1
|
Xu W, Gao X, Zhai Y, Zhang X, Wang Y, Deng R, Li X. Photothermal effect-assisted reduced graphene oxide biosensor for amplification-free detection of miRNA. Biosens Bioelectron 2025; 284:117532. [PMID: 40347596 DOI: 10.1016/j.bios.2025.117532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/14/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025]
Abstract
It remains a challenge to achieve high-sensitivity detection of tumor marker miRNA using optical refractive index (RI) sensors without nucleic acid amplification. This study proposes the photothermal effect-assisted reduced graphene oxide (rGO) biosensor that combines the photothermal effect of rGO with the rGO-based RI sensor for high-sensitivity detection of tumor marker miRNA-21. The rGO was functionalized with DNA probes capable of specifically hybridizing with the target miRNA-21. Quantitative detection of miRNA-21 was achieved by monitoring the RI change caused by the competitive hybridization of single-strand DNA (ssDNA)-functionalized AuNPs and target miRNA-21 with the DNA probes on the rGO surface. The presence of AuNPs disturbed the evanescent field on the rGO surface, thus achieving signal amplification. Furthermore, the localized photothermal effect heat induced by the interaction between rGO and pump light can effectively improve the hybridization kinetics of nucleic acid chains and achieve further signal amplification. The proposed biosensor had a high sensitivity toward the target miRNA-21, achieving a low detection limit of 4.05 fM without nucleic acid amplification. Its high specificity allowed for the recognition of single-base mismatches in miRNA-21. In addition, accurate quantification of low abundance miRNA-21 spiked into human urine samples was also successfully achieved. The photothermal effect-assisted rGO biosensor offers a promising approach for high-sensitivity detection of tumor marker miRNA without need for nucleic acid amplification.
Collapse
Affiliation(s)
- Wenrui Xu
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaoguang Gao
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yuyan Zhai
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaoliang Zhang
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yingqian Wang
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Rong Deng
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiaochun Li
- Institute of Biomedical Precision Testing and Instrumentation, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
2
|
Chu X, Hou Y, Peng C, Li W, Liang M, Mei J, Qian M, Wang J, Xu S, Jiang Y, Wen X, Chen Y, Yuan F, Xie J, Wang C, Zhang J. Exosome-derived miR-548ag drives hepatic lipid accumulation via upregulating FASN through inhibition of DNMT3B. J Lipid Res 2025:100818. [PMID: 40339699 DOI: 10.1016/j.jlr.2025.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease worldwide. This study investigates the role of serum miR-548ag in regulating lipid metabolism and its contribution to MASLD in obesity. We found that miR-548ag levels were significantly elevated in the serum of both obese and MASLD patients, and positively correlated with body mass index (BMI), fasting plasma glucose (FPG), triglycerides (TG), total cholesterol (TC), LDL, HDL, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Additionally, miR-548ag expression was significantly higher in the liver and abdominal adipose tissue of obese individuals compared to those of normal weight. In vitro studies in HepG2 and L02 cells, along with previous findings, demonstrated that miR-548ag promotes fatty acid synthase (FASN) expression by inhibiting DNA methyltransferase 3B (DNMT3B), thereby enhancing lipid synthesis. This was confirmed in two mouse models: one with tail vein injections of miR-548ag mimic/inhibitor adeno-associated viruses, and another with tail vein injections of exosomes from serum of normal-weight and obese individuals. Both models showed that miR-548ag upregulated FASN through DNMT3B inhibition, leading to increased lipid synthesis and larger hepatic lipid droplets, effects that were reversed by miR-548ag inhibition. Taken together, elevated miR-548ag expression in obesity enhances hepatic lipid synthesis by targeting DNMT3B to upregulate FASN, contributing to the development of MASLD.
Collapse
Affiliation(s)
- Xiaolong Chu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Department of Medical Genetics , Medical College of Tarim University, 296 Tarim Avenue, Alar, Xinjiang, 843300, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Chaoling Peng
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Wei Li
- First Affiliated Hospital of Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Maodi Liang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Jin Mei
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Meiyu Qian
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Juan Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shibo Xu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yidan Jiang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Xin Wen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yao Chen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Fangyuan Yuan
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Jianxin Xie
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Department of Medical Genetics , Medical College of Tarim University, 296 Tarim Avenue, Alar, Xinjiang, 843300, China.
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
3
|
Takaloo S, Xu AH, Zaidan L, Irannejad M, Yavuz M. Towards Point-of-Care Single Biomolecule Detection Using Next Generation Portable Nanoplasmonic Biosensors: A Review. BIOSENSORS 2024; 14:593. [PMID: 39727858 DOI: 10.3390/bios14120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Over the past few years, nanoplasmonic biosensors have gained widespread interest for early diagnosis of diseases thanks to their simple design, low detection limit down to the biomolecule level, high sensitivity to even small molecules, cost-effectiveness, and potential for miniaturization, to name but a few benefits. These intrinsic natures of the technology make it the perfect solution for compact and portable designs that combine sampling, analysis, and measurement into a miniaturized chip. This review summarizes applications, theoretical modeling, and research on portable nanoplasmonic biosensor designs. In order to develop portable designs, three basic components have been miniaturized: light sources, plasmonic chips, and photodetectors. There are five types of portable designs: portable SPR, miniaturized components, flexible, wearable SERS-based, and microfluidic. The latter design also reduces diffusion times and allows small amounts of samples to be delivered near plasmonic chips. The properties of nanomaterials and nanostructures are also discussed, which have improved biosensor performance metrics. Researchers have also made progress in improving the reproducibility of these biosensors, which is a major obstacle to their commercialization. Furthermore, future trends will focus on enhancing performance metrics, optimizing biorecognition, addressing practical constraints, considering surface chemistry, and employing emerging technologies. In the foreseeable future, these trends will be merged to result in portable nanoplasmonic biosensors offering detection of even a single biomolecule.
Collapse
Affiliation(s)
- Saeed Takaloo
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| | - Alexander H Xu
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Liena Zaidan
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | - Mustafa Yavuz
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
4
|
Sishuai S, Lingui G, Pengtao L, Xinjie B, Junji W. Advances in regulating endothelial-mesenchymal transformation through exosomes. Stem Cell Res Ther 2024; 15:391. [PMID: 39482726 PMCID: PMC11529026 DOI: 10.1186/s13287-024-04010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Endothelial-mesenchymal transformation (EndoMT) is the process through which endothelial cells transform into mesenchymal cells, affecting their morphology, gene expression, and function. EndoMT is a potential risk factor for cardiovascular and cerebrovascular diseases, tumor metastasis, and fibrosis. Recent research has highlighted the role of exosomes, a mode of cellular communication, in the regulation of EndoMT. Exosomes from diseased tissues and microenvironments can promote EndoMT, increase endothelial permeability, and compromise the vascular barrier. Conversely, exosomes derived from stem cells or progenitor cells can inhibit the EndoMT process and preserve endothelial function. By modifying exosome membranes or contents, we can harness the advantages of exosomes as carriers, enhancing their targeting and ability to inhibit EndoMT. This review aims to systematically summarize the regulation of EndoMT by exosomes in different disease contexts and provide effective strategies for exosome-based EndoMT intervention.
Collapse
Affiliation(s)
- Sun Sishuai
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gu Lingui
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Pengtao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bao Xinjie
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Wei Junji
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Zhu H, Chu L, Lv H, Ye Q, Juodkazis S, Chen F. Ultrafast Laser Manipulation of In-Lattice Plasmonic Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402840. [PMID: 39023166 PMCID: PMC11481187 DOI: 10.1002/advs.202402840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/04/2024] [Indexed: 07/20/2024]
Abstract
Plasmonic nanoparticles enable manipulation and enhancement of light fields at deep subwavelength scales, leading to structures and devices for diverse applications in optics. Despite hybrid plasmonic materials display remarkable optical properties due to interactions between components in nanoproximity, scalable production of plasmonic nanostructures within a single-crystalline matrix to achieve an ideal plasmon-crystal interface remains challenging. Here, a novel approach is presented to realize efficient manipulation of in-lattice plasmonic nanoparticles. Employing ultrafast-laser-driven plasmonic nanolithography, metallic nanoparticles with controllable morphology are precisely defined in the crystalline lattice of yttrium aluminum garnet (YAG) crystal. Through direct ion implantation, hybrid plasmonic material composed of nanoparticles embedded in a sub-surface amorphous YAG layer is created. Subsequently, femtosecond laser pulses guide formation and reshaping of plasmonic nanoparticles from the amorphous layer into the single-crystalline matrix along direction of light propagation, facilitated by a plasmon-mediated evolution of laser energy deposition. By tailoring resonance modes and optimizing the coupling between structured particle assemblies, a range of applications including polarization-dependent absorption and nonlinearity, controllable photoluminescence, and structural color generation is demonstrated. This research introduces a new approach for fabricating advanced optical materials featuring in-lattice plasmonic nanostructures, paving the way for the development of diverse functional photonic devices.
Collapse
Affiliation(s)
- Han Zhu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Lingrui Chu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Hengyue Lv
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Qingchuan Ye
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Saulius Juodkazis
- Optical Sciences CentreFaculty of ScienceEngineering and TechnologySwinburne University of TechnologyHawthornVIC3122Australia
| | - Feng Chen
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| |
Collapse
|
6
|
Küçük B, Yilmaz EG, Aslan Y, Erdem Ö, Inci F. Shedding Light on Cellular Secrets: A Review of Advanced Optical Biosensing Techniques for Detecting Extracellular Vesicles with a Special Focus on Cancer Diagnosis. ACS APPLIED BIO MATERIALS 2024; 7:5841-5860. [PMID: 39175406 PMCID: PMC11409220 DOI: 10.1021/acsabm.4c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
In the relentless pursuit of innovative diagnostic tools for cancer, this review illuminates the cutting-edge realm of extracellular vesicles (EVs) and their biomolecular cargo detection through advanced optical biosensing techniques with a primary emphasis on their significance in cancer diagnosis. From the sophisticated domain of nanomaterials to the precision of surface plasmon resonance, we herein examine the diverse universe of optical biosensors, emphasizing their specified applications in cancer diagnosis. Exploring and understanding the details of EVs, we present innovative applications of enhancing and blending signals, going beyond the limits to sharpen our ability to sense and distinguish with greater sensitivity and specificity. Our special focus on cancer diagnosis underscores the transformative potential of optical biosensors in early detection and personalized medicine. This review aims to help guide researchers, clinicians, and enthusiasts into the captivating domain where light meets cellular secrets, creating innovative opportunities in cancer diagnostics.
Collapse
Affiliation(s)
- Beyza
Nur Küçük
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Eylul Gulsen Yilmaz
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Yusuf Aslan
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Özgecan Erdem
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
7
|
Negahdary M. Role of miRNA-21 in cancer and its application in electrochemical bioanalysis. Bioanalysis 2024; 16:997-1000. [PMID: 38949192 PMCID: PMC11581167 DOI: 10.1080/17576180.2024.2368340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Masoud Negahdary
- Department of Biomedical Engineering, Texas A&M University, 600 Discovery Drive, College Station, TX77840-3006, USA
- Center for Remote Health Technologies & Systems, Texas A&M Engineering Experiment Station, 600 Discovery Drive, College Station, TX77840-3006, USA
| |
Collapse
|
8
|
Li H, Wang Y, Wan Y, Li M, Xu J, Wang Q, Wu D. Stimuli-responsive incremental DNA machine auto-catalyzed CRISPR-Cas12a feedback amplification permits ultrasensitive molecular diagnosis of esophageal cancer-related microRNA. Talanta 2024; 271:125675. [PMID: 38245957 DOI: 10.1016/j.talanta.2024.125675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Development of new diagnostic methods is essential for disease diagnosis and treatment. In this work, we present a stimuli-responsive incremental DNA machine auto-catalyzed CRISPR-Cas12a (SRI-DNA machine/CRISPR-Cas12a) feedback amplification for ultrasensitive molecular detection of miRNA-21, which is an important biomarker related closely to the initiation and development of cancers, such as esophageal cancer. Strategically, the powerful SRI-DNA machine and efficient trans-cleavage activity of the CRISPR-Cas12a system are ingeniously integrated via a rationally designed probe termed as stem-elongated functional hairpin probe (SEF-HP). The SRI-DNA machine begins with the target miRNA, the trigger of the reaction, binding complementarily to the SEF-HP, followed by autonomously performed mechanical strand replication, cleavage, and displacement circuit at multiple sites. This conversion process led to the amplified generation of numerous DNA activators that are complementary with CRISPR RNA (CrRNA). Once formed the DNA activator/CrRNA heteroduplex, the trans-cleavage activity of the CRISPR-Cas12a was activated to nonspecific cleavage of single-stranded areas of a reporter probe for fluorescence emission. Under optimal conditions, the target miRNA can be detected with a wide linear range and an excellent specificity. As a proof-of-concept, this SRI-DNA machine/CRISPR-Cas12a feedback amplification system is adaptable and scalable to higher-order artificial amplification circuits for biomarkers detection, highlighting its promising potential in early diagnosis and disease treatment.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Yi Wang
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Yu Wan
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Meimei Li
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China
| | - Jianguo Xu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Zhejiang, Jiaxing, 314001, PR China; Engineering Research Center of Bio-Process, Ministry of Education, School of Food and Biological, Hefei University of Technology, Hefei, 230009, PR China.
| | - Qi Wang
- Key Laboratory of Embryo Development and Reproductive Regulation, Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236037, PR China.
| | - Donglei Wu
- Department of Oncology, Hefei First People's Hospital, Third Affiliated Hospital of Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
9
|
Javed A, Kong N, Mathesh M, Duan W, Yang W. Nanoarchitectonics-based electrochemical aptasensors for highly efficient exosome detection. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2345041. [PMID: 38742153 PMCID: PMC11089931 DOI: 10.1080/14686996.2024.2345041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Exosomes, a type of extracellular vesicles, have attracted considerable attention due to their ability to provide valuable insights into the pathophysiological microenvironment of the cells from which they originate. This characteristic implicates their potential use as diagnostic disease biomarkers clinically, including cancer, infectious diseases, neurodegenerative disorders, and cardiovascular diseases. Aptasensors, which are electrochemical aptamers based biosensing devices, have emerged as a new class of powerful detection technology to conventional methods like ELISA and Western analysis, primarily because of their capability for high-performance bioanalysis. This review covers the current research landscape on the detection of exosomes utilizing nanoarchitectonics strategy for the development of electrochemical aptasensors. Strategies involving signal amplification and biofouling prevention are discussed, with an emphasis on nanoarchitectonics-based bio-interfaces, showcasing their potential to enhance sensitivity and selectivity through optimal conduction and mass transport properties. The ongoing challenges to broaden the clinical applications of these biosensors are also highlighted.
Collapse
Affiliation(s)
- Aisha Javed
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Motilal Mathesh
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| | - Wei Duan
- School of Medicine, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
10
|
Wu J, Li Z, Wu Y, Cui N. The crosstalk between exosomes and ferroptosis: a review. Cell Death Discov 2024; 10:170. [PMID: 38594265 PMCID: PMC11004161 DOI: 10.1038/s41420-024-01938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Exosomes are a subtype of extracellular vesicles composed of bioactive molecules, including nucleic acids, proteins, and lipids. Exosomes are generated by the fusion of intracellular multivesicular bodies (MVBs) with the cell membrane and subsequently released into the extracellular space to participate in intercellular communication and diverse biological processes within target cells. As a crucial mediator, exosomes have been implicated in regulating ferroptosis-an iron-dependent programmed cell death characterized by lipid peroxide accumulation induced by reactive oxygen species. The involvement of exosomes in iron, lipid, and amino acid metabolism contributes to their regulatory role in specific mechanisms underlying how exosomes modulate ferroptosis, which remains incompletely understood, and some related studies are still preliminary. Therefore, targeting the regulation of ferroptosis by exosomes holds promise for future clinical treatment strategies across various diseases. This review aims to provide insights into the pathophysiology and mechanisms governing the interaction between exosomes and ferroptosis and their implications in disease development and treatment to serve as a reference for further research.
Collapse
Affiliation(s)
- Jiao Wu
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyu Li
- Department of Internal Medicine, Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yu Wu
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ning Cui
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Pileri T, Sinibaldi A, Occhicone A, Danz N, Giordani E, Allegretti M, Sonntag F, Munzert P, Giacomini P, Michelotti F. Direct competitive assay for HER2 detection in human plasma using Bloch surface wave-based biosensors. Anal Biochem 2024; 684:115374. [PMID: 37914005 DOI: 10.1016/j.ab.2023.115374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
The overexpression and/or amplification of the HER2/neu oncogene has been proposed as a prognostic marker in breast cancer. The detection of the related peptide HER2 remains a grand challenge in cancer diagnosis and for therapeutic decision-making. Here, we used a biosensing device based on Bloch Surface Waves excited on a one-dimensional photonic crystal (1DPC) as valid alternative to standard techniques. The 1DPC was optimized to operate in the visible spectrum and the biosensor optics has been designed to combine label-free and fluorescence operation modes. This feature enables a real-time monitoring of a direct competitive assay using detection mAbs conjugated with quantum dots for an accurate discrimination in fluorescence mode between HER2-positive/negative human plasma samples. Such a competitive assay was implemented using patterned alternating areas where HER2-Fc chimera and reference molecules were bio-conjugated and monitored in a multiplexed way. By combining Label-Free and fluorescence detection analysis, we were able to tune the parameters of the assay and provide an HER2 detection in human plasma in less than 20 min, allowing for a cost-effective assay and rapid turnaround time. The proposed approach offers a promising technique capable of performing combined label-free and fluorescence detection for both diagnosis and therapeutic monitoring of diseases.
Collapse
Affiliation(s)
- Tommaso Pileri
- SAPIENZA Università di Roma, Department of Basic and Applied Sciences for Engineering, Via A. Scarpa, 16, 00161, Roma, Italy
| | - Alberto Sinibaldi
- SAPIENZA Università di Roma, Department of Basic and Applied Sciences for Engineering, Via A. Scarpa, 16, 00161, Roma, Italy; Center for Life Nano and Neuro Science, Italian Institute of Technology (IIT), Viale Regina Elena 291, 00161, Rome, Italy.
| | - Agostino Occhicone
- SAPIENZA Università di Roma, Department of Basic and Applied Sciences for Engineering, Via A. Scarpa, 16, 00161, Roma, Italy; Center for Life Nano and Neuro Science, Italian Institute of Technology (IIT), Viale Regina Elena 291, 00161, Rome, Italy
| | - Norbert Danz
- Fraunhofer Institute for Applied Optics and Precision Engineering, A.-Einstein-Str. 7, 07745, Jena, Germany
| | - Elena Giordani
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Allegretti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstr. 28, 01277, Dresden, Germany
| | - Peter Munzert
- Fraunhofer Institute for Applied Optics and Precision Engineering, A.-Einstein-Str. 7, 07745, Jena, Germany
| | - Patrizio Giacomini
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Michelotti
- SAPIENZA Università di Roma, Department of Basic and Applied Sciences for Engineering, Via A. Scarpa, 16, 00161, Roma, Italy; Center for Life Nano and Neuro Science, Italian Institute of Technology (IIT), Viale Regina Elena 291, 00161, Rome, Italy
| |
Collapse
|
12
|
Sun L, Liu X, Liu S, Chen X, Li Z. Rapid Diagnosis of Urinary Tract Cancers on a LEGO-Inspired Detection Platform via Chemiresistive Profiling of Volatile Metabolites. Anal Chem 2023; 95:14822-14829. [PMID: 37738107 DOI: 10.1021/acs.analchem.3c03252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Rapid and in situ profiling of volatile metabolites from body fluids represents a new trend in cancer diagnosis and classification in the early stages. We report herein an on-chip strategy that combines an array of conductive nanosensors with a chaotic gas micromixer for real-time monitoring of volatiles from urine and for accurate diagnosis and classification of urinary tract cancers. By integrating a class of LEGO-inspired microchambers immobilized with MXene-based sensing nanofilms and zigzag microfluidic gas channels, it enables the intensive intermingling of volatile organic chemicals with sensor elements that tremendously facilitate their ion-dipole interactions for molecular recognition. Aided with an all-in-one, point-of-care platform and an effective machine-learning algorithm, healthy or diseased samples from subpopulations (i.e., tumor subtypes, staging, lymph node metastasis, and distant metastasis) of urinary tract cancers can be reliably fingerprinted in a few minutes with high sensitivity and specificity. The developed detection platform has proven to be a noninvasive supplement to the liquid biopsies available for facile screening of urinary tract cancers, which holds great potential for large-scale personalized healthcare in low-resource areas.
Collapse
Affiliation(s)
- Linlin Sun
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P. R. China
| | - Xueliang Liu
- Department of Chemistry, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan 453003, P. R. China
| | - Sihui Liu
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P. R. China
| | - Xiaofeng Chen
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P. R. China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
13
|
Ning L, Li Y, Zhang Z, Zhou Y, Yang L, Yu Q, Yu F, Tong Z. Primer Exchange Reaction Coupled with DNA-Templated Silver Nanoclusters for Label-Free and Sensitive Detection of MicroRNA. Appl Biochem Biotechnol 2023; 195:6334-6344. [PMID: 36862332 DOI: 10.1007/s12010-023-04420-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
MicroRNAs (MiRNAs) play pivotal roles in regulating gene expression, and serve as crucial biomarkers for diagnosis of a variety of disease. However, label-free and sensitive miRNA detection remains a huge challenge due to the low abundance. Herein, we developed an approach through integrating primer exchange reaction (PER) with DNA-templated silver nanoclusters (AgNCs) for label-free and sensitive miRNA detection. In this method, PER was used to amplify miRNA signals and produce single-strand DNA (ssDNA) sequences. The produced ssDNA sequences mediated DNA-templated AgNCs based signal generation by unfolding the designed hairpin probe (HP). The generated AgNCs signal was correlated with the dosage of target miRNA. Eventually, the established approach exhibited a low detection of limit of 47 fM with a great dynamic range of more than five orders of magnitude. In addition, the method was also utilized to detect the miRNA-31 expression in collected clinical samples from pancreatitis patients and demonstrated that miRNA-31 was upregulated in patients, showing a great promising of the method in clinical application.
Collapse
Affiliation(s)
- Linhong Ning
- College of Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yuanhong Li
- Department of Gastroenterology, Chongqing Jiangjin District Central Hospital affiliated to Chongqing Medical University, Chongqing, 402260, China
| | - Zhimei Zhang
- Department of Gastroenterology, Banan District People's Hospital affiliated to Chongqing Medical University, Chongqing, 401320, China
| | - Yuan Zhou
- College of Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Li Yang
- Department of Gastroenterology, Chongqing Shapingba District People's Hospital Affiliated to Chongqing University, Chongqing, 400055, China
| | - Qinghai Yu
- College of Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Feng Yu
- Department of Gastroenterology, Chenjiaqiao Hospital Affiliated to Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Zehui Tong
- Department of Gastroenterology, Chongqing Shapingba District People's Hospital Affiliated to Chongqing University, Chongqing, 400055, China.
| |
Collapse
|
14
|
Liang Z, Wang P, Li Z, Wang D, Ma Q. Dynamically Metasurface-Modulated Electrochemiluminescence Polarization Coupling Angle Strategy for miR-142-3p Detection. Anal Chem 2023; 95:14253-14260. [PMID: 37712625 DOI: 10.1021/acs.analchem.3c02339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The combination of the electrochemiluminescence (ECL) technique with nanophotonics research can spark new analytical and sensing applications. Herein, we developed a novel modulation strategy of the ECL polarization angle based on the dynamically tunable few-layer metasurface. The bilayer metasurface consisted of a fixed Au-Ag core-shell nanocube array (Au@Ag NCA) layer with strong plasmonic hot spots and different amounts of the Au nanoparticles@MoS2 heterostructure nanosheet (0D-2D HNS) layer with strong metal-support interaction. Due to the interference and near-field coupling between layers, the bilayer metasurface can strongly redistribute the local electromagnetic field and energy in the ECL system, which not only significantly amplified the ECL signal but also modulated the polarization coupling angle. Therefore, the novel ECL polarization angle-resolved sensing strategy has been developed, which was beneficial to improve the sensitivity and resolution of ECL sensing. A dynamically tunable metasurface-based ECL biosensor was successfully used to detect the asthma-related miRNA-142-3p (miR-142-3p). Moreover, the simulation calculations of the electromagnetic field revealed the unique optical activity of the metasurface. This study brought the insightful understanding of the metasurface-modulated optical signal and provided a new idea to construct novel sensing platforms.
Collapse
Affiliation(s)
- Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dongyu Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
He S, Jia X, Feng S, Hu J. Three Strategies in Engineering Nanomedicines for Tumor Microenvironment-Enabled Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300078. [PMID: 37226364 DOI: 10.1002/smll.202300078] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Indexed: 05/26/2023]
Abstract
Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H2 O2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME-induced nanoparticle disassembly or surface modification. The second strategy involves near-infrared absorption increase-induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.
Collapse
Affiliation(s)
- Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiao Jia
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Sai Feng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
16
|
Wang HN, Vo-Dinh T. Cascade Amplified Plasmonics Molecular Biosensor for Sensitive Detection of Disease Biomarkers. BIOSENSORS 2023; 13:774. [PMID: 37622860 PMCID: PMC10452163 DOI: 10.3390/bios13080774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Recent advances in molecular technologies have provided various assay strategies for monitoring biomarkers, such as miRNAs for early detection of various diseases and cancers. However, there is still an urgent unmet need to develop practical and accurate miRNA analytical tools that could facilitate the incorporation of miRNA biomarkers into clinical practice and management. In this study, we demonstrate the feasibility of using a cascade amplification method, referred to as the "Cascade Amplification by Recycling Trigger Probe" (CARTP) strategy, to improve the detection sensitivity of the inverse Molecular Sentinel (iMS) nanobiosensor. The iMS nanobiosensor developed in our laboratory is a unique homogeneous multiplex bioassay technique based on surface-enhanced Raman scattering (SERS) detection, and was used to successfully detect miRNAs from clinical samples. The CARTP strategy based on the toehold-mediated strand displacement reaction is triggered by a linear DNA strand, called the "Recycling Trigger Probe" (RTP) strand, to amplify the iMS SERS signal. Herein, by using the CARTP strategy, we show a significantly improved detection sensitivity with the limit of detection (LOD) of 45 fM, which is 100-fold more sensitive than the non-amplified iMS assay used in our previous report. We envision that the further development and optimization of this strategy ultimately will allow multiplexed detection of miRNA biomarkers with ultra-high sensitivity for clinical translation and application.
Collapse
Affiliation(s)
- Hsin-Neng Wang
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA;
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA;
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
17
|
Kim T, Croce CM. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med 2023; 55:1314-1321. [PMID: 37430087 PMCID: PMC10394030 DOI: 10.1038/s12276-023-01050-9] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
As a type of short noncoding RNAs, microRNA (miRNA) undoubtedly plays a crucial role in cancer development. Since the discovery of the identity and clinical functions of miRNAs, over the past few decades, the roles of miRNAs in cancer have been actively investigated. Numerous pieces of evidence indicate that miRNAs are pivotal factors in most types of cancer. Recent cancer research focused on miRNAs has identified and characterized a large cohort of miRNAs commonly dysregulated in cancer or exclusively dysregulated in specific types of cancer. These studies have suggested the potential of miRNAs as biomarkers in the diagnosis and prognostication of cancer. Moreover, many of these miRNAs have oncogenic or tumor-suppressive functions. MiRNAs have been the focus of research given their potential clinical applications as therapeutic targets. Currently, various oncology clinical trials using miRNAs in screening, diagnosis, and drug testing are underway. Although clinical trials studying miRNAs in various diseases have been reviewed before, there have been fewer clinical trials related to miRNAs in cancer. Furthermore, updated results of recent preclinical studies and clinical trials of miRNA biomarkers and drugs in cancer are needed. Therefore, this review aims to provide up-to-date information on miRNAs as biomarkers and cancer drugs in clinical trials.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, China.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Recent advances in plasmon-enhanced luminescence for biosensing and bioimaging. Anal Chim Acta 2023; 1254:341086. [PMID: 37005018 DOI: 10.1016/j.aca.2023.341086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
Plasmon-enhanced luminescence (PEL) is a unique photophysical phenomenon in which the interaction between luminescent moieties and metal nanostructures results in a marked luminescence enhancement. PEL offers several advantages and has been extensively used to design robust biosensing platforms for luminescence-based detection and diagnostics applications, as well as for the development of many efficient bioimaging platforms, enabling high-contrast non-invasive real-time optical imaging of biological tissues, cells, and organelles with high spatial and temporal resolution. This review summarizes recent progress in the development of various PEL-based biosensors and bioimaging platforms for diverse biological and biomedical applications. Specifically, we comprehensively assessed rationally designed PEL-based biosensors that can efficiently detect biomarkers (proteins and nucleic acids) in point-of-care tests, highlighting significant improvements in the sensing performance upon the integration of PEL. In addition to discussing the merits and demerits of recently developed PEL-based biosensors on substrates or in solutions, we include a brief discussion on integrating PEL-based biosensing platforms into microfluidic devices as a promising multi-responsive detection method. The review also presents comprehensive details about the recent advances in the development of various PEL-based multi-functional (passive targeting, active targeting, and stimuli-responsive) bioimaging probes, highlighting the scope of future improvements in devising robust PEL-based nanosystems to achieve more effective diagnostic and therapeutic insights by enabling imaging-guided therapy.
Collapse
|
19
|
Yan HH, Huang M, Zhu F, Cheng R, Wen S, Li LT, Liu H, Zhao XH, Luo FK, Huang CZ, Wang J. Two-Dimensional Analysis Method for Highly Sensitive Detection of Dual MicroRNAs in Breast Cancer Cells. Anal Chem 2023; 95:3968-3975. [PMID: 36792543 DOI: 10.1021/acs.analchem.2c03479] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Multiple biomarker detection is crucial for early clinical diagnosis, and it is significant to achieve the simultaneous detection of multiple biomarkers with the same nanomaterial. In this work, the hairpin DNA strands were selectively modified on the surface of gold nanorods (AuNRs) to construct two kinds of nanoprobes by rational design. When in the presence of dual microRNAs, AuNRs were assembled to form end-to-end (ETE) and side-by-side (SBS) dimers. Compared with a single AuNR, the dark-field scattering intensity and red color percentage variation of dimers were extremely distinguished, which could be developed for dual microRNA detection by combining the red color percentage and scattering intensity with the data processing method of principal component analysis to construct a two-dimensional analysis method. Especially, the fraction of AuNR dimers presented a linear relationship with the amount of microRNAs. Based on this, microRNA-21 and microRNA Let-7a in breast cancer cells were detected with the detection limits of 1.72 and 0.53 fM, respectively. This method not only achieved the sensitive detection of dual microRNAs in human serum but also realized the high-resolution intracellular imaging, which developed a new way for the oriented assembly of nanomaterials and biological detection in living cells.
Collapse
Affiliation(s)
- Hui Hong Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Min Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Fu Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Ru Cheng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | | | - Liang Tong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Hui Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Xiao Hui Zhao
- The Ninth People's Hospital of Chongqing, No. 69 Jialing Village, Beibei District, Chongqing 400700, China
| | - Fu Kang Luo
- The Ninth People's Hospital of Chongqing, No. 69 Jialing Village, Beibei District, Chongqing 400700, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Jian Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
20
|
Gao F, Sun J, Yao M, Song Y, Yi H, Yang M, Ni Q, Kong J, Yuan H, Sun B, Wang Y. SERS "hot spot" enhance-array assay for misfolded SOD1 correlated with white matter lesions and aging. Anal Chim Acta 2023; 1238:340163. [PMID: 36464456 DOI: 10.1016/j.aca.2022.340163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022]
Abstract
Misfolding of superoxide dismutase-1 (SOD1) has been correlated with many neurodegenerative diseases, such as Amyotrophic lateral sclerosis's and Alzheimer's among others. However, it is unclear whether misfolded SOD1 plays a role in another neurodegenerative disease of white matter lesions (WMLs). In this study, a sensitive and specific method based on SERS technique was proposed for quantitative detection of misfolded SOD1 content in WMLs. To fabricate the double antibodysandwich substrates for SERS detection, gold nanostars modified with capture antibody were immobilized on glass substrates to prepare active SERS substrates, and then SERS probes conjugated with a Raman reporter and a specific target antibody were coupled with active SERS substrates. This SERS substrates had been employed for quantitative detection of misfolded SOD1 levels in WMLs and exhibited excellent stability, reliability, and accuracy. Moreover, experimental results indicated that the level of misfolded SOD1 increased with the increase in age and the degree of WMLs. Hence, misfolded SOD1 may be a potential blood marker for WMLs and aging. Meanwhile, SERS-based gold nanostars have great clinical application potential in the screening, diagnosis and treatment of WMLs.
Collapse
Affiliation(s)
- Feng Gao
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, China
| | - Minmin Yao
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Yanan Song
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China; Medical College of Qingdao University, Qingdao, 266021, China
| | - Hui Yi
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Mingfeng Yang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Qingbin Ni
- Postdoctoral Workstation, Taian Central Hospital, Taian, 271000, Shandong, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, Canada
| | - Hui Yuan
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China.
| | - Baoliang Sun
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China.
| | - Ying Wang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China.
| |
Collapse
|
21
|
Sun Z, Wu Y, Gao F, Li H, Wang C, Du L, Dong L, Jiang Y. In situ detection of exosomal RNAs for cancer diagnosis. Acta Biomater 2023; 155:80-98. [PMID: 36343908 DOI: 10.1016/j.actbio.2022.10.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Exosomes are considered as biomarkers reflecting the physiological state of the human body. Studies have revealed that the expression levels of specific exosomal RNAs are closely associated with certain cancers. Thus, detection of exosomal RNA offers a new avenue for liquid biopsy of cancers. Many exosomal RNA detection methods based on various principles have been developed, and most of the methods detect the extracted RNAs after lysing exosomes. Besides complex and time-consuming extraction steps, a major drawback of this approach is the degradation of the extracted RNAs in the absence of plasma membrane and cytosol. In addition, there is considerable loss of RNAs during their extraction. In situ detection of exosomal RNAs can avoid these drawbacks, thus allowing higher diagnostic reliability. In this paper, in situ detection of exosomal RNAs was systematically reviewed from the perspectives of detection methods, transport methods of the probe systems, probe structures, signal amplification strategies, and involved functional materials. Furthermore, the limitations and possible improvements of the current in situ detection methods for exosomal RNAs towards the clinical diagnostic application are discussed. This review aims to provide a valuable reference for the development of in situ exosomal RNA detection strategies for non-invasive diagnosis of cancers. STATEMENT OF SIGNIFICANCE: Certain RNAs have been identified as valuable biomarkers for some cancers, and sensitive detection of cancer-related RNAs is expected to achieve better diagnostic efficacy. Currently, the detection of exosomal RNAs is receiving increasing attention due to their high stability and significant concentration differences between patients and healthy individuals. In situ detection of exosomal RNAs has greater diagnostic reliability due to the avoidance of RNA degradation and loss. However, this mode is still limited by some factors such as detection methods, transport methods of the probe systems, probe structures, signal amplification strategies, etc. This review focuses on the progress of in situ detection of exosomal RNAs and aims to promote the development of this field.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Yanqiu Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Fucheng Gao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Lun Dong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan 250012, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China.
| |
Collapse
|
22
|
Li D, Sun C, Mei X, Yang L. Achieving broad availability of SARS-CoV-2 detections via smartphone-based analysis. Trends Analyt Chem 2023; 158:116878. [PMID: 36506266 PMCID: PMC9728015 DOI: 10.1016/j.trac.2022.116878] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
With the development of COVID-19, widely available tests are in great demand. Naked-eye SARS-CoV-2 test kits have recently been developed as home tests, but their sensitivity and accuracy are sometimes limited. Smartphones can convert various signals into digital information, potentially improving the sensitivity and accuracy of these home tests. Herein, we summarize smartphone-based detections for SARS-CoV-2. Optical detections of non-nucleic acids using various sensors and portable imaging systems, as well as nucleic acid analyses based on LAMP, CRISP, CATCH, and biosensors are discussed. Furthermore, different electrochemical detections were compared. We show results obtained using relatively complex equipment, complicated programming procedures, or custom smartphone apps, and describe methods for obtaining information with only simple setups and free software on smartphones. Then, the combined costs of typical smartphone-based detections are evaluated. Finally, the prospect of improving smartphone-based strategies to achieve broad availability of SARS-CoV-2 detection is proposed.
Collapse
Affiliation(s)
- Dan Li
- Jinzhou Medical University, Jinzhou, China
| | - Cai Sun
- AECC Shenyang Liming Aero-Engine Co, Ltd., Shenyang, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou, China,Corresponding author
| | - Liqun Yang
- NHC Key Laboratory of Reproductive Health and Medical Genetics (China Medical University), Liaoning Research Institute of Family Planning (The Affiliated Reproductive Hospital of China Medical University), Shenyang, China,Corresponding author
| |
Collapse
|
23
|
Ashraf G, Zhong ZT, Asif M, Aziz A, Iftikhar T, Chen W, Zhao YD. State-of-the-Art Fluorescent Probes: Duplex-Specific Nuclease-Based Strategies for Early Disease Diagnostics. BIOSENSORS 2022; 12:bios12121172. [PMID: 36551139 PMCID: PMC9775407 DOI: 10.3390/bios12121172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Precision healthcare aims to improve patient health by integrating prevention measures with early disease detection for prompt treatments. For the delivery of preventive healthcare, cutting-edge diagnostics that enable early disease detection must be clinically adopted. Duplex-specific nuclease (DSN) is a useful tool for bioanalysis since it can precisely digest DNA contained in duplexes. DSN is commonly used in biomedical and life science applications, including the construction of cDNA libraries, detection of microRNA, and single-nucleotide polymorphism (SNP) recognition. Herein, following the comprehensive introduction to the field, we highlight the clinical applicability, multi-analyte miRNA, and SNP clinical assays for disease diagnosis through large-cohort studies using DSN-based fluorescent methods. In fluorescent platforms, the signal is produced based on the probe (dyes, TaqMan, or molecular beacon) properties in proportion to the target concentration. We outline the reported fluorescent biosensors for SNP detection in the next section. This review aims to capture current knowledge of the overlapping miRNAs and SNPs' detection that have been widely associated with the pathophysiology of cancer, cardiovascular, neural, and viral diseases. We further highlight the proficiency of DSN-based approaches in complex biological matrices or those constructed on novel nano-architectures. The outlooks on the progress in this field are discussed.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
24
|
Pang L, Pi X, Yang X, Song D, Qin X, Wang L, Man C, Zhang Y, Jiang Y. Nucleic acid amplification-based strategy to detect foodborne pathogens in milk: a review. Crit Rev Food Sci Nutr 2022; 64:5398-5413. [PMID: 36476145 DOI: 10.1080/10408398.2022.2154073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Milk contaminated with trace amounts of foodborne pathogens can considerably threaten food safety and public health. Therefore, rapid and accurate detection techniques for foodborne pathogens in milk are essential. Nucleic acid amplification (NAA)-based strategies are widely used to detect foodborne pathogens in milk. This review article covers the mechanisms of the NAA-based detection of foodborne pathogens in milk, including polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), rolling circle amplification (RCA), and enzyme-free amplification, among others. Key factors affecting detection efficiency and the advantages and disadvantages of the above techniques are analyzed. Potential on-site detection tools based on NAA are outlined. We found that NAA-based strategies were effective in detecting foodborne pathogens in milk. Among them, PCR was the most reliable. LAMP showed high specificity, whereas RPA and RCA were most suitable for on-site and in-situ detection, respectively, and enzyme-free amplification was more economical. However, factors such as sample separation, nucleic acid target conversion, and signal transduction affected efficiency of NAA-based strategies. The lack of simple and effective sample separation methods to reduce the effect of milk matrices on detection efficiency was noteworthy. Further research should focus on simplifying, integrating, and miniaturizing microfluidic on-site detection platforms.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Danliangmin Song
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
25
|
Wei L, Wang Z, Chen Y. Optical Biosensor for Ochratoxin A Detection in Grains Using an Enzyme-Mediated Click Reaction and Polystyrene Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14798-14804. [PMID: 36372964 DOI: 10.1021/acs.jafc.2c05137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we develop an optical biosensor for highly sensitive and facile detection of ochratoxin A (OTA) using an enzyme-mediated click reaction for signal amplification and polystyrene nanoparticles (PNPs) for signal readout. Alkaline phosphatase was employed to hydrolyze the ascorbic acid-phosphate to generate ascorbic acid, which reduces Cu(II) to Cu(I). Cu(I) can catalyze the click reaction between alkyne-functionalized magnetic beads and azide-functionalized PNPs to form complexes, while unbound PNPs acted as the signal probe. This strategy utilized the high efficiency of click chemistry and the inherent optical absorption properties of PNPs, which effectively improved the sensitivity of conventional immunoassays and simplified the procedures using magnetic separation technology. This optical biosensor enabled OTA detection in a linear range of 0.1 to 50 ng/mL with a detection limit of 54 pg/mL. Moreover, it has been successfully challenged with OTA detection in maize samples, revealing its potential as a promising tool for mycotoxin screening.
Collapse
Affiliation(s)
- Luyu Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhilong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, Guangdong, China
| |
Collapse
|
26
|
Li S, Ma Q. Electrochemical nano-sensing interface for exosomes analysis and cancer diagnosis. Biosens Bioelectron 2022; 214:114554. [PMID: 35834978 DOI: 10.1016/j.bios.2022.114554] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Exosomes are a class of the nanosized extracellular vesicles, which have emerged as representative liquid biopsy biomarkers. To date, the electrochemical nanosensors are of great significance in the exosome detection with the advantages of easy operation, high accuracy and reliable repeatability. Especially, the growing field of nano interface has provided the electrochemical sensing platforms for the accurate exosomes analysis. The incorporation of multiple nanomaterials can take advantages and synergistic properties of functional units. So, based on the integration of with nanomaterial-based signal transduction and specific biorecognition, the nano-sensing interface provides excellent electrochemical features owing to rapid mass transport and excellent conductivity. The nano-sensing interface with a wide variety of morphologies and structure also provides the large active surface area for the immobilization of bio-capturing agents. Furthermore, through the design of nanostructured electrode array, the efficiency of transducer can be greatly improved. It should be noticed that the elaboration of a proper sensor requires the profound knowledge of the nano-sensing interface. Therefore, this article presents a review of the recent advance in exosomes detection based on the electrochemical nano-sensing interface, including electrochemical analysis principles, exosome sensing mechanisms, nano-interface construction strategies, as well as the typical diagnosis application. In particular, the article is focused on the exploration of the various electrochemical sensing performance of nano-interface in the exosome detection. We have also prospected the future trend and challenge of the electrochemical nano-sensing interface for exosomes analysis in clinical cancer diagnosis.
Collapse
Affiliation(s)
- Shijie Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
27
|
Wafer-Scale LSPR Substrate: Oblique Deposition of Gold on a Patterned Sapphire Substrate. BIOSENSORS 2022; 12:bios12030158. [PMID: 35323428 PMCID: PMC8946711 DOI: 10.3390/bios12030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Label-free detection of biomolecules using localized surface plasmon resonance (LSPR) substrates is a highly attractive method for point-of-care (POC) testing. One of the remaining challenges to developing LSPR-based POC devices is to fabricate the LSPR substrates with large-scale, reproducible, and high-throughput. Herein, a fabrication strategy for wafer-scale LSPR substrates is demonstrated using reproducible, high-throughput techniques, such as nanoimprint lithography, wet-etching, and thin film deposition. A transparent sapphire wafer, on which SiO2-nanodot hard masks were formed via nanoimprint lithography, was anisotropically etched by a mixed solution of H2SO4 and H3PO4, resulting in a patterned sapphire substrate (PSS). An LSPR substrate was finally fabricated by oblique deposition of Au onto the PSS, which was then applied to label-free detection of the binding events of biomolecules. To the best of our knowledge, this paper is the first report on the application of the PSS used as an LSPR template by obliquely depositing a metal.
Collapse
|
28
|
Solovjev AM, Galkin II, Medved'ko AV, Pletjushkina OY, Zhao S, Sakharov IY. Comparison of chemiluminescent heterogeneous and homogeneous–heterogeneous assays coupled with isothermal circular strand-displacement polymerization reaction amplification for the quantification of miRNA-141. Analyst 2022; 147:4293-4300. [DOI: 10.1039/d2an00921h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterogeneous and homogeneous–heterogeneous chemiluminescent microplate assay was developed for the determination of miRNA-141 levels in human cells.
Collapse
Affiliation(s)
- Anton M. Solovjev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Bldg.1, Moscow, 119991, Russia
| | - Ivan I. Galkin
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, Bldg.1, Moscow 119992, Russia
| | - Alexey V. Medved'ko
- N.D. Zelinsky Institute of Organic Chemistry RAS, Leninsky prospect, 47, Moscow, 119991, Russia
| | - Olga Yu. Pletjushkina
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie gory, Bldg.1, Moscow 119992, Russia
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China
| | - Ivan Yu. Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory, Bldg.1, Moscow, 119991, Russia
| |
Collapse
|