1
|
Shi Y, Li H, Chen H, Li X, Zhang M, He Q, Zhou J, Zhong J, Chen X, Zhang H, Chu LT, Guo W. Capillary flow of hybrid mode for enhancement of flow rate on μTADs. Anal Chim Acta 2025; 1355:343996. [PMID: 40274327 DOI: 10.1016/j.aca.2025.343996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Microfluidic paper-based analytical devices (μPADs) and microfluidic thread-based analytical devices (μTADs) have already found many successful applications in biosensing. These devices mainly utilize the autonomous capillary pumping of liquid for sample actuation. Capillary flow control is very interesting and necessary for μPADs and μTADs with point-of-care diagnostic applications. Many attempts have been made on μPADs while few attempts exist for μTADs. Methods for facile flow rate control on μTADs are needed for improving the performance of μTADs on point-of-care diagnostics. RESULTS Here, we develop a method for increasing the capillary flow rate on μTADs. By incorporating hollow channels within μTADs that are encapsulated by thermal contraction tubes, we establish a hybrid capillary flow mode, which significantly enhances the flow rates in these devices. We investigate the influence of hollow channel size on the capillary flow rate, and find that the average flow rate increases with the hollow channel size. The average flow rate of the group with hollow channel size as 1200 μm is 12353 % more than that of the control group. Then we choose the group with hollow channel size as 1200 μm for investigation of flow rate enhancement on high viscosity liquid samples (glycerol) and non-Newtonian liquid samples (whole blood). Moreover, we also show that programmed enhancement of capillary flow rate is possible by creating μTADs with a partial hollow channel along the threads. SIGNIFICANCE The simplicity of our method enables it to be used for facile flow rate control on μTADs, and it works well for various and complex liquid samples. We believe that by combination with immunoassays, it has the potential in improving the performance of μTADs for point-of-care diagnostics in the near future.
Collapse
Affiliation(s)
- Yixi Shi
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Haonan Li
- Department of Electrical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Hao Chen
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Xionghui Li
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Muyang Zhang
- Department of Electrical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Qinghao He
- Department of Electrical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Jie Zhou
- Department of Electrical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Jiahua Zhong
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Xinyi Chen
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China
| | - Huiru Zhang
- Guangdong Foshan Lianchuang Graduate School of Engineering, Foshan, 528311, Guangdong, China
| | - Lok Ting Chu
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Weijin Guo
- Department of Biomedical Engineering, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong, China.
| |
Collapse
|
2
|
Aksoy C, van Kesteren I, Zuilhof H, Salentijn GI. Broad Tuning of Paper Microfluidic Properties by Covalent Surface Modification for Precise Flow Control and Sensing. ACS APPLIED BIO MATERIALS 2025; 8:3748-3761. [PMID: 40241644 DOI: 10.1021/acsabm.4c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
In an effort to innovate on-site sensing platforms for a wide range of analytes in different matrices, microfluidic paper-based devices (μPADs) are promising candidates to bring the lab to the sample, as they allow passive, capillary-action-driven flow. Their use, however, is somewhat limited by the fact that the integration of advanced functionality and flow control is difficult. Although recent progress in this area has led to the development of on/off-valving and timing control of flow by changing the chemical and physical properties of paper, precise control over flow in paper microfluidics remains challenging. Here, we propose the use of a simple covalent modification of cellulose paper to tune its surface properties, thereby introducing a broad range of functionality and applicability. For this purpose, fatty acyl chlorides with different chain lengths were used as hydrophobic reagents to change the surface properties. The modified paper was characterized by FTIR-ATR, static water contact angle measurements, and capillary flow properties (permeability, maximum flow distance, and flow rate). The produced papers were then applied in several proof-of-concept devices to demonstrate their potential in sensing and actuating for improved on-site analysis. We demonstrate how precisely modified paper can be used for surface tension measurements and multistep valving based on its wickability for solutions of varying surface tensions, for the determination of ethanol concentration in water by monitoring the maximum flow distance in a 3D-printed device, and for the optimization of on-paper liquid-liquid extraction via fine-tuned control of capillary flow rates.
Collapse
Affiliation(s)
- Canan Aksoy
- Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeneng 4, Wageningen 6708 WE, the Netherlands
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen 6700 AE, the Netherlands
| | - Ischa van Kesteren
- Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeneng 4, Wageningen 6708 WE, the Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeneng 4, Wageningen 6708 WE, the Netherlands
- College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Gert Ij Salentijn
- Laboratory of Organic Chemistry, Wageningen University, Helix Building 124, Stippeneng 4, Wageningen 6708 WE, the Netherlands
- Wageningen Food Safety Research, Wageningen University & Research, Wageningen 6700 AE, the Netherlands
| |
Collapse
|
3
|
Choi J, Oh CY, Qian G, Shim TS, Jeong HH. Optofluidic paper-based analytical device for discriminative detection of organic substances via digital color coding. MICROSYSTEMS & NANOENGINEERING 2025; 11:11. [PMID: 39820249 PMCID: PMC11739424 DOI: 10.1038/s41378-024-00865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025]
Abstract
Developing a portable yet affordable method for the discrimination of chemical substances with good sensitivity and selectivity is essential for on-site visual detection of unknown substances. Herein, we propose an optofluidic paper-based analytical device (PAD) that consists of a macromolecule-driven flow (MDF) gate and photonic crystal (PhC) coding units, enabling portable and scalable detection and discrimination of various organic chemical, mimicking the olfactory system. The MDF gate is designed for precise flow control of liquid analytes, which depends on intermolecular interactions between the polymer at the MDF gate and the liquid analytes. Subsequently, the PhC coding unit allows for visualizing the result obtained from the MDF gate and generating differential optical patterns. We fabricate an optofluidic PAD by integrating two coding units into a three-dimensional (3D) microfluidic paper within a 3D-printed cartridge. The optofluidic PADs clearly distinguish 11 organic chemicals with digital readout of pattern recognition from colorimetric signals. We believe that our optofluidic coding strategy mimicking the olfactory system opens up a wide range of potential applications in colorimetric monitoring of chemicals observed in environment.
Collapse
Affiliation(s)
- Jinsol Choi
- Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do, 59626, Republic of Korea
| | - Chi Yeung Oh
- Department of Energy Systems Research, Ajou University, 206 World cup-ro, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Gong Qian
- Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do, 59626, Republic of Korea
| | - Tae Soup Shim
- Department of Energy Systems Research, Ajou University, 206 World cup-ro, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
- Department of Chemical Engineering, Ajou University, 206 World cup-ro, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Heon-Ho Jeong
- Department of Chemical and Biomolecular Engineering, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do, 59626, Republic of Korea.
| |
Collapse
|
4
|
Wang L, Zhou Z, Niu J, Peng J, Wang T, Hou X. Emerging innovations in portable chemical sensing devices: Advancements from microneedles to hydrogel, microfluidic, and paper-based platforms. Talanta 2024; 278:126412. [PMID: 38924993 DOI: 10.1016/j.talanta.2024.126412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
With the public heightened emphasis on mitigating the occurrence risks of health-related ailment and optimizing personal physical performance, portable chemical sensing devices emerged as an indispensable component of pervasive health monitoring. Chemical sensing enabled the immediate and on-site identification of biomarkers in biological fluids by integrating colorimetry, fluorescence, electrochemical, and other methods into portable sensor devices. These sensor devices incorporated microneedles, hydrogels, microfluidic modules, and papers, facilitating conformal human-device contact and providing several visual sensing options for disease prevention and healthcare management. This review systematically overviewed recent advancements in chemical sensors for marker detection, categorizing them based on monitoring device types. Furthermore, we also offered recommendations and opportunities for developing portable chemical sensing devices by summarizing sensor integration methods and tracking sites on the human body.
Collapse
Affiliation(s)
- Louqun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Zimeng Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Jingge Niu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Jiayi Peng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Ting Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| |
Collapse
|
5
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
6
|
Chen JS, Wang CM, Chiang PY, Lo LC, Liao WS. Spatially Mediated Paper Reactors for On-Site Multicoded Encryption. JACS AU 2024; 4:2151-2159. [PMID: 38938820 PMCID: PMC11200220 DOI: 10.1021/jacsau.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 06/29/2024]
Abstract
This report develops a point-of-use chemical trigger and applies it to a dual-functional chemical encryption chip that enables manual and digital identification with enhanced coding security levels suitable for on-site information verification. The concept relies on conducting continuous chemical synthesis and chromatographic separation of specified compounds on a paper device in a straightforward sketch. In addition to single-step chemical reactions, cascade syntheses and operations involving components of distinct mobilities are also demonstrated. The condensation of dione and hydrazine is first demonstrated on a linear paper reactor, where precursors can mix to react, followed by final product separation under optimized conditions. This linear paper reactor design can also support a multistep cascade Wittig reaction by controlling the relative mobility of reactants, intermediates, and final products. Furthermore, a three-dimensional paper reactor with appropriate mobile phases helps to initiate complex solvent system-driven azide-alkyne cycloaddition. By the use of a three-dimensional device design for spatially limited interdevice reactant transportation, reactants crossing designated boundaries trigger confined chemical reactions at specific positions. Accumulation of repetitive reactions leads to successful product gradient generation and mixing effects, representing a fully controllable intersubstrate chemical operation on the platform. Standing on initiating desired chemical reactions at particular interface regions, integration of appropriate selective reaction area, numerical digits overlay, color diversity, and mobile recognition realizes this dual-functional multicoding encryption process.
Collapse
Affiliation(s)
- Jia-Syuan Chen
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chang-Ming Wang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Yu Chiang
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Lee-Chiang Lo
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ssu Liao
- Department
of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center
for Emerging Material and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Verma S, Toley BJ. Saturation Equation: An Analytical Expression for Partial Saturation during Wicking Flow in Paper Microfluidic Channels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11419-11427. [PMID: 38770942 DOI: 10.1021/acs.langmuir.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The design and fabrication of paper-based microfluidic devices is critically dependent on modeling fluid flow through porous paper membranes. A commonly observed phenomenon is partial saturation, i.e., regions of the paper membrane not being filled completely due to pores of different sizes. The most comprehensive model to date of partial saturation during wicking flow in paper is the Richards equation. However, the solution to the Richards equation requires numerical solvers like COMSOL, which makes it largely inaccessible to the paper microfluidics and lateral flow assay community. There is therefore a need for a simple and appropriate model of partial saturation in paper membranes, easily usable by the wider research community. In the current work, we present an approach to model paper membranes as a bundle of parallel capillaries whose radii follow a two-parameter log-normal distribution. Application of the Washburn equation to the bundle provides a distribution of fluid fronts, which can be used to calculate saturation. Using this approach, we developed the "saturation equation"─an explicit analytical expression to calculate saturation as a function of space and time in 1D wicking flow. Experimentally obtained data for spatiotemporal saturation for four different paper materials were fit to this analytical model to obtain parameters for each material. Results obtained from this analytical model match well with both experimental data and numerical results obtained from the Richards equation. The availability of an explicit analytical expression for partial saturation will enable incorporation of the critical phenomenon of partial saturation in the design of paper microfluidic devices.
Collapse
Affiliation(s)
- Satvik Verma
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Bhushan J Toley
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- Department of Bioengineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
8
|
Atabakhsh S, Haji Abbasali H, Jafarabadi Ashtiani S. Thermally programmable time delay switches for multi-step assays in paper-based microfluidics. Talanta 2024; 271:125695. [PMID: 38295445 DOI: 10.1016/j.talanta.2024.125695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Paper-based microfluidic devices offer advantages such as low cost and disposability for point-of-care diagnostic applications. However, actuation of fluids on paper can be a challenge in multi-step and complex assays. In this work, a thermally programmable time-delay switch (TPTDS) is presented which operates by causing delays in the fluid path of a microfluidics paper-based analytical device (μPAD) by utilizing screen-printed wax micro-bridges. The time-delay is achieved through an electrical power feedback loop which indirectly adjusts the temperature of each individual micro-bridge, melting the wax into the paper. The melted wax manipulates the fluid flow depending on its penetration depth into the paper channel, which is a function of the applied temperature. To demonstrate functionality of the proposed method, the TPTDS is employed to automate and perform the nitrate assay which requires sequential delivery of reagents. Colorimetric detection is used to quantify the results by utilizing an electronic color sensor.
Collapse
Affiliation(s)
- Saeed Atabakhsh
- Department of Electrical Engineering, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Hossein Haji Abbasali
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14395/515, Iran
| | - Shahin Jafarabadi Ashtiani
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14395/515, Iran.
| |
Collapse
|
9
|
Kumar A, Hatayama J, Soucy A, Carpio E, Rahmani N, Anagnostopoulos C, Faghri M. Fluid Flow Dynamics in Partially Saturated Paper. MICROMACHINES 2024; 15:212. [PMID: 38398941 PMCID: PMC10892355 DOI: 10.3390/mi15020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
This study presents an integrated approach to understanding fluid dynamics in Microfluidic Paper-Based Analytical Devices (µPADs), combining empirical investigations with advanced numerical modeling. Paper-based devices are recognized for their low cost, portability, and simplicity and are increasingly applied in health, environmental monitoring, and food quality analysis. However, challenges such as lack of flow control and the need for advanced detection methods have limited their widespread adoption. To address these challenges, our study introduces a novel numerical model that incorporates factors such as pore size, fiber orientation, and porosity, thus providing a comprehensive understanding of fluid dynamics across various saturation levels of paper. Empirical results focused on observing the wetted length in saturated paper substrates. The numerical model, integrating the Highly Simplified Marker and Cell (HSMAC) method and the High Order accuracy scheme Reducing Numerical Error Terms (HORNET) scheme, successfully predicts fluid flow in scenarios challenging for empirical observation, especially at high saturation levels. The model effectively mimicked the Lucas-Washburn relation for dry paper and demonstrated the increasing time requirement for fluid movement with rising saturation levels. It also accurately predicted faster fluid flow in Whatman Grade 4 filter paper compared with Grade 41 due to its larger pore size and forecasted an increased flow rate in the machine direction fiber orientation of Whatman Grade 4. These findings have significant implications for the design and application of µPADs, emphasizing the need for precise control of fluid flow and the consideration of substrate microstructural properties. The study's combination of empirical data and advanced numerical modeling marks a considerable advancement in paper-based microfluidics, offering robust frameworks for future development and optimization of paper-based assays.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | | | | | | | | | | | - Mohammad Faghri
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| |
Collapse
|
10
|
Yang D, Hu C, Zhang H, Geng S. Recent Developments in Paper-Based Sensors with Instrument-Free Signal Readout Technologies (2020-2023). BIOSENSORS 2024; 14:36. [PMID: 38248413 PMCID: PMC10812998 DOI: 10.3390/bios14010036] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Signal readout technologies that do not require any instrument are essential for improving the convenience and availability of paper-based sensors. Thanks to the remarkable progress in material science and nanotechnology, paper-based sensors with instrument-free signal readout have been developed for multiple purposes, such as biomedical detection, environmental pollutant tracking, and food analysis. In this review, the developments in instrument-free signal readout technologies for paper-based sensors from 2020 to 2023 are summarized. The instrument-free signal readout technologies, such as distance-based signal readout technology, counting-based signal readout technology, text-based signal readout technology, as well as other transduction technologies, are briefly introduced, respectively. On the other hand, the applications of paper-based sensors with instrument-free signal readout technologies are summarized, including biomedical analysis, environmental analysis, food analysis, and other applications. Finally, the potential and difficulties associated with the advancement of paper-based sensors without instruments are discussed.
Collapse
Affiliation(s)
- Danni Yang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China;
| | - Chengju Hu
- Health Management Center, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China;
| | - Hao Zhang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China;
| | - Shan Geng
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China
| |
Collapse
|
11
|
Ruiz-García I, Escobedo P, Ramos-Lorente CE, Erenas MM, Capitán-Vallvey LF, Carvajal MA, Palma AJ, López-Ruiz N. Capacitive platform for real-time wireless monitoring of liquid wicking in a paper strip. LAB ON A CHIP 2023; 23:4092-4103. [PMID: 37615614 DOI: 10.1039/d3lc00368j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Understanding the phenomenon of liquid wicking in porous media is crucial for various applications, including the transportation of fluids in soils, the absorption of liquids in textiles and paper, and the development of new and efficient microfluidic paper-based analytical devices (μPADs). Hence, accurate and real-time monitoring of the liquid wicking process is essential to enable precise flow transport and control in microfluidic devices, thus enhancing their performance and usefulness. However, most existing flow monitoring strategies require external instrumentation, are generally bulky and unsuitable for portable systems. In this work, we present a portable, compact, and cost-effective electronic platform for real-time and wireless flow monitoring of liquid wicking in paper strips. The developed microcontroller-based system enables flow and flow rate monitoring based on the capacitance measurement of a pair of electrodes patterned beneath the paper strip along the liquid path, with an accuracy of 4 fF and a full-scale range of 8 pF. Additionally to the wired transmission of the monitored data to a computer via USB, the liquid wicking process can be followed in real-time via Bluetooth using a custom-developed smartphone application. The performance of the capacitive monitoring platform was evaluated for different aqueous solutions (purified water and 1 M NaCl solution), various paper strip geometries, and several custom-made chemical valves for flow retention (chitosan-, wax-, and sucrose-based barriers). The experimental validation delivered a full-scale relative error of 0.25%, resulting in an absolute capacitance error of ±10 fF. In terms of reproducibility, the maximum uncertainty was below 10 nl s-1 for flow rate determination in this study. Furthermore, the experimental data was compared and validated with numerical analysis through electrical and flow dynamics simulations in porous media, providing crucial information on the wicking process, its physical parameters, and liquid flow dynamics.
Collapse
Affiliation(s)
- Isidoro Ruiz-García
- Electronic and Chemical Sensing Solutions (ECsens), CITIC-UGR, Department of Electronics and Computer Technology, University of Granada (UGR), 18071 Granada, Spain.
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain
- Sport and Health University Research Institute (iMUDS), University of Granada (UGR), 18071 Granada, Spain
| | - Pablo Escobedo
- Electronic and Chemical Sensing Solutions (ECsens), CITIC-UGR, Department of Electronics and Computer Technology, University of Granada (UGR), 18071 Granada, Spain.
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain
- Sport and Health University Research Institute (iMUDS), University of Granada (UGR), 18071 Granada, Spain
| | - Celia E Ramos-Lorente
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain
- Electronic and Chemical Sensing Solutions (ECsens), Department of Analytical Chemistry, University of Granada (UGR), 18071 Granada, Spain
| | - Miguel M Erenas
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain
- Electronic and Chemical Sensing Solutions (ECsens), Department of Analytical Chemistry, University of Granada (UGR), 18071 Granada, Spain
| | - Luis F Capitán-Vallvey
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain
- Electronic and Chemical Sensing Solutions (ECsens), Department of Analytical Chemistry, University of Granada (UGR), 18071 Granada, Spain
| | - Miguel A Carvajal
- Electronic and Chemical Sensing Solutions (ECsens), CITIC-UGR, Department of Electronics and Computer Technology, University of Granada (UGR), 18071 Granada, Spain.
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain
- Sport and Health University Research Institute (iMUDS), University of Granada (UGR), 18071 Granada, Spain
| | - Alberto J Palma
- Electronic and Chemical Sensing Solutions (ECsens), CITIC-UGR, Department of Electronics and Computer Technology, University of Granada (UGR), 18071 Granada, Spain.
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain
- Sport and Health University Research Institute (iMUDS), University of Granada (UGR), 18071 Granada, Spain
| | - Nuria López-Ruiz
- Electronic and Chemical Sensing Solutions (ECsens), CITIC-UGR, Department of Electronics and Computer Technology, University of Granada (UGR), 18071 Granada, Spain.
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Granada, Spain
- Sport and Health University Research Institute (iMUDS), University of Granada (UGR), 18071 Granada, Spain
| |
Collapse
|
12
|
Economou A, Kokkinos C, Bousiakou L, Hianik T. Paper-Based Aptasensors: Working Principles, Detection Modes, and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:7786. [PMID: 37765843 PMCID: PMC10536119 DOI: 10.3390/s23187786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Aptamers are short oligonucleotides designed to possess high binding affinity towards specific target compounds (ions, molecules, or cells). Due to their function and unique advantages, aptamers are considered viable alternatives to antibodies as biorecognition elements in bioassays and biosensors. On the other hand, paper-based devices (PADs) have emerged as a promising and powerful technology for the fabrication of low-cost analytical tools, mainly intended for on-site and point-of-care applications. The present work aims to provide a comprehensive overview of paper-based aptasensors. The review describes the fabrication methods and working principles of paper-based devices, the properties of aptamers as bioreceptors, the different modes of detection used in conjunction with aptasensing PADs, and representative applications for the detection of ions, small molecules, proteins, and cells. The future challenges and prospects of these devices are also discussed.
Collapse
Affiliation(s)
- Anastasios Economou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Leda Bousiakou
- IMD Laboratories Co., R&D Section, Lefkippos Technology Park, National Centre for Scientific Research (NCSR) Demokritos, Agia Paraskevi, P.O. Box 60037, 15130 Athens, Greece;
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 84248 Bratislava, Slovakia;
| |
Collapse
|
13
|
Tang R, Xie M, Yan X, Qian L, Giesy JP, Xie Y. A nitrocellulose/cotton fiber hybrid composite membrane for paper-based biosensor. CELLULOSE (LONDON, ENGLAND) 2023; 30:1-13. [PMID: 37360890 PMCID: PMC10238769 DOI: 10.1007/s10570-023-05288-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Nitrocellulose (NC) membrane was fabricated and tested for its potential use in various paper-based biosensors for use in point-of-care testing. However, contemporary technologies are complex, expensive, non-scalable, limited by conditions, and beset with potentially adverse effects on the environment. Herein, we proposed a simple, cost-effective, scalable technology to prepare nitrocellulose/cotton fiber (NC/CF) composite membranes. The NC/CF composite membranes with a diameter of 20 cm were fabricated in 15 min using papermaking technology, which contributes to scalability in the large-scale production of these composites. Compared with existing commercial NC membranes, the NC/CF composite membrane is characterized by small pore size (3.59 ± 0.19 μm), low flow rate (156 ± 55 s/40 mm), high dry strength (up to 4.04 MPa), and wet strength (up to 0.13 MPa), adjustable hydrophilic-hydrophobic (contact angles ranged from 29 ± 4.6 to 82.8 ± 2.4°), the good adsorption capacity of protein (up to 91.92 ± 0.07 μg). After lateral flow assays (LFAs) detection, the limit of detection is 1 nM, which is similar to commercial NC membrane (Sartorius CN 140). We envision the NC/CF composite membrane as a promising material for paper-based biosensors of point-of-care testing applications.
Collapse
Affiliation(s)
- Ruihua Tang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Mingyue Xie
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Xueyan Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Liwei Qian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - John P. Giesy
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, S7N 5B3 Saskatchewan Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 USA
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266 USA
| | - Yuwei Xie
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042 China
| |
Collapse
|
14
|
Khan M, Zhao B, Wu W, Zhao M, Bi Y, Hu Q. Distance-based microfluidic assays for instrument-free visual point-of-care testing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
15
|
Tong X, Cai G, Xie L, Wang T, Zhu Y, Peng Y, Tong C, Shi S, Guo Y. Threaded 3D microfluidic paper analytical device-based ratiometric fluorescent sensor for background-free and visual detection of organophosphorus pesticides. Biosens Bioelectron 2023; 222:114981. [PMID: 36473422 DOI: 10.1016/j.bios.2022.114981] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
With the increasing concerns of food safety and environmental protection, it is desirable to develop reliable, effective, and portable sensors for detection of organophosphorus pesticides (OPs). Here, a cascade reaction system integrated with threaded 3D microfluidic paper analytical device (3D μPAD) was firstly developed for background-free and visual detection of OPs in agricultural samples. Butyrylcholinesterase (BChE) hydrolyzed acetylcholine into thiocholine (TCh), which reduced MnO2 nanosheets into Mn2+. With addition of OPs, BChE activity was irreversibly inhibited, and the generation of TCh and the reduction of MnO2 nanosheets were prevented. Then the remaining MnO2 nanosheets oxidized o-phenylenediamine into 2,3-diaminophenazine with yellow-emission fluorescence, which quenched the fluorescence intensity of red-emission carbon dots (RCDs) via inner-filter effect. Based on above mechanism, a ratiometric fluorescent system was established for OPs detection. Threaded 3D μPAD consisted of 4 layers, which allowed to load and/or add reagents to trigger the cascade reaction system for OPs detection. The fluorescent images presented distinguishable color variations from red to yellow with dichlorvos concentrations ranging from 2.5 to 120 μg L-1, and the limit of detection was 1.0 μg L-1. In the practical samples testing, threaded 3D μPAD can eliminate background influence on fluorescent signal for OPs detection. Threaded 3D μPAD integrated with ratiometric sensing platform has merits of accuracy response, facile operation, and background-free detection, which supplies a new alternative approach for on-site pesticide detection.
Collapse
Affiliation(s)
- Xia Tong
- College of Sciences, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China; Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Guihan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Tongtao Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Yongfeng Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Yuqing Peng
- College of Sciences, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Shuyun Shi
- College of Sciences, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
16
|
Devadhasan JP, Summers AJ, Gu J, Smith S, Thomas B, Fattahi A, Helton J, Pandit SG, Gates-Hollingsworth M, Hau D, Pflughoeft KJ, Montgomery DC, Atta S, Vo-Dinh T, AuCoin D, Zenhausern F. Point-of-care vertical flow immunoassay system for ultra-sensitive multiplex biothreat-agent detection in biological fluids. Biosens Bioelectron 2023; 219:114796. [PMID: 36257115 DOI: 10.1016/j.bios.2022.114796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
This paper presents simple, fast, and sensitive detection of multiple biothreat agents by paper-based vertical flow colorimetric sandwich immunoassay for detection of Yersinia pestis (LcrV and F1) and Francisella tularensis (lipopolysaccharide; LPS) antigens using a vertical flow immunoassay (VFI) prototype with portable syringe pump and a new membrane holder. The capture antibody (cAb) printing onto nitrocellulose membrane and gold-labelled detection antibody (dAb) were optimized to enhance the assay sensitivity and specificity. Even though the paper pore size was relaxed from previous 0.1 μm to the current 0.45 μm for serum samples, detection limits as low as 0.050 ng/mL for LcrV and F1, and 0.100 ng/mL for FtLPS have been achieved in buffer and similarly in diluted serum (with LcrV and F1 LODs remained the same and LPS LOD reduced to 0.250 ng/mL). These were 40, 80, and 50X (20X for LPS in serum) better than those from lateral flow configuration. Furthermore, the comparison of multiplex format demonstrated low cross-reactivity and equal sensitivity to that of the singleplex assay. The optimized VFI platform thus provides a portable and rapid on-site monitoring system for multiplex biothreat detection with the potential for high sensitivity, specificity, reproducibility, and multiplexing capability, supporting its utility in remote and resource-limited settings.
Collapse
Affiliation(s)
- Jasmine Pramila Devadhasan
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Alexander Jarrett Summers
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Jian Gu
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, 85004, USA; Department of Basic Medical Sciences, The University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, 85004, USA.
| | - Stanley Smith
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Baiju Thomas
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Ali Fattahi
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - James Helton
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, 85004, USA
| | - Sujata G Pandit
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | | | - Derrick Hau
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kathryn J Pflughoeft
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Douglas C Montgomery
- School of Computing and Augmented Intelligence, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe AZ, 85281, USA
| | - Supriya Atta
- Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and Chemistry, Duke University, Durham, NC, 27708-0281, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Departments of Biomedical Engineering and Chemistry, Duke University, Durham, NC, 27708-0281, USA
| | - David AuCoin
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, The University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, 85004, USA; Department of Basic Medical Sciences, The University of Arizona, College of Medicine-Phoenix, Phoenix, AZ, 85004, USA; Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson AZ, 85721-0020, USA.
| |
Collapse
|
17
|
Lazzarini E, Pace A, Trozzi I, Zangheri M, Guardigli M, Calabria D, Mirasoli M. An Origami Paper-Based Biosensor for Allergen Detection by Chemiluminescence Immunoassay on Magnetic Microbeads. BIOSENSORS 2022; 12:825. [PMID: 36290961 PMCID: PMC9599061 DOI: 10.3390/bios12100825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Food allergies are adverse health effects that arise from specific immune responses, occurring upon exposure to given foods, even if present in traces. Egg allergy is one of the most common food allergies, mainly caused by egg white proteins, with ovalbumin being the most abundant. As allergens can also be present in foodstuff due to unintended contamination, there is a need for analytical tools that are able to rapidly detect allergens in food products at the point-of-use. Herein, we report an origami paper-based device for detecting ovalbumin in food samples, based on a competitive immunoassay with chemiluminescence detection. In this biosensor, magnetic microbeads have been employed for easy and efficient immobilization of ovalbumin on paper. Immobilized ovalbumin competes with the ovalbumin present in the sample for a limited amount of enzyme-labelled anti-ovalbumin antibody. By exploiting the origami approach, a multistep analytical procedure could be performed using reagents preloaded on paper layers, thus providing a ready-to-use immunosensing platform. The assay provided a limit of detection (LOD) of about 1 ng mL-1 for ovalbumin and, when tested on ovalbumin-spiked food matrices (chocolate chip cookies), demonstrated good assay specificity and accuracy, as compared with a commercial immunoassay kit.
Collapse
Affiliation(s)
- Elisa Lazzarini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Andrea Pace
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Ilaria Trozzi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
- Interdepartmental Centre for Industrial Research in Advanced Mechanical Engineering Applications and Materials Technology (CIRI MAM), Alma Mater Studiorum, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| |
Collapse
|
18
|
Kim W, Park JS, Lee D, Seo J, Lee LP, Kim SJ. Rapid and accurate nanoelectrokinetic diagnosis of drug-resistant bacteria. Biosens Bioelectron 2022; 213:114350. [PMID: 35691084 DOI: 10.1016/j.bios.2022.114350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/02/2022]
Abstract
Increased antimicrobial resistance presents a major threat to public health, and it is a global health problem due to the rapid globalization and transmission of infectious diseases. However, fast and precise diagnosis tool is lacking, and inappropriate antibiotic prescription leads to the unforeseen production of drug-resistant bacteria. Here, we report a Rapid and Accurate Nanoelectrokinetic Diagnostic System (RANDx) for detecting drug-resistant bacteria, which cause a common infectious disease called Urinary Tract Infection (UTI), within 7 min. We develop nanoelectrokinetic paper-based analytic device (NEK-PAD) as a sample prep module of RANDx and obtain >100-fold post-wetting preconcentration by balancing between ion concentration polarization (ICP) and radial imbibition for a constant flow rate. Simultaneously with preconcentration, our cathodic nanochannel design enables NEK-PAD to extract drug-resistant enzymes without denaturation and accelerate enzyme-linked reactions under electrical spontaneous heating at approximately 37 °C. Finally, using a cell phone camera, we detect label-free drug-resistant bacteria as low as 104 cfu/mL, which is higher than clinically required threshold (>105 cfu/mL) by enhancing 1000 times of the limit of detection (LOD) of colorimetric nitrocefin assay. We believe that the RANDx will be an innovative precision medicine tool for UTI and other infectious diseases in limited remote settings.
Collapse
Affiliation(s)
- Wonseok Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Suk Park
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dokeun Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joowon Seo
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Luke P Lee
- Harvard Medical School, Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Inter-university Semiconductor Research Center,Seoul National University, Seoul, 08826, South Korea; SOFT Foundry Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
19
|
Weiß LJK, Lubins G, Music E, Rinklin P, Banzet M, Peng H, Terkan K, Mayer D, Wolfrum B. Single-Impact Electrochemistry in Paper-Based Microfluidics. ACS Sens 2022; 7:884-892. [PMID: 35235291 DOI: 10.1021/acssensors.1c02703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) have experienced an unprecedented story of success. In particular, as of today, most people have likely come into contact with one of their two most famous examples─the pregnancy or the SARS-CoV-2 antigen test. However, their sensing performance is constrained by the optical readout of nanoparticle agglomeration, which typically allows only qualitative measurements. In contrast, single-impact electrochemistry offers the possibility to quantify species concentrations beyond the pM range by resolving collisions of individual species on a microelectrode. Within this work, we investigate the integration of stochastic sensing into a μPAD design by combining a wax-patterned microchannel with a microelectrode array to detect silver nanoparticles (AgNPs) by their oxidative dissolution. In doing so, we demonstrate the possibility to resolve individual nanoparticle collisions in a reference-on-chip configuration. To simulate a lateral flow architecture, we flush previously dried AgNPs along a microchannel toward the electrode array, where we are able to record nanoparticle impacts. Consequently, single-impact electrochemistry poses a promising candidate to extend the limits of lateral flow-based sensors beyond current applications toward a fast and reliable detection of very dilute species on site.
Collapse
Affiliation(s)
- Lennart J. K. Weiß
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Georg Lubins
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Emir Music
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Philipp Rinklin
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Marko Banzet
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Hu Peng
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Korkut Terkan
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Bernhard Wolfrum
- Neuroelectronics─Munich Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, Technical University of Munich, Boltzmannstrasse 11, 85748 Garching, Germany
| |
Collapse
|
20
|
Gerlero GS, Valdez AR, Urteaga R, Kler PA. Validity of Capillary Imbibition Models in Paper-Based Microfluidic Applications. Transp Porous Media 2022. [DOI: 10.1007/s11242-021-01724-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Wang E, Guo Z, Tang R, Lo YH. Using airflow-driven, evaporative gradients to improve sensitivity and fluid control in colorimetric paper-based assays. LAB ON A CHIP 2021; 21:4249-4261. [PMID: 34608465 DOI: 10.1039/d1lc00542a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microfluidic paper-based analytical devices (μPADs) are foundational devices for point-of-care testing, yet suffer from limitations in regards to their sensitivity and capability in handling complex assays. Here, we demonstrate an airflow-based, evaporative method that is capable of manipulating fluid flows within paper membranes to offer new functionalities for multistep delivery of reagents and improve the sensitivity of μPADs by 100-1000 times. This method applies an air-jet to a pre-wetted membrane, generating an evaporative gradient such that any solutes become enriched underneath the air-jet spot. By controlling the lateral position of this spot, the solutes in the paper strip are enriched and follow the air jet trajectory, driving the reactions and enhancing visualization for colorimetric readout in multistep assays. The technique has been successfully applied to drive the sequential delivery in multistep immunoassays as well as improve sensitivity for colorimetric detection assays for nucleic acids and proteins via loop-mediated isothermal amplification (LAMP) and ELISA. For colorimetric LAMP detection of the COVID-19 genome, enrichment of the solution on paper could enhance the contrast of the dye in order to more clearly distinguish between the positive and negative results to achieve a sensitivity of 3 copies of SARS-Cov-2 RNAs. For ELISA, enrichment of the oxidized TMB substrate yielded a sensitivity increase of two-to-three orders of magnitude when compared to non-enriched samples - having a limit of detection of around 200 fM for IgG. Therefore, this enrichment method represents a simple process that can be easily integrated into existing detection assays for controlling fluid flows and improving detection of biomarkers on paper.
Collapse
Affiliation(s)
- Edward Wang
- Department of Aerospace and Mechanical Engineering, Materials Science and Engineering Program, UC-San Diego, San Diego, USA.
| | - Zhilin Guo
- Department of Aerospace and Mechanical Engineering, Materials Science and Engineering Program, UC-San Diego, San Diego, USA.
| | - Rui Tang
- Department of Electrical and Computer Engineering, UC-San Diego, San Diego, USA
| | - Yu-Hwa Lo
- Department of Aerospace and Mechanical Engineering, Materials Science and Engineering Program, UC-San Diego, San Diego, USA.
- Department of Electrical and Computer Engineering, UC-San Diego, San Diego, USA
| |
Collapse
|