1
|
Zhang T, Ma Y, Tian R, Zhang Y. CTAB-Co-MOFs@AuPt NPs as signal probes for the electrochemical detection of carcinoembryonic antigen 15-3. Mikrochim Acta 2024; 191:176. [PMID: 38438573 DOI: 10.1007/s00604-024-06254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024]
Abstract
A sensitive electrochemical strategy for carcinoembryonic antigen 15-3 (CA15-3) detection is reported using CTAB-Co-MOFs@AuPt NPs as signal probes. The electrochemical strategy was designed as follows: First, the graphene aerogel@gold nanoparticles (GA@Au NPs) nanocomposites were employed to modify the sensing surface for promoting electron transfer rate and primary antibody (Ab1) immobilization due to GA possesses a large specific surface area, eminent conductivity, and a 3D network structure. Cobalt metal-organic frameworks (CTAB-Co-MOFs) synthesized were then used as a carrier for AuPt NPs and secondary antibody (Ab2) immobilization (notes: labelled-Ab2). With sandwich immunoreaction, the labelled-Ab2 was captured on the surface of the GA@Au NPs nanocomposites. Finally, differential pulse voltammetry (DPV) was employed to register the electrochemical signal of the immunosensor at the potential of - 0.85 V (vs SCE) in phosphate buffer saline (PBS) containing 2.5 mM H2O2. It was verified that the electrochemical reduction signal from Co3+ to Co2+ was recorded. The AuPt NPs could catalyze the reaction of H2O2 oxidizing Co2+ to Co3+, resulting in the amplification of the electrochemical signal. Under the selected conditions, the immunosensor can detect CA15-3 in the range 10 µU/mL to 250 U/mL with a low detection limit of 1.1 µU/mL. In the designed strategy, the CTAB-Co-MOFs were not only employed as carriers for AuPt NPs, but also acted as signal probes. The CTAB-Co-MOFs were investigated including SEM, TEM, XPS, and XRD. The application ability of the immunosensor was evaluated using serum sample, demonstrating the immunosensor can be applied to clinic serum analysis.
Collapse
Affiliation(s)
- Tingting Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu, 241002, People's Republic of China
| | - Yan Ma
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu, 241002, People's Republic of China
| | - Ruifen Tian
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu, 241002, People's Republic of China
| | - Yuzhong Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chem-Biosensing, Anhui Normal University, Wuhu, 241002, People's Republic of China.
| |
Collapse
|
2
|
Shubhangi, Nandi I, Rai SK, Chandra P. MOF-based nanocomposites as transduction matrices for optical and electrochemical sensing. Talanta 2024; 266:125124. [PMID: 37657374 DOI: 10.1016/j.talanta.2023.125124] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Metal Organic Frameworks (MOFs), a class of crystalline microporous materials have been into research limelight lately due to their commendable physio-chemical properties and easy fabrication methods. They have enormous surface area which can be a working ground for innumerable molecule adhesions and site for potential sensor matrices. Their biocompatibility makes them valuable for in vitro detection systems but a compromised conductivity requires a lot of surface engineering of these molecules for their usage in electrochemical biosensors. However, they are not just restricted to a single type of transduction system rather can also be modified to achieve feat as optical (colorimetry, luminescence) and electro-luminescent biosensors. This review emphasizes on recent advancements in the area of MOF-based biosensors with focus on various MOF synthesis methods and their general properties along with selective attention to electrochemical, optical and opto-electrochemical hybrid biosensors. It also summarizes MOF-based biosensors for monitoring free radicals, metal ions, small molecules, macromolecules and cells in a wide range of real matrices. Extensive tables have been included for understanding recent trends in the field of MOF-composite probe fabrication. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope.
Collapse
Affiliation(s)
- Shubhangi
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India; Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Indrani Nandi
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - S K Rai
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
3
|
Liu XP, Tang YY, Chen JS, Mao CJ, Jin BK. A ZnIn 2S 4@ReS 2/AgInS 2-based photoelectrochemical aptasensor for the ultrasensitive detection of kanamycin. Chem Commun (Camb) 2023; 59:14847-14850. [PMID: 38015452 DOI: 10.1039/d3cc05261c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
An ultrasensitive photoelectrochemical (PEC) aptasensor was originally designed by using ZnIn2S4/ReS2 as a photoactive material and AgInS2 as a signal amplifier. The signal amplifier AgInS2 was incubated on the terminal of H-DNA (immobilized on the ZnIn2S4/ReS2/FTO surface), leading to an enhanced photocurrent response. Then, due to the introduction of DNA2, the formation of a double-stranded structure caused AgInS2 to keep away from the electrode surface, and the photocurrent was reduced. In the presence of kanamycin, DNA2 was released from the system due to the competition relationship, and a restored photocurrent response was obtained. The combination of ZnIn2S4/ReS2 and AgInS2 accelerated the electron transfer and enhanced the separation efficiency of photogenerated electron-hole pairs, resulting in an improved performance of the PEC aptasensor, which was capable of accurate and sensitive detection of kanamycin in actual samples.
Collapse
Affiliation(s)
- Xing-Pei Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Yuan-Yuan Tang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Jing-Shuai Chen
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | - Bao-Kang Jin
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
4
|
Huang Q, Zhu X, Sun X, Wang X, Li Y, Ma H, Ju H, Wei Q. Synergetic-effect-enhanced electrochemiluminescence of zein-protected Au-Ag bimetallic nanoclusters for CA15-3 detection. Anal Chim Acta 2023; 1278:341760. [PMID: 37709422 DOI: 10.1016/j.aca.2023.341760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
In this work, a sandwich-type electrochemiluminescence (ECL) system was constructed for the detection of CA15-3. Gold-silver bimetallic nanoclusters (Au-Ag BNCs) with zein as a protective ligand were synthesized, and the excellent ECL performance of this material was demonstrated for the first time. Zein carrying a variety of groups that ligated with Au-Ag BNCs, forming a protective shell of zein, effectively prevented clusters from aggregating or growing into larger nanoparticles. The synergistic effect of the bimetal promotes the ECL emission, making this nanoscale material an ideal ECL probe. GO-PANI, which effectively promoting the production of sulfate radicals of the co-reactant and significantly increasing the ECL strength, was a good sensing platform for antibody immobilization. Consequently, we constructed an ECL sensor with GO-PANI as the sensing platform and Au-Ag BNCs@zein as the ECL probe, with a detection range of 0.001-100 U mL-1 and a detection limit of 0.0003 U mL-1, provided a strong support for the sensor for future CA15-3 detection applications.
Collapse
Affiliation(s)
- Qiuyu Huang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China
| | - Xiaodi Zhu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China
| | - Xiaojun Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China
| | - Xueying Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China
| | - Yuyang Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China.
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China; State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong. China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Meng X, Hang T, Zhou H, Zhang Z, Li C. Fabrication and nano-engineering of non-/noble metal-coupled plasmonic heterostructures for ultrasensitive photoelectrochemical immunoassays. Anal Chim Acta 2023; 1271:341472. [PMID: 37328251 DOI: 10.1016/j.aca.2023.341472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
To achieve reliable and ultrasensitive detection for disease markers in PEC bioanalysis, constructing and nano-engineering of ideal photoelectrodes and signal transduction strategies are of vital importance. Herein, a non-/noble metal coupled plasmonic nanostructure (TiO2/r-STO/Au) was tactically designed with high-efficient PEC performance. Evidenced by the DFT and FDTD calculations, the reduced SrTiO3 (r-STO) was found to support the localized surface plasmon resonance due to the sufficiently increased and delocalized local charge in r-STO. Under the synergistic coupling of plasmonic r-STO and AuNPs, the PEC performance of TiO2/r-STO/Au was found remarkably promoted with reduced onset potential. This merit supported TiO2/r-STO/Au as a self-powered immunoassay via a proposed oxygen-evolution-reaction mediated signal transduction strategy. With the increase of the target biomolecules (PSA), the catalytic active sites of TiO2/r-STO/Au would be blocked and result in the decrease of the oxygen evaluation reaction. Under optimal conditions, the immunoassays exhibited an excellent detection performance with a LOD as low as 1.1 fg/mL. This work proposed a new type of plasmonic nanomaterial for ultrasensitive PEC bioanalysis.
Collapse
Affiliation(s)
- Xingxing Meng
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Tianxiang Hang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Hui Zhou
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Zongrui Zhang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Chuanping Li
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China.
| |
Collapse
|
6
|
Liang P, Huang W, Li C, Li X, Lai G. Dual cascade DNA walking-induced "super on" photocurrent response for constructing a novel antibiotic biosensing method. Anal Chim Acta 2023; 1264:341240. [PMID: 37230718 DOI: 10.1016/j.aca.2023.341240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
The construction of effective methods for the convenient testing of antibiotic residues in real samples has attracted considerable interest. Herein, we designed a dual cascade DNA walking amplification strategy and combined it with the controllable photocurrent regulation of a photoelectrode to develop a novel photoelectrochemical (PEC) biosensing method for antibiotic detection. The photoelectrode was prepared through the surface modification of a glassy carbon electrode with the TiO2/CdS QDs nanocomposite synthesized by an in situ hydrothermal deposition method. The strong anodic PEC response of the nanocomposite could be well inhibited by the introduction of a silver nanoclusters (Ag NCs)-labeled DNA hairpin onto its surface. Upon the target biorecognition reaction, an Mg2+-dependent DNAzyme (MNAzyme)-driven DNA walking was triggered to release another MNAzyme strand-linked streptavidin (SA) complex. As this SA complex could serve as a four-legged DNA walker, its cascade walking on the electrode surface not only released Ag NCs but also caused the linking of Rhodamine 123 with the electrode to realize the "super on" photocurrent output. By using kanamycin as the model analyte, this method showed a very wide linear range from 10 fg mL-1 to 1 ng mL-1 and a very low detection limit of 0.53 fg mL-1. Meanwhile, the simple photoelectrode preparation and the aptamer recognition-based autonomous DNA walking resulted in the convenient manipulation and excellent repeatability. These unique performances determine the great potential of the proposed method for practical applications.
Collapse
Affiliation(s)
- Pan Liang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Can Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Xin Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
7
|
Zhou R, Li T, Chen T, Tang Y, Chen Y, Huang X, Gao W. An electrochemiluminescence immunosensor based on signal magnification of luminol using OER-activated NiFe 2O 4@C@CeO 2/Au as effective co-reaction accelerator. Talanta 2023; 260:124580. [PMID: 37141827 DOI: 10.1016/j.talanta.2023.124580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
In this work, a novel, label-free electrochemiluminescence (ECL) immunosensor was constructed for the ultrasensitive detection of carbohydrate antigen 15-3 (CA15-3) by the combined use of NiFe2O4@C@CeO2/Au hexahedral microbox and luminol luminophore. The synthesis of the co-reaction accelerator (NiFe2O4@C@CeO2/Au) was related to the calcination of FeNi-based metal-organic framework (MOF), as well as the ingrowth of CeO2 nanoparticles and modification of Au nanoparticles. To be specific, the electrical conductivity will be boosted due to the Au nanoparticles, the synergetic effect generated between CeO2 and calcination FeNi-MOF could offer better activity of oxygen evolution reaction (OER). Herein, the NiFe2O4@C@CeO2/Au hexahedral microbox as a co-reaction accelerator has excellent OER activity and production of reactive oxygen species (ROS), thus increasing the ECL intensity of luminol in a neutral medium without other co-reactants such as H2O2. Because of these benefits, the constructed ECL immunosensor was applied to detect CA15-3 as an example under optimum conditions, the designed ECL immunosensor exhibited high-level selectivity and sensitivity for CA15-3 biomarker within a linear response range of 0.01-100 U mL-1 and an ultralow detection limit of 0.545 mU mL-1 (S/N = 3), demonstrating its potentially valuable application in the area of clinical analysis.
Collapse
Affiliation(s)
- Runzhi Zhou
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Ting Li
- Guangdong Chaozhou Supervision & Inspection Institute of Quality & Metrology, Chaozhou, Guangdong, 521011, PR China
| | - Tufeng Chen
- Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Yixiang Tang
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Yaowen Chen
- Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Xiaochun Huang
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China.
| | - Wenhua Gao
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, PR China; Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, PR China.
| |
Collapse
|
8
|
Tan H, Zheng D, Chen M, Li T, Lu F, Song Y, Chen Y, Gao W. Novel design constructed In 2S 3@SnO 2 hollow heterojunctions by insufficiently etched MOFs as framework for photoelectrochemical bioanalysis. Bioelectrochemistry 2023; 152:108443. [PMID: 37075689 DOI: 10.1016/j.bioelechem.2023.108443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/21/2023]
Abstract
Compared to sufficiently etched MOFs materials, insufficiently etched MOFs materials tend to display unsatisfactory performance due to their immature structure and have been eliminated from scientific research. Herein, this work reported a novel In2S3@SnO2 heterojunction (In2S3@SnO2-HSHT) materials, which were stably synthesized in high temperature aqueous environment and equipped extraordinary photoelectrochemical (PEC) properties, fabricated by a succinct hydrothermal synthesis method using insufficiently etched MIL-68 as a self-sacrificing template. Compared with the control groups and In2S3@SnO2 heterojunctions with collapse morphology synthesized by sufficiently etched MIL-68 in high temperature aqueous environment, In2S3@SnO2-HSHT synthesized from insufficiently etched MIL-68 as a template had a massively enhanced light-harvesting capability and generated more photoinduced charge carriers due to its well-preserved hollow structure. Therefore, based on outstanding PEC performance of In2S3@SnO2-HSHT, the established PEC label-free signal-off immunosensor to detect CYFRA 21-1, revealing vivid selectivity, stability, and reproducibility. This novel strategy adopted the insufficient chemical etching method neglected by the mainstream chemical etching approaches, which solved the challenge that the stability of the sufficient etched MOFs with hollow structure cannot be maintained under the subsequent high temperature aqueous reaction conditions, and was further applied to the design of hollow heterojunction materials for photoelectrochemical fields.
Collapse
Affiliation(s)
- Hongyang Tan
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, PR China
| | - Delun Zheng
- Department of Natural Sciences, Shantou Polytechnic, Shantou, Guangdong 515078, PR China
| | - Min Chen
- Shantou Inspection and Testing Center, Shantou, Guangdong 515041, PR China
| | - Ting Li
- Guangdong Chaozhou Supervision & Inspection Institute of Quality & Metrology, Chaozhou, Guangdong 521011, PR China
| | - Fushen Lu
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yibing Song
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, PR China
| | - Yaowen Chen
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, PR China
| | - Wenhua Gao
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, PR China.
| |
Collapse
|
9
|
Wei JJ, Li HB, Wang GQ, Zheng JY, Wang AJ, Mei LP, Zhao T, Feng JJ. Novel Ultrasensitive Photoelectrochemical Cytosensor Based on Hollow CdIn 2S 4/In 2S 3 Heterostructured Microspheres for HepG2 Cells Detection and Inhibitor Screening. Anal Chem 2022; 94:12240-12247. [PMID: 35994715 DOI: 10.1021/acs.analchem.2c02982] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hepatocellular carcinoma is a life-threatening malignant tumor found around the world for its high morbidity and mortality. Therefore, it is of great importance for sensitive analysis of liver cancer cells (HepG2 cells) in clinical diagnosis and biomedical research. To fulfill this demand, hollow CdIn2S4/In2S3 heterostructured microspheres (termed CdIn2S4/In2S3 for clarity) were prepared by a two-step hydrothermal strategy and applied for building a novel photoelectrochemical (PEC) cytosensor for ultrasensitive and accurate detection of HepG2 cells through specific recognition of CD133 protein on the cell surface with the respective aptamer. The optical properties of CdIn2S4/In2S3 were investigated by UV-vis diffuse reflectance spectroscopy (DRS) and PEC technology. By virtue of their appealing PEC characteristics, the resultant PEC sensor exhibited a wider dynamic linear range from 1 × 102 to 2 × 105 cells mL-1 with a lower limit of detection (LOD, 23 cells mL-1), combined by evaluating the expression level of CD133 protein stimulated by metformin as a benchmarked inhibitor. This work opens a valuable and feasible avenue for sensitive detection of diverse tumor cells, holding great potential in early clinical diagnosis and treatment coupled by screening inhibitors.
Collapse
Affiliation(s)
- Jing-Jing Wei
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Heng-Bo Li
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.,School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Gui-Qing Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Ying Zheng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Ping Mei
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Tiejun Zhao
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.,School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|