engineering, Research Center for Special Medicine and Health Systems Engineering, Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
8
|
Selvaraj M, B S S, Aly Saad Aly M. Terahertz-based biosensors for biomedical applications: A review. Methods 2025; 234:54-66. [PMID: 39638162 DOI: 10.1016/j.ymeth.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
Biosensors have many life sciences-related applications, particularly in the healthcare sector. They are employed in a wide range of fields, including drug development, food quality management, early diagnosis of diseases, and environmental monitoring. Terahertz-based biosensing has shown great promise as a label-free, non-invasive, and non-contact method of detecting biological substances. THz Spectroscopy has achieved a remarkable advancement in biomolecule recognition providing a rapid, highly sensitive, and non-destructive approach for various biomedical applications. The significance of THz-based biosensors and the broad spectrum of biomolecules that can be detected and analyzed with biosensors are reviewed in this work. Additionally, this work summarizes several techniques that were previously reported to improve the sensitivity and selectivity of these biosensors. Furthermore, an in-depth comparison between previously developed biosensors with an emphasis on their performance is presented and highlighted in the current review. Lastly, the challenges, the potential, and the future prospects of THz-based biosensing technology are critically addressed.
Collapse
Affiliation(s)
- Meraline Selvaraj
- Department of Electronics & Communication Engineering, College of Engineering Guindy, Anna University, Chennai 600025, India
| | - Sreeja B S
- Department of Electronics & Communication Engineering, College of Engineering Guindy, Anna University, Chennai 600025, India.
| | - Mohamed Aly Saad Aly
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI), Shenzhen, Guangdong 518052, China; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
9
|
Kim YC, Jun SW, Park SJ, Ahn YH. Terahertz metamaterial-prism hybrid sensors for the detection of microorganisms. OPTICS EXPRESS 2024; 32:48915-48924. [PMID: 39876183 DOI: 10.1364/oe.545112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025]
Abstract
In this study, we developed terahertz (THz) metamaterial devices with attenuated total reflection (ATR) geometries for biosensing applications. This was achieved by transferring the metamaterial patterns fabricated on a polyimide film to a prism-top surface. We characterized the resonance characteristics of metasurfaces for different THz wave polarizations and gap structure orientations in the metamaterials. The metamaterial resonances exhibited a sharp resonance compared to the normal incidence case; the quality factor increased from 3.3 to 6.0. For biosensing applications, we measured the resonant-frequency shift of the hybrid device by depositing yeast cells. The sensitivity in terms of the yeast number density increased 3.4 times compared to that of the Si substrate under normal incidence, which presented a 4.1-fold increase in the figure of merit. The resonance characteristics based on finite-difference time-domain simulations successfully reproduced our experimental results, including the enhanced sensitivity of our hybrid devices.
Collapse
|
10
|
Arora P, Zheng H, Munusamy S, Jahani R, Guan X. Nanopore-based detection of periodontitis biomarker miR31 in saliva samples. Electrophoresis 2024; 45:2034-2044. [PMID: 39165194 PMCID: PMC11663126 DOI: 10.1002/elps.202400134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
MicroRNAs (miRNAs) play important roles in posttranscriptional gene regulation. Aberrations in the miRNA levels have been the cause behind various diseases, including periodontitis. Therefore, sensitive, specific, and accurate detection of disease-associated miRNAs is vital to early diagnosis and can facilitate inhibitor screening and drug design. In this study, we developed a label-free, real-time sensing method for the detection of miR31, which has been frequently linked to periodontitis, using an engineered protein nanopore and in the presence of a complementary ssDNA as a molecular probe. Our method is rapid and highly sensitive with nanomolar concentration of miR31 that could be determined in minutes. Furthermore, our sensor showed high selectivity toward the target miR31 sequence even in the presence of interfering nucleic acids. In addition, artificial saliva and human saliva samples were successfully analyzed. Our developed nanopore sensing platform could be used to detect other miRNAs and offers a potential application for the clinical diagnosis of disease biomarkers.
Collapse
Affiliation(s)
- Pearl Arora
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Haiyan Zheng
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | | | - Rana Jahani
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Xiyun Guan
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Wang R, Song L, Ruan H, Yang Q, Yang X, Zhang X, Jiang R, Shi X, Shkurinov AP. Ultrasensitive Terahertz Label-Free Metasensors Enabled by Quasi-Bound States in the Continuum. RESEARCH (WASHINGTON, D.C.) 2024; 7:0483. [PMID: 39329158 PMCID: PMC11425342 DOI: 10.34133/research.0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
Advanced sensing devices based on metasurfaces have emerged as a revolutionary platform for innovative label-free biosensors, holding promise for early diagnostics and the detection of low-concentration analytes. Here, we developed a chip-based ultrasensitive terahertz (THz) metasensor, leveraging a quasi-bound state in the continuum (q-BIC) to address the challenges associated with intricate operations in trace biochemical detection. The metasensor design features an open-ring resonator metasurface, which supports magnetic dipole q-BIC combining functionalized gold nanoparticles (AuNPs) bound with a specific antibody. The substantial enhancement in THz-analyte interactions, facilitated by the potent near-field enhancement enabled by the q-BICs, results in a substantial boost in biosensor sensitivity by up to 560 GHz/refractive index units. This methodology allows for the detection of conjugated antibody-AuNPs for cardiac troponin I at concentrations as low as 0.5 pg/ml. These discoveries deliver valuable insight for AuNP-based trace biomolecule sensing and pave the path for the development of chip-scale biosensors with profound light-matter interactions.
Collapse
Affiliation(s)
- Ride Wang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Lingyu Song
- Navy Clinical College, Anhui Medical University, Beijing 100048, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Hao Ruan
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Quanlong Yang
- School of Physics, Central South University, Changsha 410083, China
| | - Xiao Yang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiaobao Zhang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Rundong Jiang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Xiangmin Shi
- Navy Clinical College, Anhui Medical University, Beijing 100048, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
- Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Alexander P Shkurinov
- Department of Physics and International Laser Center, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 19991, Russia
| |
Collapse
|
12
|
Zhao J, Zhu J, Wang W, Qian Z, Fan S. CRISPR/Cas12a cleavage triggered nanoflower for fluorescence-free and target amplification-free biosensing of ctDNA in the terahertz frequencies. BIOMEDICAL OPTICS EXPRESS 2024; 15:5400-5410. [PMID: 39296404 PMCID: PMC11407253 DOI: 10.1364/boe.534511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024]
Abstract
The detection of tumor biomarkers in liquid biopsies requires high sensitivity and low-cost biosensing strategies. However, few traditional techniques can satisfy the requirements of target amplification-free and fluorescence-free at the same time. In this study, we have proposed a novel strategy for ctDNA detection with the combination of terahertz spectroscopy and the CRISPR/Cas12 system. The CRISPR/Cas12a system is activated by the target ctDNA, resulting in a series of reactions leading to the formation of an Au-Fe complex. This complex is easily extracted with magnets and when dropped onto the terahertz metamaterial sensor, it can enhance the frequency shift, providing sensitive and selective sensing of the target ctDNA. Results show that the proposed terahertz biosensor exhibits a relatively low detection limit of 0.8 fM and a good selectivity over interference species. This detection limit is improved by three orders of magnitude compared with traditional biosensing methods using terahertz waves. Furthermore, a ctDNA concentration of 100 fM has been successfully detected in bovine serum (corresponding to 50 fM in the final reaction system) without amplification.
Collapse
Affiliation(s)
- Jingjing Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University , Shenzhen 518060, China
| | - Jianfang Zhu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University , Shenzhen 518060, China
| | - Weiqiang Wang
- Institute of Health Sciences and Technology, Institutes of Material Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zhengfang Qian
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University , Shenzhen 518060, China
| | - Shuting Fan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University , Shenzhen 518060, China
| |
Collapse
|
13
|
Shamim S, Mohsin AS, Rahman MM, Hossain Bhuian MB. Recent advances in the metamaterial and metasurface-based biosensor in the gigahertz, terahertz, and optical frequency domains. Heliyon 2024; 10:e33272. [PMID: 39040247 PMCID: PMC11260956 DOI: 10.1016/j.heliyon.2024.e33272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Recently, metamaterials and metasurface have gained rapidly increasing attention from researchers due to their extraordinary optical and electrical properties. Metamaterials are described as artificially defined periodic structures exhibiting negative permittivity and permeability simultaneously. Whereas metasurfaces are the 2D analogue of metamaterials in the sense that they have a small but not insignificant depth. Because of their high optical confinement and adjustable optical resonances, these artificially engineered materials appear as a viable photonic platform for biosensing applications. This review paper discusses the recent development of metamaterial and metasurface in biosensing applications based on the gigahertz, terahertz, and optical frequency domains encompassing the whole electromagnetic spectrum. Overlapping features such as material selection, structure, and physical mechanisms were considered during the classification of our biosensing applications. Metamaterials and metasurfaces working in the GHz range provide prospects for better sensing of biological samples, THz frequencies, falling between GHz and optical frequencies, provide unique characteristics for biosensing permitting the exact characterization of molecular vibrations, with an emphasis on molecular identification, label-free analysis, and imaging of biological materials. Optical frequencies on the other hand cover the visible and near-infrared regions, allowing fine regulation of light-matter interactions enabling metamaterials and metasurfaces to offer excellent sensitivity and specificity in biosensing. The outcome of the sensor's sensitivity to an electric or magnetic field and the resonance frequency are, in theory, determined by the frequency domain and features. Finally, the challenges and possible future perspectives in biosensing application areas have been presented that use metamaterials and metasurfaces across diverse frequency domains to improve sensitivity, specificity, and selectivity in biosensing applications.
Collapse
Affiliation(s)
- Shadmani Shamim
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Abu S.M. Mohsin
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Md. Mosaddequr Rahman
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Mohammed Belal Hossain Bhuian
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
14
|
Fu Z, Chen J, Chen X, Sun Y, Wang F, Yang J. Exploring the Application of Terahertz Metamaterials Based on Metallic Strip Structures in Detection of Reverse Micelles. BIOSENSORS 2024; 14:338. [PMID: 39056614 PMCID: PMC11275120 DOI: 10.3390/bios14070338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
Terahertz spectroscopy has unique advantages in the study of biological molecules in aqueous solutions. However, water has a strong absorption capability in the terahertz region. Reducing the amount of liquid could decrease interference with the terahertz wave, which may, however, affect the measurement accuracy. Therefore, it is particularly important to balance the amount and water content of liquid samples. In this work, a terahertz metamaterial sensor based on metallic strips is designed, fabricated, and used to detect reverse micelles. An aqueous confinement environment in reverse micelles can improve the signal-to-noise ratio of the terahertz response. Due to "water pool" trapped in reverse micelles, the DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) solution and DOPC emulsion can successfully be identified in intensity by terahertz spectroscopy. Combined with the metamaterial sensor, an obvious frequency shift of 30 GHz can be achieved to distinguish the DOPC emulsion (5%) from the DOPC solution. This approach may provide a potential way for improving the sensitivity of detecting trace elements in a buffer solution, thus offering a valuable toolkit toward bioanalytical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Yang
- College of Science, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China; (Z.F.); (J.C.); (X.C.); (Y.S.); (F.W.)
| |
Collapse
|
15
|
Nourinovin S, Rahman MM, Naftaly M, Philpott MP, Abbasi QH, Alomainy A. Highly Sensitive Terahertz Metasurface Based on Electromagnetically Induced Transparency-Like Resonance in Detection of Skin Cancer Cells. IEEE Trans Biomed Eng 2024; 71:2180-2188. [PMID: 38335072 DOI: 10.1109/tbme.2024.3364386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Terahertz (THz) metasurfaces based on high Q-factor electromagnetically induced transparency-like (EIT-like) resonances are promising for biological sensing. Despite this potential, they have not often been investigated for practical differentiation between cancerous and healthy cells. The present methodology relies mainly on refractive index sensing, while factors of transmission magnitude and Q-factor offer significant information about the tumors. To address this limitation and improve sensitivity, we fabricated a THz EIT-like metasurface based on asymmetric resonators on an ultra-thin and flexible dielectric substrate. Bright-dark modes coupling at 1.96 THz was experimentally verified, and numerical results and theoretical analysis were presented. An enhanced theoretical sensitivity of 550 GHz/RIU was achieved for a sample with a thickness of 13 µm due to the ultra-thin substrate and novel design. A two-layer skin model was generated whereby keratinocyte cell lines were cultured on a base of collagen. When NEB1-shPTCH (basal cell carcinoma (BCC)) were switched out for NEB1-shCON cell lines (healthy) and when BCC's density was raised from 1 × 105 to 2.5 × 105, a frequency shift of 40 and 20 GHz were observed, respectively. A combined sensing analysis characterizes different cell lines. The findings may open new opportunities for early cancer detection with a fast, less-complicated, and inexpensive method.
Collapse
|
16
|
Rhie J, Lee D, Kim T, Kim S, Seo M, Kim DS, Bahk YM. Optical Tweezing Terahertz Probing for a Single Metal Nanoparticle. NANO LETTERS 2024; 24:6753-6760. [PMID: 38708988 DOI: 10.1021/acs.nanolett.4c01439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Recently, extensive research has been reported on the detection of metal nanoparticles using terahertz waves, due to their potential for efficient and nondestructive detection of chemical and biological samples without labeling. Resonant terahertz nanoantennas can be used to detect a small amount of molecules whose vibrational modes are in the terahertz frequency range with high sensitivity. However, the positioning of target molecules is critical to obtaining a reasonable signal because the field distribution is inhomogeneous over the antenna structure. Here, we combine an optical tweezing technique and terahertz spectroscopy based on nanoplasmonics, resulting in extensive controllable tweezing and sensitive detection at the same time. We observed optical tweezing of a gold nanoparticle and detected it with terahertz waves by using a single bowtie nanoantenna. Furthermore, the calculations confirm that molecular fingerprinting is possible by using our technique. This study will be a prestep of biomolecular detection using gold nanoparticles in terahertz spectroscopy.
Collapse
Affiliation(s)
- Jiyeah Rhie
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dukhyung Lee
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Taehoon Kim
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
| | - Seonghun Kim
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
| | - Minah Seo
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dai-Sik Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Young-Mi Bahk
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
17
|
Dong B, Wei B, Wei D, Ke Z, Ling D. Detection of Low-Concentration Biological Samples Based on a QBIC Terahertz Metamaterial Sensor. SENSORS (BASEL, SWITZERLAND) 2024; 24:3649. [PMID: 38894440 PMCID: PMC11175237 DOI: 10.3390/s24113649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Quasi-bound state in the continuum (QBIC) can effectively enhance the interaction of terahertz (THz) wave with matter due to the tunable high-Q property, which has a strong potential application in the detection of low-concentration biological samples in the THz band. In this paper, a novel THz metamaterial sensor with a double-chain-separated resonant cavity structure based on QBIC is designed and fabricated. The process of excitation of the QBIC mode is verified and the structural parameters are optimized after considering the ohmic loss by simulations. The simulated refractive index sensitivity of the sensor is up to 544 GHz/RIU, much higher than those of recently reported THz metamaterial sensors. The sensitivity of the proposed metamaterial sensor is confirmed in an experiment by detecting low-concentration lithium citrate (LC) and bovine serum albumin (BSA) solutions. The limits of detection (LoDs) are obtained to be 0.0025 mg/mL (12 μM) for LC and 0.03125 mg/mL (0.47 μM) for BSA, respectively, both of which excel over most of the reported results in previous studies. These results indicate that the proposed THz metamaterial sensor has excellent sensing performances and can well be applied to the detection of low-concentration biological samples.
Collapse
Affiliation(s)
- Bing Dong
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China; (B.D.); (Z.K.)
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bo Wei
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China;
| | - Dongshan Wei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhilin Ke
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China; (B.D.); (Z.K.)
| | - Dongxiong Ling
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, China; (B.D.); (Z.K.)
| |
Collapse
|
18
|
Yu W, Li J, Huang G, He Z, Tian H, Xie F, Jin W, Huang Q, Fu W, Yang X. Rapid and sensitive detection of Staphylococcus aureus using a THz metamaterial biosensor based on aptamer-functionalized Fe 3O 4@Au nanocomposites. Talanta 2024; 272:125760. [PMID: 38364563 DOI: 10.1016/j.talanta.2024.125760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Staphylococcus aureus (S. aureus) poses a serious threat to global public health, necessitating the establishment of rapid and simple tools for its accurate identification. Herein, we developed a terahertz (THz) metamaterial biosensor based on aptamer-functionalized Fe3O4@Au nanocomposites for quantitative S. aureus assays in different clinical samples. Fe3O4@Au@Cys@Apt has the dual advantages of magnetism and a high refractive index in the THz range and was used to rapidly separate and enrich target bacteria in a complex environmental solution. Furthermore, conjugation to the nanocomposites significantly increased the resonance frequency shift of the THz metamaterial after target loading. Our results showed that the shifts in the metamaterial resonance frequency were linearly related to S. aureus concentrations ranging from 1.0 × 103 to 1.0 × 107 CFU/mL, with a detection limit of 4.78 × 102 CFU/mL. The biosensor was further applied to S. aureus detection in spiked human urine and blood with satisfactory recoveries (82.4-109.6%). Our approach also demonstrated strong concordance with traditional plate counting (R2 = 0.99306) while significantly lowering the analysis time from 24 h to <1 h. In conclusion, the proposed biosensor can not only perform culture-free and extraction-free detection of target bacteria but can also be easily extended to the determination of other pathogenic bacteria, rendering it suitable for various bacteria-related disease diagnoses.
Collapse
Affiliation(s)
- Wenjing Yu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jining Li
- Institute of Laser and Opto-electronics, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhe He
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fengxin Xie
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Weidong Jin
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
19
|
Karthik CS, Skorjanc T, Shetty D. Fluorescent covalent organic frameworks - promising bioimaging materials. MATERIALS HORIZONS 2024; 11:2077-2094. [PMID: 38436072 DOI: 10.1039/d3mh01698f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Fluorescent covalent organic frameworks (COFs) have emerged as promising candidates for imaging living cells due to their unique properties and adjustable fluorescence. In this mini-review, we provide an overview of recent advancements in fluorescent COFs for bioimaging applications. We discuss the strategies used to design COFs with desirable properties such as high photostability, excellent biocompatibility, and pH sensitivity. Additionally, we explore the various ways in which fluorescent COFs are utilized in bioimaging, including cellular imaging, targeting specific organelles, and tracking biomolecules. We delve into their applications in sensing intracellular pH, reactive oxygen species (ROS), and specific biomarkers. Furthermore, we examine how functionalization techniques enhance the targeting and imaging capabilities of fluorescent COFs. Finally, we discuss the challenges and prospects in the field of fluorescent COFs for bioimaging in living cells, urging further research in this exciting area.
Collapse
Affiliation(s)
- Chimatahalli Santhakumar Karthik
- Department of Chemistry, SJCE, JSS Science and Technology University, Karnataka, 570 006, Mysore, India
- Department of Chemistry, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| | - Tina Skorjanc
- The Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, 5270, Ajdovscina, Slovenia
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
20
|
Lin T, Huang Y, Zhong S, Shi T, Sun F, Zhong Y, Zeng Q, Zhang Q, Cui D. Passive trapping of biomolecules in hotspots with all-dielectric terahertz metamaterials. Biosens Bioelectron 2024; 251:116126. [PMID: 38367565 DOI: 10.1016/j.bios.2024.116126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Electromagnetic metamaterials feature the capability of squeezing photons into hotspot regions of high intensity near-field enhancement for strong light-matter interaction, underpinning the next generation of emerging biosensors. However, randomly dispersed biomolecules around the hotspots lead to weak interactions. Here, we demonstrate an all-silicon dielectric terahertz metamaterial sensor design capable of passively trapping biomoleculars into the resonant cavities confined with powerful electric field. Specifically, multiple controllable high-quality factor resonances driven by bound states in the continuum (BIC) are realized by employing longitudinal symmetry breaking. The dielectric metamaterial sensor with nearly 15.2 experimental figure-of-merit enabling qualitative and quantitative identification of different amino acids by delivering biomolecules to the hotspots for strong light-matter interactions. It is envisioned that the presented strategy will enlighten high-performance meta-sensors design from microwaves to visible frequencies, and serve as a potential platform for microfluidic sensing, biomolecular capture, and sorting devices.
Collapse
Affiliation(s)
- Tingling Lin
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China
| | - Yi Huang
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China.
| | - Shuncong Zhong
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China.
| | - Tingting Shi
- School of Economics and Management, Minjiang University, Fuzhou, 350108, China
| | - Fuwei Sun
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China
| | - Yujie Zhong
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China
| | - Qiuming Zeng
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China
| | - Qiukun Zhang
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China; Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, 350108, China
| | - Daxiang Cui
- Department of Bio-Nano Science and Engineering, Shanghai Jiaotong University, Shanghai, 200030, China
| |
Collapse
|
21
|
Luo X, Li J, Huang G, Xie F, He Z, Zeng X, Tian H, Liu Y, Fu W, Yang X. Metal-Graphene Hybrid Terahertz Metasurfaces for Circulating Tumor DNA Detection Based on Dual Signal Amplification. ACS Sens 2024; 9:2122-2133. [PMID: 38602840 DOI: 10.1021/acssensors.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Terahertz (THz) spectroscopy has impressive capability for label-free biosensing, but its utility in clinical laboratories is rarely reported due to often unsatisfactory detection performances. Here, we fabricated metal-graphene hybrid THz metasurfaces (MSs) for the sensitive and enzyme-free detection of circulating tumor DNA (ctDNA) in pancreatic cancer plasma samples. The feasibility and mechanism of the enhanced effects of a graphene bridge across the MS and amplified by gold nanoparticles (AuNPs) were investigated experimentally and theoretically. The AuNPs serve to boost charge injection in the graphene film and result in producing a remarkable change in the graded transmissivity index to THz radiation of the MS resonators. Assay design utilizes this feature and a cascade hybridization chain reaction initiated on magnetic beads in the presence of target ctDNA to achieve dual signal amplification (chemical and optical). In addition to demonstrating subfemtomolar detection sensitivity and single-nucleotide mismatch selectivity, the proposed method showed remarkable capability to discriminate between pancreatic cancer patients and healthy individuals by recognizing and quantifying targeted ctDNAs. The introduction of graphene to the metasurface produces an improved sensitivity of 2 orders of magnitude for ctDNA detection. This is the first study to report the combined application of graphene and AuNPs in biosensing by THz spectroscopic resonators and provides a combined identification scheme to detect and discriminate different biological analytes, including nucleic acids, proteins, and various biomarkers.
Collapse
Affiliation(s)
- Xizi Luo
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jining Li
- Institute of Laser and Optoelectronics, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Guorong Huang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fengxin Xie
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhe He
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaojun Zeng
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yu Liu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
22
|
Li Q, Mei L, Bi K, Hou L, Zhang S, Han S, Guo M, Zhang S, Wu D, Mu J, Chou X. Tunable terahertz absorption of ion gel-graphene hybrids based on the Salisbury effect. OPTICS EXPRESS 2024; 32:11838-11848. [PMID: 38571022 DOI: 10.1364/oe.519866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The gate-tunable absorption properties of graphene make it suitable for terahertz (THz) absorbers. However, the realization of a graphene-based THz absorber faces challenges between the difficulty of patterning graphene for processing and the intrinsically low absorbance of graphene with the high electric field needed to change the conductivity of graphene. This report presents an electrically tunable graphene THz absorber where a single-layer graphene film and a gold reflective layer are separated by a polyimide (PI) dielectric layer to form an easily fabricated three-layer Salisbury screen structure. The carrier density of the graphene layer can be efficiently tuned by a small external electrical gating (-5V-5 V) with the assistance of an ion gel layer. The voltage modulation of the Fermi energy level (EF) of graphene was confirmed by Raman spectra, and the variation of the device absorbance was confirmed using a THz time-domain spectroscopy system (THz-TDS). The measurements show that the EF is adjusted in the range of 0-0.5 eV, and THz absorbance is adjusted in the range of 60%-99%. The absorber performs well under different curvatures, and the peak absorbance is all over 95%. We conducted further analysis of the absorber absorbance by varying the thickness of the PI dielectric layer, aiming to examine the correlation between the resonant frequency of the absorber and the dielectric layer thickness. Our research findings indicate that the proposed absorber holds significant potential for application in diverse fields such as communication, medicine, and sensing.
Collapse
|
23
|
Dong X, Liu K. Modified Uni-Traveling-Carrier Photodetector with Its Optimized Cliff Layer. SENSORS (BASEL, SWITZERLAND) 2024; 24:2020. [PMID: 38610232 PMCID: PMC11013659 DOI: 10.3390/s24072020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
We have designed the MUTC-PD with an optimized thickness of cliff layer to pre-distort the electric field at the front side of the collection layer. With the optimized MUTC-PD design, the collapse of the electric field will be greatly suppressed, and the electrons in its collection layer will gradually reach their peak velocity with the growing incident light power. Moreover, as the incident light intensity increases, the differential capacitance also declines, thus the total bandwidth grows. It will make the MUTC-PD achieve high-speed and high-power response performance simultaneously. Based on simulation, for 16μm MUTC-PD with a 70 nm cliff layer, the maximum 3 dB bandwidth at -5 V is 137 GHz, compared with 64 GHz for the MUTC-PD with a 30 nm cliff layer. The saturation RF output power is 27.4 dBm at 60 GHz.
Collapse
Affiliation(s)
| | - Kai Liu
- State Key Laboratory of Information Photonics and Optical Communications, School of Electrical and Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
| |
Collapse
|
24
|
Chen J, Hu F, Lin S, Song Z, Duan Z, Zhang L, Jiang M. Hybridization chain reaction assisted terahertz metamaterial biosensor for highly sensitive detection of microRNAs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123646. [PMID: 37980831 DOI: 10.1016/j.saa.2023.123646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/22/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
MicroRNA (miRNA) is closely related to the occurrence and development of cancer. Accurate determination of the miRNA concentration is of great significance for early cancer diagnosis. However, due to the short sequence and low concentration of miRNA, it is still a challenge to achieve low-concentration detection. In this work, we proposed a method for the highly sensitive detection of miRNA-21 using a terahertz (THz) metamaterial sensor combined with a Hybridization chain reaction (HCR). First, a capture hairpin probe was combined with gold nanoparticles (AuNPs), which were then modified to the surface of the sensor for specific binding of miRNA-21. Then the signal amplification technique of HCR is used to amplify the trace amount of miRNA, and the super-long dendritic DNA macromolecules are formed on the surface of the sensor. This changes the dielectric environment of the sensor surface, and the resonance frequency of the sensor is shifted. The method has good specificity and sensitivity, and the concentration of miRNA-21 in the range of 100 aM to 10 nM shows excellent linear relationship with frequency shift. Most importantly, it paves the way for low-cost, easy-to-operate and marker-free miRNA detection.
Collapse
Affiliation(s)
- Jie Chen
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Fangrong Hu
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Shangjun Lin
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zihang Song
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhitao Duan
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| | - Longhui Zhang
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China.
| | - Mingzhu Jiang
- College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
25
|
Bi H, You R, Bian X, Li P, Zhao X, You Z. A magnetic control enrichment technique combined with terahertz metamaterial biosensor for detecting SARS-CoV-2 spike protein. Biosens Bioelectron 2024; 243:115763. [PMID: 37890389 DOI: 10.1016/j.bios.2023.115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
The highly contagious SARS-CoV-2 virus, responsible for the COVID-19 pandemic continues to pose significant challenges to public health. Developing new methods for early detection and diagnosis is crucial in combatting the disease, mitigating its impact and be prepared for future challenges in pandemic diseases. In this study, we propose a terahertz (THz) biosensing technology that capitalizes on the properties of THz metamaterial in conjunction with magnetic nanoparticles. This approach can accurately identify the SARS-CoV-2 spike protein by pinpointing its location on the THz resonance sources grooved surface. The magnetic nanoparticles are employed to selectively bind with target molecules, and migrate towards the THz metamaterial unit cell when exposed to an applied magnetic field. The presence of target molecules in to the metamaterial variation in the frequency, amplitude, and phase of the resonance response, thus enabling swift, accurate and sensitive detection. To assess the effectiveness of the proposed technique, we have conducted a comparative analysis between real samples on platforms controlled by magnetic manipulation and those without the control. It was confirmed that the proposed THz sensing method demonstrated a linear detection range spanning from 0.005 ng mL-1 to 1000 ng mL-1 with a detection limit of 0.002 ng mL-1. Furthermore, it exhibited a frequency shift of 24 GHz and a stability index of 95%. The THz biosensing technique may pave a new avenue in identifying and preempting the spread of potential pandemic diseases.
Collapse
Affiliation(s)
- Hao Bi
- Beijing Laboratory of Biomedical Detection Technology and Instrument, Beijing Information Science & Technology University, Beijing, 10029, PR China; School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100029, PR China
| | - Rui You
- Beijing Laboratory of Biomedical Detection Technology and Instrument, Beijing Information Science & Technology University, Beijing, 10029, PR China; School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100029, PR China.
| | - Xiaomeng Bian
- Beijing Laboratory of Biomedical Detection Technology and Instrument, Beijing Information Science & Technology University, Beijing, 10029, PR China; School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100029, PR China
| | - Peng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, PR China.
| | - Xiaoguang Zhao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, PR China.
| | - Zheng You
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing, 100084, PR China; Key Laboratory of Smart Microsystem, Ministry of Education, Tsinghua University, Beijing, 100084, PR China; Beijing Advanced Innovation Center for Integrated Circuits, Beijing, 100084, PR China
| |
Collapse
|
26
|
Zhang W, Lin J, Yuan Z, Lin Y, Shang W, Chin LK, Zhang M. Terahertz Metamaterials for Biosensing Applications: A Review. BIOSENSORS 2023; 14:3. [PMID: 38275304 PMCID: PMC10813048 DOI: 10.3390/bios14010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
In recent decades, THz metamaterials have emerged as a promising technology for biosensing by extracting useful information (composition, structure and dynamics) of biological samples from the interaction between the THz wave and the biological samples. Advantages of biosensing with THz metamaterials include label-free and non-invasive detection with high sensitivity. In this review, we first summarize different THz sensing principles modulated by the metamaterial for bio-analyte detection. Then, we compare various resonance modes induced in the THz range for biosensing enhancement. In addition, non-conventional materials used in the THz metamaterial to improve the biosensing performance are evaluated. We categorize and review different types of bio-analyte detection using THz metamaterials. Finally, we discuss the future perspective of THz metamaterial in biosensing.
Collapse
Affiliation(s)
- Wu Zhang
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (W.Z.); (J.L.); (Z.Y.); (Y.L.)
| | - Jiahan Lin
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (W.Z.); (J.L.); (Z.Y.); (Y.L.)
| | - Zhengxin Yuan
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (W.Z.); (J.L.); (Z.Y.); (Y.L.)
| | - Yanxiao Lin
- School of Physics and Material Science, Guangzhou University, Guangzhou 510006, China; (W.Z.); (J.L.); (Z.Y.); (Y.L.)
| | - Wenli Shang
- School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China;
- Key Laboratory of On-Chip Communication and Sensor Chip of Guangdong Higher Education Institutes, Guangzhou 510006, China
| | - Lip Ket Chin
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Meng Zhang
- School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China;
- Key Laboratory of On-Chip Communication and Sensor Chip of Guangdong Higher Education Institutes, Guangzhou 510006, China
| |
Collapse
|
27
|
Naseer N, Mustafa MM, Latief N, Fazal N, Tariq M, Afreen A, Yaqub F, Riazuddin S. Sarcococca saligna fabricated gold nanoparticles alleviated in vitro oxidative stress and inflammation in human adipose-derived stem cells. J Biomed Mater Res B Appl Biomater 2023; 111:2032-2043. [PMID: 37560935 DOI: 10.1002/jbm.b.35303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/05/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023]
Abstract
Oxidative stress is a destructive phenomenon that affects various cell structures including membranes, proteins, lipoproteins, lipids, and DNA. Oxidative stress and inflammation owing to lifestyle changes may lead to serious diseases such as Cancers, Gout, and Arthritis etc. These disorders can be prevented using different therapeutic strategies including nanomedicine. Biosynthesized gold nanoparticles (GNPs) because of their anti-inflammatory and antioxidant bioactivities can be key player in reversal of these ailments. This study was carried out to evaluate the anti-inflammatory and antioxidant potential of bio fabricated GNPs with Sarcococca saligna (S. saligna) extract on injured human adipose-derived Mesenchymal stem cells (hADMSCs). GNPs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, Scanning Electron Microscopy (SEM), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and energy dispersive x-ray (EDS). Phytochemical screening of biosynthesized GNPs exhibited a significant release of polyphenols, that is, total phenolic content (TPC) and total flavonoid content (TFC). GNPs priming amended the in vitro injury caused by Monosodium Iodoacetate (MIA) as exhibited by improved cell viability, wound closure response and superoxide dismutase activity (SOD). The anti-inflammatory conduct assessed through NF-κB pathway and other associated inflammatory markers reported down-regulation of TNF-α (0.644 ± 0.045), IL-1β (0.694 ± 0.147) and IL-6 (0.622 ± 0.112), apoptosis causing genes like Caspase-3 (0.734 ± 0.13) and BAX (0.830 ± 0.12), NF-κB pathway, p65 (0.672 ± 0.084) and p105 (0.539 ± 0.083) associated genes. High SOD activity (95 ± 5.25%) revealed by treated hADMSCs with GNPs also supported the antioxidant role of GNPs in vitro model. This study concludes that S. saligna bio fabricated GNPs priming may improve the therapeutic potential of hADMSCs against chronic inflammatory problems by regulating NF-κB pathway.
Collapse
Affiliation(s)
- Nadia Naseer
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Munam Mustafa
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Noreen Latief
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Numan Fazal
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Faiza Yaqub
- Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Center, Allama Iqbal Medical College (AIMC), Lahore, Punjab, Pakistan
| |
Collapse
|
28
|
Bi H, Yang M, You R. Advances in terahertz metasurface graphene for biosensing and application. DISCOVER NANO 2023; 18:63. [PMID: 37091985 PMCID: PMC10105365 DOI: 10.1186/s11671-023-03814-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/23/2023] [Indexed: 04/25/2023]
Abstract
Based on the extraordinary electromagnetic properties of terahertz waves, such as broadband, low energy, high permeability, and biometric fingerprint spectra, terahertz sensors show great application prospects in the biochemical field. However, the sensitivity of terahertz sensing technology is increasingly required by modern sensing demands. With the development of terahertz technology and functional materials, graphene-based terahertz metasurface sensors with the advantages of high sensitivity, fingerprint identification, nondestructive and anti-interference are gradually gaining attention. In addition to providing ideas for terahertz biosensors, these devices have attracted in-depth research and development by scientists. An overview of graphene-based terahertz metasurfaces and their applications in the detection of biochemical molecules is presented. This includes sensor mechanism research, graphene metasurface index evaluation, protein and nucleic acid sensors, and other chemical molecule sensing. A comparative analysis of graphene, nanomaterials, silicon, and metals to develop material-integrated metasurfaces. Furthermore, a brief summary of the main performance results of this class of devices is presented, along with suggestions for improvements to the existing shortcoming.
Collapse
Affiliation(s)
- Hao Bi
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing, China
- Beijing Advanced Innovation Center for Integrated Circuits, 100084, Beijing, China
| | - Maosheng Yang
- School of Electrical and Optoelectronic Engineering, West Anhui University, Lu’an, 237012 China
| | - Rui You
- Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science and Technology University, Beijing, China
- Beijing Laboratory of Biomedical Detection Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
- Beijing Advanced Innovation Center for Integrated Circuits, 100084, Beijing, China
| |
Collapse
|
29
|
Hu R, Liu Y, Wang G, Lv J, Yang J, Xiao H, Liu Y, Zhang B. Amplification-free microRNA profiling with femtomolar sensitivity on a plasmonic enhanced fluorescence nano-chip. Anal Chim Acta 2023; 1280:341870. [PMID: 37858557 DOI: 10.1016/j.aca.2023.341870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules involved in the regulation of gene expression, thus considered as promising biomarkers for cancer, cardiovascular diseases, neurodegenerative diseases, etc. However, quantitative analysis of miRNAs faces challenges owing to their high homology, small size & ultra-low abundance, and disease occurrence is often related to abnormal expression of multiple miRNAs where method for parallel miRNAs analysis is required. In this work, multiplexed analysis of miRNAs was established on a plasmonic nano-chip capable of fluorescence enhancement in the near-infrared region. Combined with polyadenylation at the hydroxyl terminate of target miRNA to afford abundant sites for fluorophore labeling, our assay achieved amplification-free detection of miRNAs from nM to fM with the limit of detection down to ca. 5 fM. A miRNA panel was constructed to detect 10 miRNAs differentially expressed in MCF-7 and A549 cell lines and validated with qRT-PCR, demonstrating the practical application of this method. This scalable platform can be customized for different miRNA panels, facilitating multiple miRNA profiling for various diseases.
Collapse
Affiliation(s)
- Ruibin Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiyi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guanghui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingkai Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongjun Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
30
|
Jiao JB, Kang Q, Cao JL, Zhang SQ, Ma CJ, Lin T, Xiao ZH, Zhao CM, Du T, Du XJ, Wang S. Integrated multifunctional nanoplatform for fluorescence detection and inactivation of Staphylococcus aureus. Food Chem 2023; 428:136780. [PMID: 37413833 DOI: 10.1016/j.foodchem.2023.136780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Foodborne illness caused by Staphylococcus aureus (S. aureus) has posed a significant threat to human health. Herein, an integrated multifunctional nanoplatform was developed for fluorescence detection and inactivation of S. aureus based on cascade signal amplification coupled with single strand DNA-template copper nanoparticles (ssDNA-Cu NPs). Benefiting from reasonable design, one-step cascade signal amplification was achieved through strand displacement amplification combined with rolling circle amplification, followed by in-situ generation of copper nanoparticles. S. aureus detection could be performed through naked eye observation and microplate reader measurement of the red fluorescence signal. The multifunctional nanoplatform had satisfactory specificity and sensitivity, achieving 5.2 CFU mL-1 detection limit and successful detection of 7.3 CFU of S. aureus in spiked egg after < 5 h of enrichment. Moreover, ssDNA-Cu NPs could eliminate S. aureus to avoid secondary bacterial contamination without further treatment. Therefore, this multifunctional nanoplatform has potential application in food safety dtection.
Collapse
Affiliation(s)
- Jing-Bo Jiao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qing Kang
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiang-Li Cao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuai-Qi Zhang
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen-Jing Ma
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tong Lin
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ze-Hui Xiao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chu-Min Zhao
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xin-Jun Du
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
31
|
Zhang M, Guo G, Xu Y, Yao Z, Zhang S, Yan Y, Tian Z. Exploring the Application of Multi-Resonant Bands Terahertz Metamaterials in the Field of Carbohydrate Films Sensing. BIOSENSORS 2023; 13:606. [PMID: 37366971 DOI: 10.3390/bios13060606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Terahertz spectroscopy is a powerful tool for investigating the properties and states of biological matter. Here, a systematic investigation of the interaction of THz wave with "bright mode" resonators and "dark mode" resonators has been conducted, and a simple general principle of obtaining multiple resonant bands has been developed. By manipulating the number and positions of bright mode and dark mode resonant elements in metamaterials, we realized multi-resonant bands terahertz metamaterial structures with three electromagnetic-induced transparency in four-frequency bands. Different carbohydrates in the state of dried films were selected for detection, and the results showed that the multi-resonant bands metamaterial have high response sensitivity at the resonance frequency similar to the characteristic frequency of the biomolecule. Furthermore, by increasing the biomolecule mass in a specific frequency band, the frequency shift in glucose was found to be larger than that of maltose. The frequency shift in glucose in the fourth frequency band is larger than that of the second band, whereas maltose exhibits an opposing trend, thus enabling recognition of maltose and glucose. Our findings provide new insights into the design of functional multi-resonant bands metamaterials, as well as new strategies for developing multi-band metamaterial biosensing devices.
Collapse
Affiliation(s)
- Min Zhang
- Center for Terahertz Waves, Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Guanxuan Guo
- Center for Terahertz Waves, Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yihan Xu
- Center for Terahertz Waves, Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zhibo Yao
- Center for Terahertz Waves, Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shoujun Zhang
- Center for Terahertz Waves, Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yuyue Yan
- Center for Terahertz Waves, Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zhen Tian
- Center for Terahertz Waves, Key Laboratory of Optoelectronics Information and Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute (GTSI), Tianjin University, Shenzhen 518067, China
| |
Collapse
|
32
|
GhaderiShekhiAbadi P, Irani M, Noorisepehr M, Maleki A. Magnetic biosensors for identification of SARS-CoV-2, Influenza, HIV, and Ebola viruses: a review. NANOTECHNOLOGY 2023; 34:272001. [PMID: 36996779 DOI: 10.1088/1361-6528/acc8da] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Infectious diseases such as novel coronavirus (SARS-CoV-2), Influenza, HIV, Ebola, etc kill many people around the world every year (SARS-CoV-2 in 2019, Ebola in 2013, HIV in 1980, Influenza in 1918). For example, SARS-CoV-2 has plagued higher than 317 000 000 people around the world from December 2019 to January 13, 2022. Some infectious diseases do not yet have not a proper vaccine, drug, therapeutic, and/or detection method, which makes rapid identification and definitive treatments the main challenges. Different device techniques have been used to detect infectious diseases. However, in recent years, magnetic materials have emerged as active sensors/biosensors for detecting viral, bacterial, and plasmids agents. In this review, the recent applications of magnetic materials in biosensors for infectious viruses detection have been discussed. Also, this work addresses the future trends and perspectives of magnetic biosensors.
Collapse
Affiliation(s)
| | - Mohammad Irani
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Noorisepehr
- Environmental Health Engineering Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
33
|
Wang H, Shi W, Hou L, Li C, Zhang Y, Yang L, Cao J. Detection of the minimum concentrations of α-lactose solution using high-power THz-ATR spectroscopy. Front Bioeng Biotechnol 2023; 11:1170218. [PMID: 37034259 PMCID: PMC10076835 DOI: 10.3389/fbioe.2023.1170218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Terahertz (THz) technology has emerged as a promising tool for the qualitative and quantitative identification of markers containing major diseases, enabling early diagnosis and staged treatment of diseases. Nevertheless, the detection of water-containing biological samples is facing significant challenges due to limitations in high-power THz radiation sources and high-sensitivity detection devices. In this paper, we present a designed and constructed set of Terahertz-Attenuated Total Reflection (THz-ATR) spectrometer for high-sensitivity detection of liquid biological samples, which can dynamically maintain the signal-to-noise ratio (SNR) of THz detection signal of liquid biological samples at 40-60 dB. Our high-power THz-ATR spectroscopy can identify and quantitatively detect α-lactose aqueous solution with a minimum concentration of 0.292 mol/L. Moreover, we observed that the rate of change in the absorption peak position varied greatly between high and low concentration samples. Our high-power, high-sensitivity THz-ATR spectroscopy detection provides a rapid, accurate, and low-cost method for detecting disease markers such as blood and urine indicators. Additionally, this approach offers new perspectives for the refinement and in-depth detection of biomedical samples.
Collapse
Affiliation(s)
- Haiqing Wang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an, China
- School of Physics and Opto-Electronic Technology, Baoji Key Laboratory of Micro-Nano Optoelectronics and Terahertz Technology, Baoji University of Arts and Sciences, Baoji, Shaanxi, China
| | - Wei Shi
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an, China
| | - Lei Hou
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an, China
| | - Chunhui Li
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an, China
| | - Yusong Zhang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an, China
| | - Lei Yang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi’an University of Technology, Xi’an, China
| | - Juncheng Cao
- Country the Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
34
|
Xu W, Fang W, Shi T, Ming X, Wang Y, Xie L, Peng L, Chen HT, Ying Y. Plasmonic Terahertz Devices and Sensors Based on Carbon Electronics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12560-12569. [PMID: 36847242 DOI: 10.1021/acsami.2c22411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tunable terahertz (THz) photonic devices are imperative in a wide range of applications ranging from THz signal modulation to molecular sensing. One of the currently prevailing methods is based on arrays of metallic or dielectric resonators integrated with functional materials in response to an external stimulus, in which for the purpose of sensing the external stimuli may introduce inadvertent undesirable effects into the target samples to be measured. Here we developed an alternative approach by postprocessing nanothickness macro-assembled graphene (nMAG) films with widely tunable THz conductivity, enabling versatile solid-state THz devices and sensors, showing multifunctional nMAG-based applications. The THz conductivities of free-standing nMAGs showed a broad range from 1.2 × 103 S/m in reduced graphene oxide before annealing to 4.0 × 106 S/m in a nMAG film annealed at 2800 °C. We fabricated nMAG/dielectric/metal and nMAG/dielectric/nMAG THz Salisbury absorbers with broad reflectance ranging from 0% to 80%. The highly conductive nMAG films enabled THz metasurfaces for sensing applications. Taking advantage of the resonant field enhancement arising from the plasmonic metasurface structures and the strong interactions between analyte molecules and nMAG films, we successfully detected diphenylamine with a limit of detection of 4.2 pg. Those wafer-scale nMAG films present promising potential in high-performance THz electronics, photonics, and sensors.
Collapse
Affiliation(s)
- Wendao Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Wenzhang Fang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou, Zhejiang 311200, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Teng Shi
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xin Ming
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yingli Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Lijuan Xie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| | - Li Peng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou, Zhejiang 311200, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Hou-Tong Chen
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
35
|
Shi WN, Fan F, Zhang TR, Liu JY, Wang XH, Chang S. Terahertz phase shift sensing and identification of a chiral amino acid based on a protein-modified metasurface through the isoelectric point and peptide bonding. BIOMEDICAL OPTICS EXPRESS 2023; 14:1096-1106. [PMID: 36950227 PMCID: PMC10026576 DOI: 10.1364/boe.484181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The efficient sensing of amino acids, especially the distinction of their chiral enantiomers, is important for biological, chemical, and pharmaceutical research. In this work, a THz phase shift sensing method was performed for amino acid detection based on a polarization-dependent electromagnetically induced transparency (EIT) metasurface. More importantly, a method for binding the specific amino acids to the functional proteins modified on the metasurface was developed based on the isoelectric point theory so that the specific recognition for Arginine (Arg) was achieved among the four different amino acids. The results show that via high-Q phase shift, the detection precision for L-Arg is 2.5 × 10-5 g /ml, much higher than traditional sensing parameters. Due to the specific electrostatic adsorption by the functionalized metasurface to L-Arg, its detection sensitivity and precision are 22 times higher than the other amino acids. Furthermore, by comparing nonfunctionalized and functionalized metasurfaces, the D- and L-chiral enantiomers of Arg were distinguished due to their different binding abilities to the functionalized metasurface. Therefore, this EIT metasurface sensor and its specific binding method improve both detection precision and specificity in THz sensing for amino acids, and it will promote the development of THz highly sensitive detection of chiral enantiomers.
Collapse
Affiliation(s)
- Wei-Nan Shi
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Fei Fan
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| | - Tian-Rui Zhang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Jia-Yue Liu
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - Xiang-Hui Wang
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China
| | - ShengJiang Chang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Tianjin 300350, China
| |
Collapse
|
36
|
Zhan X, Liu Y, Chen Z, Luo J, Yang S, Yang X. Revolutionary approaches for cancer diagnosis by terahertz-based spectroscopy and imaging. Talanta 2023; 259:124483. [PMID: 37019007 DOI: 10.1016/j.talanta.2023.124483] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Most tumors are easily missed and misdiagnosed due to the lack of specific clinical signs and symptoms in the early stage. Thus, an accurate, rapid and reliable early tumor detection method is highly desirable. The application of terahertz (THz) spectroscopy and imaging in biomedicine has made remarkable progress in the past two decades, which addresses the shortcomings of existing technologies and provides an alternative for early tumor diagnosis. Although issues such as size mismatch and strong absorption of THz waves by water have set hurdles for cancer diagnosis by THz technology, innovative materials and biosensors in recent years have led to possibilities for new THz biosensing and imaging methods. In this article, we reviewed the issues that need to be solved before THz technology is used for tumor-related biological sample detection and clinical auxiliary diagnosis. We focused on the recent research progress of THz technology, with an emphasis on biosensing and imaging. Finally, the application of THz spectroscopy and imaging for tumor diagnosis in clinical practice and the main challenges in this process were also mentioned. Collectively, THz-based spectroscopy and imaging reviewed here is envisioned as a cutting-edge approach for cancer diagnosis.
Collapse
Affiliation(s)
- Xinyu Zhan
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yu Liu
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400037, China
| | - Zhiguo Chen
- Gastroenterology Department, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jie Luo
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Sha Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiang Yang
- Department of Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
37
|
Wang H, Shi W, Hou L, Li C, Wang Z, Yang L, Cao J. Quantitative analysis of aqueous biomolecular mixtures by THz spectroscopy based on high-power LiNbO 3 radiation source. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122075. [PMID: 36356399 DOI: 10.1016/j.saa.2022.122075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The rapid and accurate identification of the types and contents of early pathological markers by THz technology are of particular importance for the prevention and treatment of major diseases. Nevertheless, these markers usually contain interference from water and other non-target molecules, resulting in low signal-to-noise ratio (SNR) and making identification and quantitative analysis difficult. Here, based on THz spectroscopy from a high-power THz source radiated by LiNbO3, we perform quantitative and real-time THz detection of mixtures (α-lactose monohydrate and 4-aminobenzoic acid) in liquids. The results demonstrate that the absorption spectra of the aqueous biomolecular mixtures exhibit an accumulation of THz features of each pure product, i.e., the amplitude of the absorption peaks is proportional to the mixing ratio, while the corresponding absorption baseline increases with decreasing concentration. Furthermore, the content of the target substance can be calculated from the linear relationship between the absorption spectra of pure and mixed samples. This technology will support the future application of THz-TDS in early disease diagnosis under complex states and environments.
Collapse
Affiliation(s)
- Haiqing Wang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
| | - Wei Shi
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China.
| | - Lei Hou
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
| | - Chunhui Li
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
| | - Zhiquan Wang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
| | - Lei Yang
- Key Laboratory of Ultrafast Photoelectric Technology and Terahertz Science in Shaanxi, Xi'an University of Technology, Xi'an 710048, China
| | - Juncheng Cao
- The Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
38
|
Zhou Y, Xie S, Liu B, Wang C, Huang Y, Zhang X, Zhang S. Chemiluminescence Sensor for miRNA-21 Detection Based on CRISPR-Cas12a and Cation Exchange Reaction. Anal Chem 2023; 95:3332-3339. [PMID: 36716431 DOI: 10.1021/acs.analchem.2c04484] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein, a chemiluminescence (CL) biosensor based on CRISPR-Cas12a and cation exchange reaction was constructed to detect the biomarker microRNA-21 (miRNA-21). The rolling circle amplification (RCA) reaction was introduced to convert each target RNA strand into a long single-stranded DNA with repeated sequences, which acted as triggers to initiate the transcleavage activity of CRISPR-Cas12a. The activated Cas12a could cleave the biotinylated linker DNA of CuS nanoparticles (NPs) to inhibit the binding of CuS NPs to streptavidin immobilized on the surface of the microplate, which strongly reduced the generation of Cu2+ from a cation exchange between CuS NPs and AgNO3, and thus efficiently suppressed the CL of Cu2+-luminol-H2O2 system, giving a "signal off" biosensor. With the multiple amplification, the detection limit of the developed sensor for miRNA-21 reached 16 aM. In addition, this biosensor is not only suitable for a professional chemiluminescence instrument but also for a smartphone used as a detection tool for the purpose of portable and low-cost assay. This method could be used to specifically detect quite a low level of miRNA-21 in human serum samples and various cancer cells, indicating its potential in ultrasensitive molecular diagnostics.
Collapse
Affiliation(s)
- Yanmei Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China.,CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao266071, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao266071, China
| | - Shupu Xie
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Bo Liu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Cong Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Yibo Huang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Xiaoru Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Shusheng Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, and College of Chemistry and Chemical Engineering, Linyi University, Linyi276000, China
| |
Collapse
|
39
|
Song F, Xiao B, Qin J. High-Q multiple Fano resonances with near-unity modulation depth governed by nonradiative modes in all-dielectric terahertz metasurfaces. OPTICS EXPRESS 2023; 31:4932-4941. [PMID: 36785448 DOI: 10.1364/oe.481328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Reducing radiative losses for a high quality factor resonance based on the concept of nonradiative states including anapole mode and bound states in the continuum mode has been attracting extensive attention. However, a high quality factor resonance is obtained at the expense of its modulation depth. Here, an asymmetric metasurfaces structure consisted of silicon double D-shaped resonator arrays that can support both an anapole mode and two bound states in the continuum modes in terahertz band is proposed, which has not only ultrahigh quality factor but also near-unity modulation depth. A resonance derived from anapole mode with stronger electromagnetic field enhancement and higher quality factor can be achieved by increasing the gap of resonator. Meanwhile, two Fano resonances governed by bound states in the continuum modes can be identified, and their quality factors can be easily tailored by controlling the asymmetry of resonator. Such an all-dielectric metasurfaces structure may give access to the development of the terahertz sensors, filters, and modulators.
Collapse
|
40
|
Shahbazi-Derakhshi P, Mahmoudi E, Majidi MM, Sohrabi H, Amini M, Majidi MR, Niaei A, Shaykh-Baygloo N, Mokhtarzadeh A. An Ultrasensitive miRNA-Based Genosensor for Detection of MicroRNA 21 in Gastric Cancer Cells Based on Functional Signal Amplifier and Synthesized Perovskite-Graphene Oxide and AuNPs. BIOSENSORS 2023; 13:172. [PMID: 36831939 PMCID: PMC9953341 DOI: 10.3390/bios13020172] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
In the present research work, the state-of-art label-free electrochemical genosensing platform was developed based on the hybridization process in the presence of [Fe(CN)6]3-/4- as an efficient redox probe for sensitive recognition of the miRNA-21 in human gastric cell lines samples. To attain this aim, perovskite nanosheets were initially synthesized. Afterward, the obtained compound was combined with the graphene oxide resulting in an effective electrochemical modifier, which was dropped on the surface of the Au electrode. Then, AuNPs (Gold Nano Particles) have been electrochemically-immobilized on perovskite-graphene oxide/Au-modified electrode surface through the chronoamperometry (CA) technique. Finally, a self-assembling monolayer reaction of ss-capture RNA ensued by the thiol group at the end of the probe with AuNPs on the modified electrode surface. miRNA-21 has been cast on the Au electrode surface to apply the hybridization process. To find out the effectiveness of the synthesized modifier agent, the electrochemical behavior of the modified electrode has been analyzed through DPV (differential pulse voltammetry) and CV (cyclic voltammetry) techniques. The prepared biomarker-detection bioassay offers high sensitivity and specificity, good performance, and appropriate precision and accuracy for the highly-sensitive determination of miRNA-21. Different characterization methods have been used, such as XRD, Raman, EDS, and FE-SEM, for morphological characterization and investigation of particle size. Based on optimal conditions, the limit of detection and quantification have been acquired at 2.94 fM and 8.75 fM, respectively. Furthermore, it was possible to achieve a wide linear range which is between 10-14 and 10-7 for miRNA-21. Moreover, the selectivity of the proposed biosensing assay was investigated through its potential in the detection of one, two, and three-base mismatched sequences. Moreover, it was possible to investigate the repeatability and reproducibility of the related bio-assay. To evaluate the hybridization process, it is important that the planned biomarker detection bio-assay could be directly re-used and re-generated.
Collapse
Affiliation(s)
- Payam Shahbazi-Derakhshi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166-616471, Iran
- Department of Biology, Faculty of Science, Urmia University, Urmia 5756-151818, Iran
- Immunology Research Center, Medical Science University of Tabriz, Tabriz 5166-15731, Iran
| | - Elham Mahmoudi
- Catalyst and Reactor Research Lab, Department of Chemical & Petroleum Engineering, University of Tabriz, Tabriz 5166-616471, Iran
| | - Mir Mostafa Majidi
- Catalyst and Reactor Research Lab, Department of Chemical & Petroleum Engineering, University of Tabriz, Tabriz 5166-616471, Iran
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran 1591-634311, Iran
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166-616471, Iran
| | - Mohammad Amini
- Immunology Research Center, Medical Science University of Tabriz, Tabriz 5166-15731, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166-616471, Iran
| | - Aligholi Niaei
- Catalyst and Reactor Research Lab, Department of Chemical & Petroleum Engineering, University of Tabriz, Tabriz 5166-616471, Iran
| | - Nima Shaykh-Baygloo
- Department of Biology, Faculty of Science, Urmia University, Urmia 5756-151818, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Medical Science University of Tabriz, Tabriz 5166-15731, Iran
| |
Collapse
|
41
|
Niu Q, Fu L, Zhong Y, Cui B, Zhang G, Yang Y. Sensitive and Specific Detection of Carcinoembryonic Antigens Using Toroidal Metamaterial Biosensors Integrated with Functionalized Gold Nanoparticles. Anal Chem 2023; 95:1123-1131. [PMID: 36524836 DOI: 10.1021/acs.analchem.2c03836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carcinoembryonic antigen (CEA) is a biomarker that is highly expressed in cancer patients. Label-free, highly sensitive, and specific detection of CEA biomarkers can therefore greatly aid in the early detection and screening of cancer. This study presents a toroidal metamaterial biosensor integrated with functionalized gold nanoparticles (AuNPs) that demonstrated highly sensitive and specific detection of CEA using terahertz (THz) time-domain spectroscopy. In the biosensor, a closed-loop magnetic field formed an electrical confinement, resulting in a high sensitivity (287.8 GHz/RIU) and an ultrahigh quality factor (15.04). In addition, the integrated AuNPs with high refractive indices significantly enhanced the sensing performance of the biosensor. To explore the quantitative and qualitative detection of CEA, CEA biomarkers with various concentrations and four types of proteins were measured by the designed biosensor, achieving a limit of detection of 0.17 ng and high specificity. Even more significant, the proposed AuNP-integrated THz toroidal metamaterial biosensor demonstrates exceptional potential for use in technologies for cancer diagnosis and monitoring.
Collapse
Affiliation(s)
- Qiang Niu
- School of Science, Minzu University of China, Beijing 100081, China
| | - Liling Fu
- School of Science, Minzu University of China, Beijing 100081, China
| | - Yunxiang Zhong
- School of Science, Minzu University of China, Beijing 100081, China
| | - Bin Cui
- School of Science, Minzu University of China, Beijing 100081, China.,Engineering Research Center of Photonic Design Software, Ministry of Education, Beijing 100081, China
| | - Guling Zhang
- School of Science, Minzu University of China, Beijing 100081, China.,Engineering Research Center of Photonic Design Software, Ministry of Education, Beijing 100081, China
| | - Yuping Yang
- School of Science, Minzu University of China, Beijing 100081, China.,Engineering Research Center of Photonic Design Software, Ministry of Education, Beijing 100081, China
| |
Collapse
|
42
|
Liu Y, Wang F, Ge S, Zhang L, Zhang Z, Liu Y, Zhang Y, Ge S, Yu J. Programmable T-Junction Structure-Assisted CRISPR/Cas12a Electrochemiluminescence Biosensor for Detection of Sa-16S rDNA. ACS APPLIED MATERIALS & INTERFACES 2023; 15:617-625. [PMID: 36537539 DOI: 10.1021/acsami.2c18930] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, a strand displacement amplification (SDA)-assisted CRISPR/Cas12a (LbCpf1) electrochemiluminescence (ECL) biosensor was fabricated for ultrasensitive identification of Staphylococcus aureus (Sa)-16S rDNA. A porphyrinic Zr metal-organic framework (MOF) (PCN-224) nanomaterial was prepared as the coreactant accelerator, which promoted the conversion of S2O82- and SO4*-, thus enhancing the reaction with CdS quantum dots (QDs) and amplifying the ECL emission signal. Meanwhile, with the presence of Sa-16S rDNA, the auxiliary probes and primers stimulated the SDA reaction under the action of Klenow fragment (3'-5' exo-) and Nt. BbvCI specifically recognized Sa-16S rDNA to form a defective T-junction structure and generated second primers to initiate the cycles. Such a structure transformed the input signal (Sa-16S rDNA) into substantial single-stranded DNA products (SP) through SDA. SP acted as activators and activated arbitrary side chain cleavage of CRISPR/Cas12a (trans-cleavage) and further realized effective annihilation of ECL signals. This ECL platform demonstrated desirable assay performance for Sa-16S rDNA with a wide response range of 1 fM to 10 nM, and the limit of detection was 0.437 fM (S/N = 3), showing good sensitivity and specificity. Therefore, the method not only expanded the applications of CRISPR/Cas12a but also opened up a novel strategy for clinical diagnosis.
Collapse
Affiliation(s)
- Yaqi Liu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan250022, P. R. China
| | - Fengyi Wang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan250022, P. R. China
| | - Shuo Ge
- Department of Medical Laboratory, Shandong Medical College, Jinan250002, P. R. China
| | - Lu Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan250022, P. R. China
| | - Zuhao Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan250022, P. R. China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan250022, P. R. China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan250022, P. R. China
| |
Collapse
|
43
|
Kumar S, Wang Z, Zhang W, Liu X, Li M, Li G, Zhang B, Singh R. Optically Active Nanomaterials and Its Biosensing Applications-A Review. BIOSENSORS 2023; 13:85. [PMID: 36671920 PMCID: PMC9855722 DOI: 10.3390/bios13010085] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 05/17/2023]
Abstract
This article discusses optically active nanomaterials and their optical biosensing applications. In addition to enhancing their sensitivity, these nanomaterials also increase their biocompatibility. For this reason, nanomaterials, particularly those based on their chemical compositions, such as carbon-based nanomaterials, inorganic-based nanomaterials, organic-based nanomaterials, and composite-based nanomaterials for biosensing applications are investigated thoroughly. These nanomaterials are used extensively in the field of fiber optic biosensing to improve response time, detection limit, and nature of specificity. Consequently, this article describes contemporary and application-based research that will be of great use to researchers in the nanomaterial-based optical sensing field. The difficulties encountered during the synthesis, characterization, and application of nanomaterials are also enumerated, and their future prospects are outlined for the reader's benefit.
Collapse
Affiliation(s)
- Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Zhi Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Wen Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Guoru Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
44
|
Cascade-amplified fluorescence polarization assay for miRNA based on aggregation strategy of Y-shaped DNA. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
45
|
Gezimati M, Singh G. Advances in terahertz technology for cancer detection applications. OPTICAL AND QUANTUM ELECTRONICS 2022; 55:151. [PMID: 36588663 PMCID: PMC9791634 DOI: 10.1007/s11082-022-04340-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/31/2022] [Indexed: 06/12/2023]
Abstract
Currently, there is an increasing demand for the diagnostic techniques that provide functional and morphological information with early cancer detection capability. Novel modern medical imaging systems driven by the recent advancements in technology such as terahertz (THz) and infrared radiation-based imaging technologies which are complementary to conventional modalities are being developed, investigated, and validated. The THz cancer imaging techniques offer novel opportunities for label free, non-ionizing, non-invasive and early cancer detection. The observed image contrast in THz cancer imaging studies has been mostly attributed to higher refractive index, absorption coefficient and dielectric properties in cancer tissue than that in the normal tissue due the local increase of the water molecule content in tissue and increased blood supply to the cancer affected tissue. Additional image contrast parameters and cancer biomarkers that have been reported to contribute to THz image contrast include cell structural changes, molecular density, interactions between agents (e.g., contrast agents and embedding agents) and biological tissue as well as tissue substances like proteins, fiber and fat etc. In this paper, we have presented a systematic and comprehensive review of the advancements in the technological development of THz technology for cancer imaging applications. Initially, the fundamentals principles and techniques for THz radiation generation and detection, imaging and spectroscopy are introduced. Further, the application of THz imaging for detection of various cancers tissues are presented, with more focus on the in vivo imaging of skin cancer. The data processing techniques for THz data are briefly discussed. Also, we identify the advantages and existing challenges in THz based cancer detection and report the performance improvement techniques. The recent advancements towards THz systems which are optimized and miniaturized are also reported. Finally, the integration of THz systems with artificial intelligent (AI), internet of things (IoT), cloud computing, big data analytics, robotics etc. for more sophisticated systems is proposed. This will facilitate the large-scale clinical applications of THz for smart and connected next generation healthcare systems and provide a roadmap for future research.
Collapse
Affiliation(s)
- Mavis Gezimati
- Centre for Smart Information and Communication Systems, Department of Electrical and Electronics Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O Box 524, Johannesburg, 2006 South Africa
| | - Ghanshyam Singh
- Centre for Smart Information and Communication Systems, Department of Electrical and Electronics Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, P.O Box 524, Johannesburg, 2006 South Africa
| |
Collapse
|
46
|
Recent progress in terahertz biosensors based on artificial electromagnetic subwavelength structure. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Xu W, Wang Q, Zhou R, Hameed S, Ma Y, Lijuan Xie, Ying Y. Defect-rich graphene-coated metamaterial device for pesticide sensing in rice. RSC Adv 2022; 12:28678-28684. [PMID: 36320498 PMCID: PMC9540250 DOI: 10.1039/d2ra06006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
Performing sensitive and selective detection in a mixture is challenging for terahertz (THz) sensors. In light of this, many methods have been developed to detect molecules in complex samples using THz technology. Here we demonstrate a defect-rich monolayer graphene-coated metamaterial operating in the THz regime for pesticide sensing in a mixture through strong local interactions between graphene and external molecules. The monolayer graphene induces a 50% change in the resonant peak excited by the metamaterial absorber that could be easily distinguished by THz imaging. We experimentally show that the Fermi level of the graphene can be tuned by the addition of molecules, which agrees well with our simulation results. Taking chlorpyrifos methyl in the lixivium of rice as a sample, we further show the molecular sensing potential of this device, regardless of whether the target is in a mixture or not.
Collapse
Affiliation(s)
- Wendao Xu
- College of Biosystems Engineering and Food Science, Zhejiang University 866 Yuhangtang Rd. 310058 Hangzhou P.R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province P.R. China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs P.R. China
| | - Qi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University 866 Yuhangtang Rd. 310058 Hangzhou P.R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province P.R. China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs P.R. China
| | - Ruiyun Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University 866 Yuhangtang Rd. 310058 Hangzhou P.R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province P.R. China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs P.R. China
| | - Saima Hameed
- College of Biosystems Engineering and Food Science, Zhejiang University 866 Yuhangtang Rd. 310058 Hangzhou P.R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province P.R. China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs P.R. China
| | - Yungui Ma
- State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University 866 Yuhangtang Rd. 310058 Hangzhou P.R. China
| | - Lijuan Xie
- College of Biosystems Engineering and Food Science, Zhejiang University 866 Yuhangtang Rd. 310058 Hangzhou P.R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province P.R. China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs P.R. China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University 866 Yuhangtang Rd. 310058 Hangzhou P.R. China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province P.R. China
- Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture and Rural Affairs P.R. China
| |
Collapse
|
48
|
Li Y, Wang X, Liu Y, Jin W, Tian H, Xie F, Xia K, Zhang X, Fu W, Zhang Y. Flexible Terahertz Metamaterial Biosensor for Ultra-Sensitive Detection of Hepatitis B Viral DNA Based on the Metal-Enhanced Sandwich Assay. Front Bioeng Biotechnol 2022; 10:930800. [PMID: 35992361 PMCID: PMC9388765 DOI: 10.3389/fbioe.2022.930800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
The high sensitivity and specificity of terahertz (THz) biosensing are both promising and challenging in DNA sample detection. This study produced and refined a flexible THz MM biosensor for ultrasensitive detection of HBV in clinical serum samples based on a gold magnetic nanoparticle-mediated rolling circle amplification (GMNPs@RCA) sandwich assay under isothermal conditions. Typically, solid-phase RCA reactions mediated by circular padlock probes (PLPs) are triggered under isothermal conditions in the presence of HBV DNA, resulting in long single-stranded DNA (ssDNA) with high fidelity and specificity. Then, the resultant ssDNA was conjugated with detection probes (DPs) immobilized on gold nanoparticles (DP@AuNPs) to form GMNPs-RCA-AuNPs sandwich complexes. The HBV DNA concentrations were quantified by introducing GMNPs-RCA-AuNPs complexes into the metasurface of a flexible THz metamaterial-based biosensor chip and resulting in a red shift of the resonance peak of the THz metamaterials. This biosensor can lead to highly specific and sensitive detection with one-base mismatch discrimination and a limit of detection (LOD) down to 1.27E + 02 IU/ml of HBV DNA from clinical serum samples. The HBV DNA concentration was linearly correlated with the frequency shift of the THz metamaterials within the range of 1.27E + 02∼1.27E + 07 IU/ml, illustrating the applicability and accuracy of our assay in real clinical samples. This strategy constitutes a promising THz sensing method to identify virus DNA. In the future, it is hoped it can assist with pathogen identification and clinical diagnosis.
Collapse
Affiliation(s)
- Yumin Li
- Medical Laboratory of the Third affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaojing Wang
- Department of Laboratory Medicine, Chifeng Municipal Hospital, Chifeng, China
| | - Yu Liu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weidong Jin
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Huiyan Tian
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengxin Xie
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ke Xia
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiuming Zhang
- Medical Laboratory of the Third affiliated Hospital of Shenzhen University, Shenzhen, China
- *Correspondence: Xiuming Zhang, ; Weiling Fu, ; Yang Zhang,
| | - Weiling Fu
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Xiuming Zhang, ; Weiling Fu, ; Yang Zhang,
| | - Yang Zhang
- Department of Laboratory Medicine, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Xiuming Zhang, ; Weiling Fu, ; Yang Zhang,
| |
Collapse
|
49
|
Pesticide detection with covalent-organic-framework nanofilms at terahertz band. Biosens Bioelectron 2022; 209:114274. [DOI: 10.1016/j.bios.2022.114274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022]
|
50
|
Lu X, Li D, Luo Z, Duan Y. A dual-functional fluorescent biosensor based on enzyme-involved catalytic hairpin assembly for the detection of APE1 and miRNA-21. Analyst 2022; 147:2834-2842. [PMID: 35621039 DOI: 10.1039/d2an00108j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Both apurinic/apyrimidinic endonuclease 1 (APE1) and microRNA-21 (miRNA-21) have been reported to be related to tumors, enabling them to be the biomarkers of several cancers. This has led to the development of various biosensors to detect APE1 or miRNA-21. However, biosensors that focus on single target detection are subject to low accuracy. In this work, a fluorescent biosensor based on enzyme-involved catalytic hairpin assembly (CHA) for the detection of APE1 and miRNA-21 was developed, aimed at improving the accuracy of early-phase diagnosis of cancers. Two hairpin structured DNA probes (H1 and H2) were utilized to concatenate the enzyme-assisted circuit and CHA circuit in the system. The stem of H1 with a blunt end was modified with an AP site, while H2 was modified with 6-FAM at the 5' terminal and Dabcyl at the 3' terminal. In the presence of APE1, H1 was cleaved from the AP site to expose the toehold sequence. Then, miRNA-21 bound with the toehold sequence to initiate the CHA reaction between H1 and H2. The assembled product of CHA triggered the 6-FAM of H2 at a distance from Dabcyl, which recovered the fluorescence signal. It is worth noting that only under the co-stimulation of APE1 and miRNA-21 can the fluorescence signal be detected, indicating that the biosensor could work as an AND logic gate. The proposed dual-functional biosensor achieved a limit of detection (LOD) of 0.016 U mL-1 for APE1 and 0.25 nM for miRNA-21 and APE1, respectively, and also exhibits good selectivity and stability for the two biomarkers. Thus, the biosensor has great potential to be applied as a new platform for cancer diagnosis.
Collapse
Affiliation(s)
- Xiaoyong Lu
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P.R. China.
| | - Dan Li
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, P.R. China.
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, P.R. China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, P.R. China.
| |
Collapse
|