1
|
Yu Y, Cui Z, Zhou T, Wang Y, Chen P, Wang S, Zhu Y, Liu J, Jiang S, Liu Y. Umami peptide synergy unveiled: A comprehensive study from molecular simulation to practical validation of sensing strategy. Biosens Bioelectron 2025; 278:117331. [PMID: 40043636 DOI: 10.1016/j.bios.2025.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 03/30/2025]
Abstract
Synergistic effect is one of the main properties of umami substances, as a new natural umami agent, umami peptide synergy has not been systematically explored. Presently, conventional methods relying on human sensory evaluation and intelligent instrument analysis pose challenges due to their time-consuming and lack of high throughput. This research provides a detailed molecular-level understanding of multiple umami peptides interact with T1R1-VFT simultaneous, revealing that multiple umami peptides promotes stronger binding affinity and more effective receptor activation (from -7.3 kcal mol-1 to -11.19 kcal mol-1). The kinetic simulations demonstrated a significant reduction in the average fluctuation of protein amino acid residues during the binding process. Moreover, the hydrophobic regions on the protein surface were diminished following binding, and the resultant complex structure was more tightly packed, these phenomena may collectively represent the manifestation of synergistic effects. To validate the simulation results, biolayer interferometry sensing strategies were developed to measure the interaction process, indicating that umami peptides and T1R1-VFT could association and dissociation in solution without significant interactions with other proteins. When multiple umami peptides interacted with T1R1-VFT, the kinetic equilibrium constant decreased and affinity increased (from 1.2 e-6 M to 8.3 e-7 M), showing significant synergistic effect. Furthermore, the practical application ability of this sensing strategy was verified in a complex matrix with multiple real samples. Overall, this comprehensive study combined micro-molecular simulation and biological experiment verification, offering a deeper understanding of umami peptide synergy and paving the way for innovative approaches in flavor science and food product development.
Collapse
Affiliation(s)
- Yanyang Yu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiyong Cui
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianxing Zhou
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueming Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Panpan Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shengnan Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
| | - Shui Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
2
|
Li Y, Yang HS, Klasse PJ, Zhao Z. The significance of antigen-antibody-binding avidity in clinical diagnosis. Crit Rev Clin Lab Sci 2025; 62:9-23. [PMID: 39041650 DOI: 10.1080/10408363.2024.2379286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Immunoglobulin G (IgG) and immunoglobulin M (IgM) testing are commonly used to determine infection status. Typically, the detection of IgM indicates an acute or recent infection, while the presence of IgG alone suggests a chronic or past infection. However, relying solely on IgG and IgM antibody positivity may not be sufficient to differentiate acute from chronic infections. This limitation arises from several factors. The prolonged presence of IgM can complicate diagnostic interpretations, and false positive IgM results often arise from antibody cross-reactivity with various antigens. Additionally, IgM may remain undetectable in prematurely collected samples or in individuals who are immunocompromised, further complicating accurate diagnosis. As a result, additional diagnostic tools are required to confirm infection status. Avidity is a measure of the strength of the binding between an antigen and antibody. Avidity-based assays have been developed for various infectious agents, including toxoplasma, cytomegalovirus (CMV), SARS-CoV-2, and avian influenza, and are promising tools in clinical diagnostics. By measuring the strength of antibody binding, they offer critical insights into the maturity of the immune response. These assays are instrumental in distinguishing between acute and chronic or past infections, monitoring disease progression, and guiding treatment decisions. The development of automated platforms has optimized the testing process by enhancing efficiency and minimizing the risk of manual errors. Additionally, the recent advent of real-time biosensor immunoassays, including the label-free immunoassays (LFIA), has further amplified the capabilities of these assays. These advances have expanded the clinical applications of avidity-based assays, making them useful tools for the diagnosis and management of various infectious diseases. This review is structured around several key aspects of IgG avidity in clinical diagnosis, including: (i) a detailed exposition of the IgG affinity maturation process; (ii) a thorough discussion of the IgG avidity assays, including the recently emerged biosensor-based approaches; and (iii) an examination of the applications of IgG avidity in clinical diagnosis. This review is intended to contribute toward the development of enhanced diagnostic tools through critical assessment of the present landscape of avidity-based testing, which allows us to identify the existing knowledge gaps and highlight areas for future investigation.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - He S Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Astakhova EA, Baranov KO, Shilova NV, Polyakova SM, Zuev EV, Poteryaev DA, Taranin AV, Filatov AV. Antibody Avidity Maturation Following Booster Vaccination with an Intranasal Adenovirus Salnavac Vaccine. Vaccines (Basel) 2024; 12:1362. [PMID: 39772024 PMCID: PMC11680177 DOI: 10.3390/vaccines12121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic has led to the rapid development of new vaccines and methods of testing vaccine-induced immunity. Despite the extensive research that has been conducted on the level of specific antibodies, less attention has been paid to studying the avidity of these antibodies. The avidity of serum antibodies is associated with a vaccine showing high effectiveness and reflects the process of affinity maturation. In the context of vaccines against SARS-CoV-2, only a limited number of studies have investigated the avidity of antibodies, often solely focusing on the wild-type virus following vaccination. This study provides new insights into the avidity of serum antibodies following adenovirus-based boosters. We focused on the effects of an intranasal Salnavac booster, which is compared, using a single analytical platform, to an intramuscular Sputnik V. METHODS The avidity of RBD-specific IgGs and IgAs was investigated through ELISA using urea and biolayer interferometry. RESULTS The results demonstrated the similar avidities of serum antibodies, which were induced by both vaccines for six months post-booster. However, an increase in antibody avidity was observed for the wild-type and Delta variants, but not for the BA.4/5 variant. CONCLUSIONS Collectively, our data provide the insights into antibody avidity maturation after the adenovirus-based vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Ekaterina A. Astakhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia;
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Moscow Center for Advanced Studies, Kulakova Street 20, 123592 Moscow, Russia
| | - Konstantin O. Baranov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (A.V.T.)
| | - Nadezhda V. Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Svetlana M. Polyakova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | | | - Alexander V. Taranin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia (A.V.T.)
| | - Alexander V. Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia;
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
4
|
Nurrohman DT, Chiu NF. Unraveling the Dynamics of SARS-CoV-2 Mutations: Insights from Surface Plasmon Resonance Biosensor Kinetics. BIOSENSORS 2024; 14:99. [PMID: 38392018 PMCID: PMC10887047 DOI: 10.3390/bios14020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Surface Plasmon Resonance (SPR) technology is known to be a powerful tool for studying biomolecular interactions because it offers real-time and label-free multiparameter analysis with high sensitivity. This article summarizes the results that have been obtained from the use of SPR technology in studying the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations. This paper will begin by introducing the working principle of SPR and the kinetic parameters of the sensorgram, which include the association rate constant (ka), dissociation rate constant (kd), equilibrium association constant (KA), and equilibrium dissociation constant (KD). At the end of the paper, we will summarize the kinetic data on the interaction between angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 obtained from the results of SPR signal analysis. ACE2 is a material that mediates virus entry. Therefore, understanding the kinetic changes between ACE2 and SARS-CoV-2 caused by the mutation will provide beneficial information for drug discovery, vaccine development, and other therapeutic purposes.
Collapse
Affiliation(s)
- Devi Taufiq Nurrohman
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
5
|
Machera SJ, Niedziółka-Jönsson J, Jönsson-Niedziółka M, Szot-Karpińska K. Determination of the Dissociation Constant for Polyvalent Receptors Using ELISA: A Case of M13 Phages Displaying Troponin T-Specific Peptides. ACS OMEGA 2023; 8:26253-26262. [PMID: 37521637 PMCID: PMC10373194 DOI: 10.1021/acsomega.3c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
Phage-derived affinity peptides have become widespread thanks to their easy selection via phage display. Interactions between a target protein and its specific peptide are similar to those between antibodies and antigens. The strength of these non-covalent complexes may be described by the dissociation constant (Kd). In this paper, protein-specific peptides are exposed on the pIII protein present in the M13 bacteriophage virion with up to five copies. Therefore, one phage particle can bind from one to five ligands. Here, we discuss the dependences between phage-displayed peptides and their ligands in solution using a model system based on troponin T (TnT) binding phages. Moreover, a method of calculating Kd values from ELISA experiments was developed and is presented. The determined Kd values are in the picomolar range.
Collapse
|
6
|
A novel biosensing platform for detection of glaucoma biomarker GDF15 via an integrated BLI-ELASA strategy. Biomaterials 2023; 294:121997. [PMID: 36638554 DOI: 10.1016/j.biomaterials.2023.121997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/26/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Early discovery and prioritized intervention significantly impact its prognosis. Precise monitoring of the biomarker GDF15 contributes towards effective diagnosis and assessment of glaucoma. In this study, we demonstrate that GDF15 monitoring can also aid screening for glaucoma risk and early diagnosis. We obtained an aptamer (APT2TM) with high affinity, high specificity, and high stability for binding to both human-derived and rat-derived GDF15. Simulation results showed that the binding capabilities of APT2TM are mainly affected by the interplay between van der Waals forces and polar solvation energy, and that salt bridges and hydrogen bonds play critical roles. We then integrated an enzyme-linked aptamer sandwich assay (ELASA) into a biolayer interferometry (BLI) system to develop an automated, high-throughput, real-time monitoring BLI-ELASA biosensing platform. This platform exhibited a wide linear detection window (10-810 pg/mL range) and high sensitivity for GDF15 (detection limit of 5-6 pg/mL). Moreover, we confirmed its excellent performance when applied to GDF15 quantification in real samples from glaucomatous rats and clinical patients. We believe that this technology represents a robust, convenient, and cost-effective approach for risk screening, early diagnosis, and animal modeling evaluation of glaucoma in the near future.
Collapse
|