1
|
Tian T, Yang W, Wang X, Liu T, Pan B, Guo W, Wang B. Click chemistry-enabled gold nanorods for sensitive detection and viability evaluation of copper(II)-reducing bacteria. Mater Today Bio 2025; 30:101453. [PMID: 39866790 PMCID: PMC11764086 DOI: 10.1016/j.mtbio.2025.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/16/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
The rise of antibiotic resistance poses a significant and ongoing challenge to public health, with pathogenic bacteria remaining a persistent threat. Traditional culture methods, while considered the gold standard for bacterial detection and viability assessment, are time-consuming and labor-intensive. To address this limitation, we developed a novel point-of-care (POC) detection method leveraging citrate- and alkyne-modified gold nanorods (AuNRs) synthesized with click chemistry properties. These AuNRs exhibit superior biocompatibility and enhanced quantitative performance compared to conventional surfactant-modified AuNRs. Our method, termed AuNRs-bacteria-initiated click chemistry (AuNRs-BICC), detects CuII-reducing bacteria by quantifying AuNRs bound to a biosensing interface via bacteria-mediated CuII reduction to CuI and subsequent click chemistry with biosensing interface of azide modifications. Using dark-field microscopy (DFM), we demonstrated a strong linear correlation between AuNR counts and the logarithm of bacterial concentration for both Gram-negative Escherichia coli (including KPC-2-expressing antibiotic-resistant strains) and Gram-positive Staphylococcus aureus across a range of 101 to 107 cells, achieving a remarkable detection limit of 101 cells. The AuNRs-BICC biosensor exhibits high selectivity for target bacterial strains and provides rapid detection within 3 h. Furthermore, it can assess bacterial viability in the presence of various antibiotics, including meropenem, ceftriaxone and tetracycline, suggesting its potential for rapid antibiotic susceptibility testing and facilitating timely clinical intervention for infectious diseases.
Collapse
Affiliation(s)
- Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Xiaohuan Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 725 South Wan Ping Road, Shanghai, 200031, PR China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, 201100, PR China
- Department of Laboratory Medicine, Wusong Central Hospital, Baoshan District, Shanghai, 200940, PR China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, 361015, PR China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, PR China
| |
Collapse
|
2
|
Wang Z, Ma N, Zhang J, Ma K, Kong J, Zhang X. Bacteria-instructed synthesis of free radical polymers for highly sensitive detection of Escherichia coli and Staphylococcus aureus. Anal Chim Acta 2024; 1329:343259. [PMID: 39396316 DOI: 10.1016/j.aca.2024.343259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Foodborne pathogens such as Escherichia coli and Staphylococcus aureus commonly found in food and water sources are the leading causes of foodborne disease outbreaks, which have become a worldwide issue that can lead to serious health problems and socio-economic losses. Therefore, the development of accurate and timely detection methods for these bacteria is essential to safeguard public health and food safety. However, due to the drawbacks of conventional detection methods such as complex operation, high cost, low specificity and sensitivity, developing efficient and sensitive techniques remains a challenge. RESULTS In this study, we developed a fluorescent biosensor based on bacteria-instructed atom transfer radical polymerization (ATRP) for ultrasensitive and specific detection of foodborne pathogenic bacteria. This approach first attaches initiators of ATRP to the surface of carboxylated Fe3O4 magnetic beads via transition metal and subsequently utilizes the distinctive copper-binding redox pathway of bacteria to reduce Cu(II) to Cu(I), which activates the surface-initiated polymerization for in situ growth of fluorescent polymer. This signal amplification strategy significantly enhanced the sensitivity of fluorescence analysis performance. Under optimal conditions, there was a perfect linear correlation between the fluorescence signal intensity and the logarithm of the concentrations of S. aureus and E. coli over the range from 103 CFU/mL to 108 CFU/mL, with the detection limits down to 102 CFU/mL for both. SIGNIFICANCE The fluorescent biosensor provides an efficient, sensitive and stable solution for the direct detection of S. aureus/E. coli, confirming the feasibility of the bacterial-instructed ATRP reaction as a signal amplification strategy. This detection method does not require the help of any external stimuli or complex equipment. Moreover, it shows great potential for application in detecting pathogenic bacteria in complex food samples.
Collapse
Affiliation(s)
- Zhengjun Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Nan Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Kefeng Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
3
|
Huang Q, Zhou N, Peng J, Zeng X, Du L, Zhao Y, Luo X. Sensitivity-improved SERS detection of SARS-CoV-2 spike protein by Au NPs/COFs integrated with catalytic-hairpin-assembly amplification technology. Anal Chim Acta 2024; 1318:342924. [PMID: 39067931 DOI: 10.1016/j.aca.2024.342924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The COVID-19 pandemic, caused by the novel coronavirus, has had a profound impact on global health and economies worldwide. This unprecedented crisis has affected individuals, communities, and nations in diverse manners. Developing simple and accurate diagnostic methods is an imperative task for frequent testing to mitigate the spread of the virus. Among these methods, SARS-CoV-2 antigen tests in clinical specimens have emerged as a promising diagnostic method for COVID-19 due to their sensitive and accurate detection of spike (S) protein, which plays a crucial role in viral infection initiation. RESULTS In this work, a dual-signal amplification surface enhanced Raman scattering (SERS)-based S protein biosensor was constructed based on Au NPs/COFs and enzyme-free catalytic hairpin assembly (CHA) amplification method. The approach relies on a released free DNA sequence (T), which is generated from the competition reaction between Aptamer/T and Aptamer/S protein, to trigger a CHA reaction. Due to the high binding affinity and selectivity between the S protein and its aptamer, CHA process was triggered with the maximum SERS tags (H2-conjugated Au@4-mercaptobenzonitrile@Ag) anchored onto Au NPs/COFs substrate surface. This SERS platform could detect the S protein at concentrations with high sensitivity (limit of detection = 3.0 × 10-16 g/mL), wide detection range (1 × 10-16 to 1 × 10-11 g/mL), acceptable reproducibility (relative standard deviation = 7.01 %) and excellent specificity. The biosensor was also employed to detect S protein in artificial human salivas. SIGNIFICANCE Thus, this study not only developed a novel Au NPs/COFs substrate exhibiting strong SERS enhancement ability and high reproducibility, but also proposed a promising dual-signal amplification SERS-based diagnostic method for COVID-19, holding immense potential for the detection of a wide range of antigens and infectious diseases in future applications.
Collapse
Affiliation(s)
- Qiuwen Huang
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Na Zhou
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China; Food Microbiology, Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, Sichuan, China
| | - Jiayi Peng
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Xuanjiang Zeng
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Lijuan Du
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu, 610039, Sichuan, China.
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, Sichuan, 610039, China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu, 610039, Sichuan, China.
| |
Collapse
|
4
|
Ding T, Xiao Y, Saiding Q, Li X, Chen G, Zhang T, Ma J, Cui W. Capture and Storage of Cell-Free DNA via Bio-Informational Hydrogel Microspheres. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403557. [PMID: 38881489 DOI: 10.1002/adma.202403557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Excessive cell-free DNA (cfDNA) can induce chronic inflammation by activating intracellular nucleic acid sensors. Intervention in cfDNA-mediated "pro-inflammatory signaling transduction" could be a potential alleviating strategy for chronic inflammation, such as in diabetic wounds. However, effectively and specifically downgrading cfDNA concentration in the pathological microenvironment remains a challenge. Therefore, this work prepares free-standing polydopamine nanosheets through DNA-guided assembly and loaded them into microfluidic hydrogel microspheres. The π─π stacking/hydrogen bonding interactions between polydopamine nanosheets and the π-rich bases of cfDNA, along with the cage-like spatial confinement created by the hydrogel polymer network, achieved cfDNA capture and storage, respectively. Catechol in polydopamine nanosheets can also assist in reducing reactive oxygen species (ROS) levels. Efficient cfDNA binding independent of serum proteins, specific interdiction of abnormal activation of cfDNA-associated toll-like receptor 9, as well as down-regulation of inflammatory cytokines and ROS levels are shown in this system. The chronic inflammation alleviating and the pro-healing effects on the mice model with diabetic wounds are also investigated. This work presents a new strategy for capturing and storing cfDNA to intervene in cell signaling transduction. It also offers new insights into the regulatory mechanisms between inflammatory mediators and biomaterials in inflammation-related diseases.
Collapse
Affiliation(s)
- Tao Ding
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Yongqiang Xiao
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Qimanguli Saiding
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiaoxiao Li
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Gang Chen
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Tianyu Zhang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
5
|
Trinh TND, Nam NN. Isothermal amplification-based microfluidic devices for detecting foodborne pathogens: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1150-1157. [PMID: 38323529 DOI: 10.1039/d3ay02039h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The gold standard for nucleic acid amplification-based diagnosis is the polymerase chain reaction (PCR). The PCR recognizes the targets such as foodborne pathogens by amplifying their specific genes. The integration of nucleic acid amplification-based assays on microfluidic platforms represents a highly promising solution for convenient, cheap, and effective control of foodborne pathogens. However, the application of the PCR is limited to on-site detection because the method requires sophisticated equipment for temperature control, which makes it complicated for microfluidic integration. Alternatively, isothermal amplification methods are promising tools for integrating microfluidic platforms for on-site detection of foodborne pathogens. This review summarized advances in isothermal amplification-based microfluidic devices for detecting foodborne pathogens. Different nucleic acid extraction approaches and the integration of these approaches in microfluidic platforms were first reviewed. Microfluidic platforms integrated with three common isothermal amplification methods including loop-mediated isothermal amplification, recombinase polymerase amplification, and recombinase-aided amplification were then described and discussed.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam.
| | - Nguyen Nhat Nam
- Applied Biology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| |
Collapse
|
6
|
Eom H, Kim DW, Jang KS, Lee SJ. Electrical and Thermal Properties of Surface-Modified Copper Nanowire/Polystyrene Nanocomposites through Latex Blending. ACS OMEGA 2023; 8:46955-46966. [PMID: 38107942 PMCID: PMC10720018 DOI: 10.1021/acsomega.3c06775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/21/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
The incorporation of conductive nanofillers into an insulating polymer matrix commonly leads to nanocomposites with good electrical, thermal, and mechanical properties. In this study, copper nanowires (CuNWs) and polystyrene (PS) microspheres were synthesized along with the fabrication of CuNW/PS polymer nanocomposites. The electrical, thermal, mechanical, rheological, and morphological properties of the CuNW/PS nanocomposites were examined. The CuNWs were homogeneously dispersed in the PS matrix through latex blending. For the CuNW/PS nanocomposites, the storage modulus was higher than the loss modulus at all frequencies, indicating their elastic-dominant behavior. The electrical and thermal conductivities of the nanocomposites increased with an increasing CuNW content. Using a mixed dispersion of two monodisperse PS particles of 500 nm and 5 μm in diameter resulted in the highest electrical conductivity (ca. 10° S/m for 30 wt % nanofillers) among the nanocomposites. In addition, the introduction of silica- and polydopamine-coated CuNWs as nanofillers imparted insulation properties to the nanocomposites, with electrical conductivities to 10-10-10-8 S/m. When using 500 nm PS particles, the thermal conductivity of the surface-modified CuNW/PS nanocomposite at 30 wt % of CuNW was enhanced to 0.22 W/m·K compared to 0.17 W/m·K for its unmodified counterpart. We have achieved multiple innovative approaches, including the use of mixed particle sizes, surface modification of CuNW, and the exploration of elastic-dominant behavior. This enhanced thermal conductivity, coupled with the attainment of insulation properties, presents a distinct advantage for thermal interface material (TIM) applications.
Collapse
Affiliation(s)
- Hyeon
Sik Eom
- Department of Polymer Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hewaseong, Gyeonggi 18323, South Korea
| | - Dong Won Kim
- Department of Polymer Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hewaseong, Gyeonggi 18323, South Korea
| | - Keon-Soo Jang
- Department of Polymer Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hewaseong, Gyeonggi 18323, South Korea
| | - Seong Jae Lee
- Department of Polymer Engineering, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hewaseong, Gyeonggi 18323, South Korea
| |
Collapse
|
7
|
Jena S, Gaur D, Dubey NC, Tripathi BP. Advances in paper based isothermal nucleic acid amplification tests for water-related infectious diseases. Int J Biol Macromol 2023:125089. [PMID: 37245760 DOI: 10.1016/j.ijbiomac.2023.125089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Water-associated or water-related infectious disease outbreaks are caused by pathogens such as bacteria, viruses, and protozoa, which can be transmitted through contaminated water sources, poor sanitation practices, or insect vectors. Low- and middle-income countries bear the major burden of these infections due to inadequate hygiene and subpar laboratory facilities, making it challenging to monitor and detect infections in a timely manner. However, even developed countries are not immune to these diseases, as inadequate wastewater management and contaminated drinking water supplies can also contribute to disease outbreaks. Nucleic acid amplification tests have proven to be effective for early disease intervention and surveillance of both new and existing diseases. In recent years, paper-based diagnostic devices have made significant progress and become an essential tool in detecting and managing water-associated diseases. In this review, we highlight the importance of paper and its variants as a diagnostic tool and discuss the properties, design modifications, and various paper-based device formats developed and used for detecting water-associated pathogens.
Collapse
Affiliation(s)
- Saikrushna Jena
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Divya Gaur
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Nidhi C Dubey
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science & Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
8
|
Sivakumar R, Park SY, Lee NY. Quercetin-Mediated Silver Nanoparticle Formation for the Colorimetric Detection of Infectious Pathogens Coupled with Loop-Mediated Isothermal Amplification. ACS Sens 2023; 8:1422-1430. [PMID: 36952605 DOI: 10.1021/acssensors.2c02054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Here, quercetin-mediated silver nanoparticle (AgNP) formation combined with loop-mediated isothermal amplification (LAMP) was introduced to colorimetrically detect two major infectious pathogens, SARS-CoV-2 and Enterococcus faecium, using a foldable PMMA microdevice. The nitrogenous bases of LAMP amplicons can readily form a complex with Ag+ ions, and the catechol moiety in quercetin, which acted as a reducing agent, could be chelated with Ag+ ions, resulting in the easy electron transfer from the oxidant to the reductant and producing brown-colored AgNPs within 5 min. The introduced method exhibited higher sensitivity than agarose gel electrophoresis due to more active redox centers in quercetin. The detection limit was attained at 101 copies μL-1 and 101 CFU mL-1 for SARS-CoV-2 RNA and E. faecium, respectively. A foldable microdevice made of two pieces of PMMA that fully integrates DNA extraction, amplification, and detection processes was fabricated to establish practical applicability. On one PMMA, DNA extraction was performed in a reaction chamber inserted with an FTA card, and then LAMP reagents were added for amplification. Silver nitrate was added to the reaction chamber after LAMP. On the other PMMA, quercetin-soaked paper discs loaded in the detection chamber were folded toward the reaction chamber for colorimetric detection. An intense brown color was produced within 5 min when heated at 65 °C. The introduced colorimetric assay, which is highly favorable for laboratory and on-site applications, could be a valuable alternative to conventional methods for detecting infectious diseases, given its unique principle, simplicity, and naked-eye detection.
Collapse
Affiliation(s)
- Rajamanickam Sivakumar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - So Yeon Park
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| |
Collapse
|
9
|
Wei Z, Wang P, Tian X, sun W, Pan J. Imprinted polymer beads featuring both predefined multiple-point interaction and accessible binding sites for precise recognition of 2′-deoxyadenosine. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Nam NN, Do HDK, Trinh KTL, Lee NY. Recent Progress in Nanotechnology-Based Approaches for Food Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4116. [PMID: 36500739 PMCID: PMC9740597 DOI: 10.3390/nano12234116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 05/10/2023]
Abstract
Throughout the food supply chain, including production, storage, and distribution, food can be contaminated by harmful chemicals and microorganisms, resulting in a severe threat to human health. In recent years, the rapid advancement and development of nanotechnology proposed revolutionary solutions to solve several problems in scientific and industrial areas, including food monitoring. Nanotechnology can be incorporated into chemical and biological sensors to improve analytical performance, such as response time, sensitivity, selectivity, reliability, and accuracy. Based on the characteristics of the contaminants and the detection methods, nanotechnology can be applied in different ways in order to improve conventional techniques. Nanomaterials such as nanoparticles, nanorods, nanosheets, nanocomposites, nanotubes, and nanowires provide various functions for the immobilization and labeling of contaminants in electrochemical and optical detection. This review summarizes the recent advances in nanotechnology for detecting chemical and biological contaminations in the food supply chain.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Dual-mode visual detection strategies of viable pathogens for point-of-care testing. Biosens Bioelectron 2022; 221:114904. [DOI: 10.1016/j.bios.2022.114904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
12
|
Shimuta K, Takahashi H, Akeda Y, Nakayama SI, Ohnishi M. Loop-Mediated Isothermal Amplification Assay for Identifying Neisseria gonorrhoeae Nonmosaic penA-Targeting Strains Potentially Eradicable by Cefixime. Microbiol Spectr 2022; 10:e0233522. [PMID: 36000906 PMCID: PMC9602674 DOI: 10.1128/spectrum.02335-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 01/04/2023] Open
Abstract
Treatment regimens for gonorrhea have limited efficacy worldwide due to the rapid spread of antimicrobial resistance. Cefixime (CFM) is currently not recommended as a first-line treatment for gonorrhea due to the increasing number of resistant strains worldwide. Nonetheless, Neisseria gonorrhoeae strains can be eradicated by CFM at a 400 mg/day dose, provided that the strains are CFM responsive (MIC ≤ 0.064 mg/L). To develop a nonculture test for predicting the CFM responsiveness of N. gonorrhoeae strains, we developed an assay to detect N. gonorrhoeae nonmosaic penA using loop-mediated isothermal amplification (LAMP). To avoid false-positive reactions with commensal Neisseria spp. penA, we amplified specific regions of the N. gonorrhoeae penA (NG-penA-LAMP1) and also the nonmosaic N. gonorrhoeae penA (NG-penA-LAMP3). This assay was validated using isolated N. gonorrhoeae (n = 204) and Neisseria spp. (n = 95) strains. Clinical specimens (n = 95) with confirmed positivity in both culture and real-time PCR were evaluated to validate the system. The combination of the previously described NG-penA-LAMP1 and our new NG-penA-LAMP3 assays had high sensitivity (100%) and specificity (100%) for identifying N. gonorrhoeae carrying the nonmosaic type. To determine whether CFM could be applicable for gonorrhea treatment without culture testing, we developed a LAMP assay that targets penA allele-specific nonmosaic types for use as one of the tools for point-of-care testing of antimicrobial resistance. IMPORTANCE Neisseria gonorrhoeae is among the hot topics of "resistance guided therapy," one of the top 5 urgent antimicrobial threats according to the Centers for Disease Control and Prevention (CDC). There is a need either to develop new agents or to make effective use of existing agents, with the current limited number of therapeutic agents available. Knowing the drug susceptibility information of the target microorganism prior to treating patients is very useful in selecting an effective antibiotic, especially in gonococcal infections where drug resistance is prominent, and is also important in preventing treatment failure. In this study, we developed a new method for obtaining drug susceptibility profiles of Neisseria gonorrhoeae using the loop-mediated isothermal amplification (LAMP) method. The LAMP assay does not require expensive devices. Therefore, this method is expected to be a tool for point-of-care testing of antimicrobial resistance for individualized treatment in the future.
Collapse
Affiliation(s)
- Ken Shimuta
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideyuki Takahashi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shu-ichi Nakayama
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
13
|
Yan S, Lan H, Wu Z, Sun Y, Tu M, Pan D. Cleavable molecular beacon-based loop-mediated isothermal amplification assay for the detection of adulterated chicken in meat. Anal Bioanal Chem 2022; 414:8081-8091. [PMID: 36152037 DOI: 10.1007/s00216-022-04342-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
A simple, sensitive, specific and fast method based on the loop-mediated isothermal amplification (LAMP) technique and cleavable molecular beacon (CMB) was developed for chicken authentication detection. LAMP and CMB were used for DNA amplification and amplicon analysis, respectively. Targeting the mitochondrial cytochrome b gene of chickens, five primers and one CMB probe were designed, and their specificity was validated against nine other animal species. The structure of CMB and concentrations of dNTPs, MgSO4, betaine, RNase H2, primers and CMB were optimized. The CMB-LAMP assay was completed within 17 min, and its limit of detection for chicken DNA was 1.5 pg μL-1. Chicken adulteration as low as 0.5% was detected in beef, and no cross-reactivity was observed. Finally, this assay was successfully applied to 20 commercial meat products. When combined with our developed DNA extraction method (the extraction time was 1 min: lysis for 10 s, washing for 20 s and elution for 30 s), the entire process (from DNA extraction to results analysis) was able to be completed within 20 min, which is at least 10 min shorter than other LAMP-based methods. Our method showed great potential for the on-site detection of chicken adulteration in meat.
Collapse
Affiliation(s)
- Song Yan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Hangzhen Lan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China.
| | - Zhen Wu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Yangying Sun
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Maolin Tu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Daodong Pan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China. .,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China.
| |
Collapse
|
14
|
Zhang J, Miao X, Song C, Chen N, Xiong J, Gan H, Ni J, Zhu Y, Cheng K, Wang L. Non-enzymatic signal amplification-powered point-of-care SERS sensor for rapid and ultra-sensitive assay of SARS-CoV-2 RNA. Biosens Bioelectron 2022; 212:114379. [PMID: 35635970 PMCID: PMC9110061 DOI: 10.1016/j.bios.2022.114379] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023]
Abstract
The development of rapid and ultra-sensitive detection technology of SARS-CoV-2 RNA for shortening the diagnostic window and achieving early detection of virus infections is a huge challenge to the efficient prevention and control of COVID-19. Herein, a novel ultra-sensitive surface-enhanced Raman spectroscopy (SERS) sensor powered by non-enzymatic signal amplification is proposed for rapid and reliable assay of SARS-CoV-2 RNA based on SERS-active silver nanorods (AgNRs) sensing chips and a specially designed smart unlocking-mediated target recycling signal amplification strategy. The SERS sensing was carried out by a one-pot hybridization of the lock probes (LPs), hairpin DNAs and SERS tags with SARS-CoV-2 RNA samples on an arrayed SERS sensing chip to achieve the recognition of SARS-CoV-2 RNA, the execution of nuclease-free unlocking-mediated target recycling signal amplification, and the combination of SERS tags to generate SERS signal. The SERS sensor for SARS-CoV-2 RNA can be achieved within 50 min with an ultra-high sensitivity low to 51.38 copies/mL, and has good selectivity in discriminating SARS-CoV-2 RNA against other respiratory viruses in representative clinical samples, which is well adapted for rapid, ultra-sensitive, multi-channel and point-of-care testing of viral nucleic acids, and is expected to achieve detection of SARS-CoV-2 infection in earlier detection windows for efficient COVID-19 prevention and control.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiaping Miao
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, 10 Luoxuan 3rd Road, Guangzhou International Biotech Island, Guangdong, 510005, Guangdong, China; Guangzhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China
| | - Chunyuan Song
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| | - Na Chen
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, 10 Luoxuan 3rd Road, Guangzhou International Biotech Island, Guangdong, 510005, Guangdong, China
| | - Jingrong Xiong
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hongyu Gan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jie Ni
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yunfeng Zhu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Kaiting Cheng
- Guangzhou KingMed Center for Clinical Laboratory Co., Ltd, 10 Luoxuan 3rd Road, Guangzhou International Biotech Island, Guangdong, 510005, Guangdong, China; Guangzhou Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China.
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
15
|
Fluorescent on-site detection of multiple pathogens using smartphone-based portable device with paper-based isothermal amplification chip. Mikrochim Acta 2022; 189:333. [PMID: 35970978 PMCID: PMC9378262 DOI: 10.1007/s00604-022-05419-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/12/2022] [Indexed: 11/03/2022]
Abstract
The development of cost-effective, portable, and ease-of-use sensing system for on-site genetic diagnostics is highly desirable for pathogen screening and infectious disease diagnosis. This study develops (1) a paper-based biochip which is able to integrate the loop-mediated isothermal amplification (LAMP) protocols for simultaneous detection of Escherichia coli O157:H7, Salmonella spp., and Staphylococcus aureus, and (2) a stand-alone smartphone-based portable device which can control exactly 65 °C for isothermal amplification as well as collect and analyze the thus generated fluorescence signals. The reported sensing system has been successfully demonstrated for foodborne pathogen detection with a limit of detection of 2.8 × 10-5 ng μL-1. Spiked milk samples with concentration as low as 10 CFU mL-1 were successfully determined within 4 h, demonstrating the practicality of the reported sensing system in the fields. The reported sensing system featuring simplicity and reliability is ideally suited for genetic diagnostics in low resource settings.
Collapse
|
16
|
Das D, Lin CW, Kwon JS, Chuang HS. Rotational diffusometric sensor with isothermal amplification for ultra-sensitive and rapid detection of SARS-CoV-2 nsp2 cDNA. Biosens Bioelectron 2022; 210:114293. [PMID: 35477152 PMCID: PMC9020650 DOI: 10.1016/j.bios.2022.114293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
In the wake of a pandemic, the development of rapid, simple, and accurate molecular diagnostic tests can significantly aid in reducing the spread of infections. By combining particle imaging with molecular assays, a quick and highly sensitive biosensor can readily identify a pathogen at low concentrations. Here, we implement functionalized particle-enabled rotational diffusometry in combination with loop-mediated isothermal amplification for the rapid detection of the SARS-CoV-2 nsp2 gene in the recombinant plasmid as a proof of concept for COVID-19 diagnostics. By analyzing the images of blinking signals generated by these modified particles, the change in micro-level viscosity due to nucleic acid amplification was measured. The high sensitivity of rotational diffusometry enabled facile detection within 10 min, with a limit of detection of 70 ag/μL and a sample volume of 2 μL. Tenfold higher detection sensitivity was observed for rotational diffusometry in comparison with real-time PCR. In addition, the system stability and the effect of temperature on rotational diffusometric measurements were studied and reported. These results demonstrated the utility of a rotational diffusometric platform for the rapid and sensitive detection of SARS-CoV-2 cDNA fragments.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan
| | - Jae-Sung Kwon
- Department of Mechanical Engineering, Incheon National University, Incheon, Republic of Korea.
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, 701, Taiwan; Core Facility Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
17
|
Pan Y, Mao K, Hui Q, Wang B, Cooper J, Yang Z. Paper-based devices for rapid diagnosis and wastewater surveillance. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Nguyen HA, Choi H, Lee NY. A Rotatable Paper Device Integrating Reverse Transcription Loop-Mediated Isothermal Amplification and a Food Dye for Colorimetric Detection of Infectious Pathogens. BIOSENSORS 2022; 12:488. [PMID: 35884291 PMCID: PMC9313173 DOI: 10.3390/bios12070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
In this study, we developed a rotatable paper device integrating loop-mediated isothermal amplification (RT-LAMP) and a novel naked-eye readout of the RT-LAMP results using a food additive, carmoisine, for infectious pathogen detection. Hydroxyl radicals created from the reaction between CuSO4 and H2O2 were used to decolor carmoisine, which is originally red. The decolorization of carmoisine can be interrupted in the presence of DNA amplicons produced by the RT-LAMP reaction due to how DNA competitively reacts with the hydroxyl radicals to maintain the red color of the solution. In the absence of the target DNA, carmoisine is decolored, owing to its reaction with hydroxyl radicals; thus, positive and negative samples can be easily differentiated based on the color change of the solution. A rotatable paper device was fabricated to integrate the RT-LAMP reaction with carmoisine-based colorimetric detection. The rotatable paper device was successfully used to detect SARS-CoV-2 and SARS-CoV within 70 min using the naked eye. Enterococcus faecium spiked in milk was detected using the rotatable paper device. The detection limits for the SARS-CoV-2 and SARS-CoV targets were both 103 copies/µL. The rotatable paper device provides a portable and low-cost tool for detecting infectious pathogens in a resource-limited environment.
Collapse
Affiliation(s)
| | | | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea; (H.A.N.); (H.C.)
| |
Collapse
|
19
|
Wang Y, Xu H, Dong Z, Wang Z, Yang Z, Yu X, Chang L. Micro/nano biomedical devices for point-of-care diagnosis of infectious respiratory diseases. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022; 14:100116. [PMID: 35187465 PMCID: PMC8837495 DOI: 10.1016/j.medntd.2022.100116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Corona Virus Disease 2019 (COVID-19) has developed into a global pandemic in the last two years, causing significant impacts on our daily life in many countries. Rapid and accurate detection of COVID-19 is of great importance to both treatments and pandemic management. Till now, a variety of point-of-care testing (POCT) approaches devices, including nucleic acid-based test and immunological detection, have been developed and some of them has been rapidly ruled out for clinical diagnosis of COVID-19 due to the requirement of mass testing. In this review, we provide a summary and commentary on the methods and biomedical devices innovated or renovated for the quick and early diagnosis of COVID-19. In particular, some of micro and nano devices with miniaturized structures, showing outstanding analytical performances such as ultra-sensitivity, rapidness, accuracy and low cost, are discussed in this paper. We also provide our insights on the further implementation of biomedical devices using advanced micro and nano technologies to meet the demand of point-of-care diagnosis and home testing to facilitate pandemic management. In general, our paper provides a comprehensive overview of the latest advances on the POCT device for diagnosis of COVID-19, which may provide insightful knowledge for researcher to further develop novel diagnostic technologies for rapid and on-site detection of pathogens including SARS-CoV-2.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Huiren Xu
- School of Biomedical Information and Engineering, Hainan Medical University, Haikou, 471100, China
| | - Zaizai Dong
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhiying Wang
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom,Corresponding author
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China,Corresponding author.
| | - Lingqian Chang
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China,Corresponding author.
| |
Collapse
|
20
|
Li Y, Li W, Yang Y, Bao F, Lu J, Miao J, Xu Y. A universal biosensor utilizing bacteria-initiated in situ growth of electroactive polymers for bacteria-related hazards detection. Biosens Bioelectron 2022; 203:114030. [DOI: 10.1016/j.bios.2022.114030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/31/2022]
|
21
|
Zhang Z, Ma P, Ahmed R, Wang J, Akin D, Soto F, Liu BF, Li P, Demirci U. Advanced Point-of-Care Testing Technologies for Human Acute Respiratory Virus Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103646. [PMID: 34623709 DOI: 10.1002/adma.202103646] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Indexed: 04/14/2023]
Abstract
The ever-growing global threats to human life caused by the human acute respiratory virus (RV) infections have cost billions of lives, created a significant economic burden, and shaped society for centuries. The timely response to emerging RVs could save human lives and reduce the medical care burden. The development of RV detection technologies is essential for potentially preventing RV pandemic and epidemics. However, commonly used detection technologies lack sensitivity, specificity, and speed, thus often failing to provide the rapid turnaround times. To address this problem, new technologies are devised to address the performance inadequacies of the traditional methods. These emerging technologies offer improvements in convenience, speed, flexibility, and portability of point-of-care test (POCT). Herein, recent developments in POCT are comprehensively reviewed for eight typical acute respiratory viruses. This review discusses the challenges and opportunities of various recognition and detection strategies and discusses these according to their detection principles, including nucleic acid amplification, optical POCT, electrochemistry, lateral flow assays, microfluidics, enzyme-linked immunosorbent assays, and microarrays. The importance of limits of detection, throughput, portability, and specificity when testing clinical samples in resource-limited settings is emphasized. Finally, the evaluation of commercial POCT kits for both essential RV diagnosis and clinical-oriented practices is included.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Peng Ma
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|