1
|
Meng T, Kang Q, Xu J, Zhao S, Liu T, Zhou D, Gong X, Zhang J. A hairpin reporter-driven feedback CRISPR/Cas signal amplification loop for terminal deoxynucleotidyl transferase activity detection. Talanta 2025; 293:128061. [PMID: 40187291 DOI: 10.1016/j.talanta.2025.128061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
The CRISPR/Cas12a system has become a powerful tool in biosensing because of its specific target recognition ability and highly efficient trans-cleavage activity. However, a problem faced by the CRISPR/Cas12a system when directly used for trace detection is the linear amplification efficiency of single-cycle digestion. Here, we present a novel hairpin reporter-driven CRISPR/Cas12a (HR-CRISPR) amplification system that establishes a positive feedback loop within the CRISPR/Cas12a platform to finish an exponential and sensitive signal amplification in a one-step reaction. As proof of concept, we applied this strategy to the terminal deoxynucleotidyl transferase (TdT) activity assay without pre-amplification procedure. The polyT strand extended by TdT hybridizes with crRNA, activating Cas12a, which then cleaves the FQ-hairpin reporter. The cleavage products are further elongated by reverse transcriptase using crRNA as a template, reactivating Cas12a and producing exponentially amplified fluorescence signals. This assay offers a simple yet highly sensitive approach for quantifying TdT activity, achieving a low detection limit of 4.55 × 10-6 U. Moreover, it is applicable for inhibitor screening and monitoring TdT activity in human serum samples.
Collapse
Affiliation(s)
- Tao Meng
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, PR China
| | - Qi Kang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, 300041, PR China
| | - Jiashuo Xu
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, PR China
| | - Shuang Zhao
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, PR China
| | - Tianqi Liu
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, PR China
| | - Dianming Zhou
- Department of Toxicology, Tianjin Centers for Disease Control and Prevention, NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development (Tianjin), Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin, 300011, PR China.
| | - Xiaoqun Gong
- School of Life Sciences, Faculty of Medicine, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, PR China.
| | - Jianyu Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
2
|
Li W, Liu WJ, Lu J, Ma F, Zhang CY. A Programmable Automatic Cascade Machinery for Single-Molecule Profiling of Multiple Noncoding RNAs in Breast Tissues. Anal Chem 2025; 97:4224-4232. [PMID: 39930751 DOI: 10.1021/acs.analchem.4c07017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Noncoding RNAs (ncRNAs) are identified as critical regulatory molecules in tumorigenesis and progression. Investigating the expression patterns of multiple ncRNAs in living cells and tissues may facilitate the diagnosis of cancers. Herein, we develop a programmable automatic cascade machinery for single-molecule profiling of multiple ncRNAs. This method involves two successive amplification events that can convert extremely low-abundance target ncRNAs into abundant FAM/Cy5 molecules for the generation of amplified fluorescence signals. The subsequent single-molecule detection can identify piR-36026 with the FAM signal and DSCAM-AS1 with the Cy5 signal. Due to the high efficiency of automatic cascade machinery and the high signal-to-noise ratio of single-molecule imaging, this method can achieve sensitive detection of multiple ncRNAs with a detection limit of 44.67 aM for piR-36026 and 45.71 aM for DSCAM-AS1, and it can measure endogenous piR-36026 and DSCAM-AS1 at the single-cell level. Moreover, the profiling of piR-36026 and DSCAM-AS1 in healthy tissues and breast cancer tissues demonstrates the feasibility of the proposed method in cancer diagnostics. By programming the recognition sequences of dumbbell probes, this method can be extended to measure other cancer-related ncRNAs, with great prospects in clinical applications.
Collapse
Affiliation(s)
- Wen Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Wen-Jing Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Fei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Feng Y, Yang J, He Z, Liu X, Ma C. CRISPR-Cas-based biosensors for the detection of cancer biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6634-6653. [PMID: 39258950 DOI: 10.1039/d4ay01446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Along with discovering cancer biomarkers, non-invasive detection methods have played a critical role in early cancer diagnosis and prognostic improvement. Some traditional detection methods have been used for detecting cancer biomarkers, but they are time-consuming and involve materials and human costs. With great flexibility, sensitivity and specificity, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated system provides a wide range of application prospects in this field. Herein, we introduce the background of the CRISPR-Cas (CRISPR-associated) system and comprehensively summarize the diagnosis strategies of cancer mediated by the CRISPR-Cas system, including four kinds of biochemical-based markers: nucleic acid, enzyme, tumor-specific protein and exosome. Furthermore, we discuss the challenges in implementing the CRISPR-Cas system in clinical applications.
Collapse
Affiliation(s)
- Yuxin Feng
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jinmeng Yang
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Ziping He
- School of Life Sciences, Central South University, Changsha 410013, China.
- Clinical Medicine Eight-year Program, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Xinfa Liu
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
4
|
Tong W, Han Y, Wang T, Wan J, Ma F, Zhang CY. Bidirectional Polymerization-Transcription Amplification-Encoded Dual-Color Fluorescent Biosensor for Label-Free and Primer-Free Detection of Multiple piRNAs. Anal Chem 2024. [PMID: 39250656 DOI: 10.1021/acs.analchem.4c03773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are a type of endogenous noncoding RNAs with a length of 24-31 nucleotides, and they can specifically bind with PIWI proteins to form the piRNA/PIWI complexes for regulating multiple physiological and pathological processes. Herein, we develop a bidirectional polymerization-transcription amplification-encoded dual-color fluorescent biosensor for label-free and primer-free measurements of multiple piRNAs. The designed hairpin probe contains a palindromic tail, and it can serve as the target recognition unit, polymerization primer, and transcription template. In the presence of target piRNAs, the hairpin probes are opened to expose a palindromic sequence that can trigger bidirectional polymerization and transcription reaction with the assistance of KF polymerase and T7 RNA polymerase for the production of numerous RNA aptamers. The aptamers subsequently bind with the corresponding fluorophores (DFHBI-1T/MG) to form the RNA aptamer-fluorophore complexes for the generation of enhanced fluorescence signals. This biosensor can sensitively detect piR-36026 with a limit of detection (LOD) of 82.08 aM and piR-36743 with a LOD of 44.44 aM. Moreover, it can quantify cellular piRNAs with single-cell sensitivity and distinguish cancer cells from normal cells. Furthermore, it has the capability of distinguishing the expression of piRNAs in the tissues of breast cancer patients and healthy individuals. By simply altering the target recognition site of the hairpin probe, this biosensor can be extended to detect various piRNAs, offering a powerful platform for piRNA-related clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Weijie Tong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yun Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210000, China
| | - Jiayi Wan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
5
|
Luo B, Zhou J, Zhan X, Ying B, Lan F, Wu Y. Visual and colorimetric detection of microRNA in clinical samples based on strand displacement amplification and nanozyme-mediated CRISPR-Cas12a system. Talanta 2024; 277:126310. [PMID: 38815319 DOI: 10.1016/j.talanta.2024.126310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
The sensitive and accurate detection of target microRNA is especially important for the diagnosis, staging, and treatment of hepatocellular carcinoma (HCC). Herein, we report a simple strand displacement and CRISPR-Cas12a amplification strategy with nanozymes as a signal reporter for the binary visual and colorimetric detection of the HCC related microRNA. Pt@Au nanozymes with excellent peroxidase enzyme activity were prepared and linked to magnetic beads via a single-stranded DNA (ssDNA) linker. The target microRNA was designed to trigger strand displacement amplification and release a DNA promoter to activate the CRISPR-Cas12a system. The activated CRISPR-Cas12a system efficiently cleaved the linker ssDNA and released Pt@Au nanozymes from magnetic beads to induce the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine. The strand displacement amplification converted the single microRNA input into abundant DNA promoter output, which improved the detection sensitivity by over two orders of magnitude. Through integration of strand displacement amplification and the nanozyme-mediated CRISPR-Cas12a system, limits of detection of 0.5 pM and 10 pM for miRNA-21 were achieved with colorimetric and visual readouts, respectively. The proposed strategy can achieve accurate quantitative detection of miRNA-21 in the range from 1 pM to 500 pM. The detection results for miRNA-21 using both colorimetric and visual readouts were validated in 40 clinical serum samples. Significantly, the proposed strategy achieved visual HCC diagnosis with the naked eye and could distinguish distinct Barcelona clinical HCC stages by colorimetric detection, showing good application prospects for sensitive and facile point-of-care testing for HCC.
Collapse
Affiliation(s)
- Bin Luo
- Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
6
|
Yuan H, Hu J, Ge QQ, Liu WJ, Ma F, Zhang CY. Construction of a Spatial-Confined Self-Stacking Catalytic Circuit for Rapid and Sensitive Imaging of Piwi-Interacting RNA in Living Cells. NANO LETTERS 2024; 24:8732-8740. [PMID: 38958407 DOI: 10.1021/acs.nanolett.4c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Piwi-interacting RNAs (piRNAs) are small noncoding RNAs that repress transposable elements to maintain genome integrity. The canonical catalytic hairpin assembly (CHA) circuit relies on random collisions of free-diffused reactant probes, which substantially slow down reaction efficiency and kinetics. Herein, we demonstrate the construction of a spatial-confined self-stacking catalytic circuit for rapid and sensitive imaging of piRNA in living cells based on intramolecular and intermolecular hybridization-accelerated CHA. We rationally design a 3WJ probe that not only accelerates the reaction kinetics by increasing the local concentration of reactant probes but also eliminates background signal leakage caused by cross-entanglement of preassembled probes. This strategy achieves high sensitivity and good specificity with shortened assay time. It can quantify intracellular piRNA expression at a single-cell level, discriminate piRNA expression in tissues of breast cancer patients and healthy persons, and in situ image piRNA in living cells, offering a new approach for early diagnosis and postoperative monitoring.
Collapse
Affiliation(s)
- Huimin Yuan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Jinping Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Qi-Qin Ge
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Wen-Jing Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
7
|
Park JS, Akarapipad P, Chen FE, Shao F, Mostafa H, Hsieh K, Wang TH. Digitized Kinetic Analysis Enhances Genotyping Capacity of CRISPR-Based Biosensing. ACS NANO 2024; 18:18058-18070. [PMID: 38922290 DOI: 10.1021/acsnano.4c05312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
CRISPR/Cas systems have been widely employed for nucleic acid biosensing and have been further advanced for mutation detection by virtue of the sequence specificity of crRNA. However, existing CRISPR-based genotyping methods are limited by the mismatch tolerance of Cas effectors, necessitating a comprehensive screening of crRNAs to effectively distinguish between wild-type and point-mutated sequences. To circumvent the limitation of conventional CRISPR-based genotyping, here, we introduce Single-Molecule kinetic Analysis via a Real-Time digital CRISPR/Cas12a-assisted assay (SMART-dCRISPR). SMART-dCRISPR leverages the differential kinetics of the signal increase in CRISPR/Cas systems, which is modulated by the complementarity between crRNA and the target sequence. It employs single-molecule digital measurements to discern mutations based on kinetic profiles that could otherwise be obscured by variations in the target concentrations. We applied SMART-dCRISPR to genotype notable mutations in SARS-CoV-2, point mutation (K417N) and deletion (69/70DEL), successfully distinguishing wild-type, Omicron BA.1, and Omicron BA.2 SARS-CoV-2 strains from clinical nasopharyngeal/nasal swab samples. Additionally, we introduced a portable digital real-time sensing device to streamline SMART-dCRISPR and enhance its practicality for point-of-care settings. The combination of a rapid and sensitive isothermal CRISPR-based assay with single-molecule kinetic analysis in a portable format significantly enhances the versatility of CRISPR-based nucleic acid biosensing and genotyping.
Collapse
Affiliation(s)
- Joon Soo Park
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patarajarin Akarapipad
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Heba Mostafa
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Qin Y, Huang F, Tang Q, Li J, Zhang H, Luo K, Zhou J, Wang H, Wang L, Li L, Xiao X. Inhibition of kinetic random-distribution in DNA Seesaw gates and biosensors for complete leakage prevention. Biosens Bioelectron 2024; 255:116203. [PMID: 38531225 DOI: 10.1016/j.bios.2024.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/17/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
DNA nanomaterials have a wide application prospect in biomedical field, among which DNA computers and biosensors based on Seesaw-based DNA circuit is considered to have the most development potential. However, the serious leakage of Seesaw-based DNA circuit prevented its further development and application. Moreover, the existing methods to suppress leakage can't achieve the ideal effect. Interestingly, we found a new source of leakage in Seesaw-based DNA circuit, which we think is the main reason why the previous methods to suppress leakage are not satisfactory. Therefore, based on this discovery, we use DNA triplex to design a new method to suppress the leakage of Seesaw-based DNA circuit. Its ingenious design makes it possible to perfectly suppress the leakage of all sources in Seesaw-based DNA circuit and ensure the normal output of the circuit. Based on this technology, we have constructed basic Seesaw module, AND gate, OR gate, secondary complex circuits and DNA detector. Experimental results show that we can increase the working range of the secondary Seesaw-based DNA circuit by five folds and keep its normal output signal above 90%, and we can improve the LOD of the Seesaw-based DNA detector to 1/11 of the traditional one(1.8pM). More importantly, we successfully developed a detector with adjustable detection range, which can theoretically achieve accurate detection in any concentration range. We believe the established triplex blocking strategy will greatly facilitate the most powerful Seesaw based DNA computers and biosensors, and further promote its application in biological systems.
Collapse
Affiliation(s)
- Yang Qin
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China; Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Pancreatic Surgery, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feiyang Huang
- Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Tang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiangtian Li
- Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Heao Zhang
- Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuangdi Luo
- Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiahui Zhou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hongxun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Limei Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Longjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China; Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Zhang D, Tian B, Ling Y, Ye L, Xiao M, Yuan K, Zhang X, Zheng G, Li X, Zheng J, Liao Y, Shu B, Gu B. CRISPR/Cas12a-Powered Amplification-Free RNA Diagnostics by Integrating T7 Exonuclease-Assisted Target Recycling and Split G-Quadruplex Catalytic Signal Output. Anal Chem 2024; 96:10451-10458. [PMID: 38860917 DOI: 10.1021/acs.analchem.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Rapid and sensitive RNA detection is of great value in diverse areas, ranging from biomedical research to clinical diagnostics. Existing methods for RNA detection often rely on reverse transcription (RT) and DNA amplification or involve a time-consuming procedure and poor sensitivity. Herein, we proposed a CRISPR/Cas12a-enabled amplification-free assay for rapid, specific, and sensitive RNA diagnostics. This assay, which we termed T7/G4-CRISPR, involved the use of a T7-powered nucleic acid circuit to convert a single RNA target into numerous DNA activators via toehold-mediated strand displacement reaction and T7 exonuclease-mediated target recycling amplification, followed by activating Cas12a trans-cleavage of the linker strands inhibiting split G-Quadruplex (G4) assembly, thereby inducing fluorescence attenuation proportion to the input RNA target. We first performed step-by-step validation of the entire assay process and optimized the reaction parameters. Using the optimal conditions, T7/G4-CRISPR was capable of detecting as low as 3.6 pM target RNA, obtaining ∼100-fold improvement in sensitivity compared with the most direct Cas12a assays. Meanwhile, its excellent specificity could discriminate single nucleotide variants adjacent to the toehold region and allow species-specific pathogen identification. Furthermore, we applied it for analyzing bacterial 16S rRNA in 40 clinical urine samples, exhibiting a sensitivity of 90% and a specificity of 100% when validated by RT-quantitative PCR. Therefore, we envision that T7/G4-CRISPR will serve as a promising RNA sensing approach to expand the toolbox of CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Decai Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510000, China
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Benshun Tian
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yong Ling
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Long Ye
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Meng Xiao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510000, China
| | - Kaixuan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Xinqiang Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Guansheng Zheng
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Xinying Li
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Judun Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yuhui Liao
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Bowen Shu
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Bing Gu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510000, China
| |
Collapse
|
10
|
Liu Q, Yang M, Zhang H, Ma W, Fu X, Li H, Gao S. A colorimetric tandem combination of CRISPR/Cas12a with dual functional hybridization chain reaction for ultra-sensitive detection of Mycobacterium bovis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3220-3230. [PMID: 38717230 DOI: 10.1039/d3ay02200e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Tuberculosis caused by Mycobacterium bovis poses a global infectious threat to humans and animals. Therefore, there is an urgent need to develop a sensitive, precise, and easy-to-readout strategy. Here, a novel tandem combination of a CRISPR/Cas12a system with dual HCR (denoted as CRISPR/Cas12a-D-HCR) was constructed for detecting Mycobacterium bovis. Based on the efficient trans-cleavage activity of the active CRISPR/Cas12a system, tandem-dsDNA with PAM sites was established using two flexible hairpins, providing multiple binding sites with CRISPR/Cas12a for further amplification. Furthermore, the activation of Cas12a initiated the second hybridization chain reaction (HCR), which integrated complete G-quadruplex sequences to assemble the hemin/G-quadruplex DNAzyme. With the addition of H2O2 and ABTS, a colorimetric signal readout strategy was achieved. Consequently, CRISPR/Cas12a-D-HCR achieved a satisfactory detection linear range from 20 aM to 50 fM, and the limit of detection was as low as 2.75 aM with single mismatched recognition capability, demonstrating good discrimination of different bacterial species. Notably, the practical application performance was verified via the standard addition method, with the recovery ranging from 96.0% to 105.2% and the relative standard deviations (RSD) ranging from 0.95% to 6.45%. The proposed CRISPR/Cas12a-D-HCR sensing system served as a promising application for accurate detection in food safety and agricultural fields.
Collapse
Affiliation(s)
- Qiong Liu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Mei Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - He Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Wenjie Ma
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Xin Fu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Huiqing Li
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Sainan Gao
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| |
Collapse
|
11
|
Li X, Dang Z, Tang W, Zhang H, Shao J, Jiang R, Zhang X, Huang F. Detection of Parasites in the Field: The Ever-Innovating CRISPR/Cas12a. BIOSENSORS 2024; 14:145. [PMID: 38534252 DOI: 10.3390/bios14030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The rapid and accurate identification of parasites is crucial for prompt therapeutic intervention in parasitosis and effective epidemiological surveillance. For accurate and effective clinical diagnosis, it is imperative to develop a nucleic-acid-based diagnostic tool that combines the sensitivity and specificity of nucleic acid amplification tests (NAATs) with the speed, cost-effectiveness, and convenience of isothermal amplification methods. A new nucleic acid detection method, utilizing the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) nuclease, holds promise in point-of-care testing (POCT). CRISPR/Cas12a is presently employed for the detection of Plasmodium falciparum, Toxoplasma gondii, Schistosoma haematobium, and other parasites in blood, urine, or feces. Compared to traditional assays, the CRISPR assay has demonstrated notable advantages, including comparable sensitivity and specificity, simple observation of reaction results, easy and stable transportation conditions, and low equipment dependence. However, a common issue arises as both amplification and cis-cleavage compete in one-pot assays, leading to an extended reaction time. The use of suboptimal crRNA, light-activated crRNA, and spatial separation can potentially weaken or entirely eliminate the competition between amplification and cis-cleavage. This could lead to enhanced sensitivity and reduced reaction times in one-pot assays. Nevertheless, higher costs and complex pre-test genome extraction have hindered the popularization of CRISPR/Cas12a in POCT.
Collapse
Affiliation(s)
- Xin Li
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zhisheng Dang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China (NHC), World Health Organization (WHO) Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Wenqiang Tang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850002, China
| | - Haoji Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jianwei Shao
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Rui Jiang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Fuqiang Huang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
12
|
Zhou M, Li C, Wei R, Wang H, Jia H, Yan C, Huang L. Exponential Amplification-Induced Activation of CRISPR/Cas9 for Sensitive Detection of Exosomal miRNA. Anal Chem 2024; 96:4322-4329. [PMID: 38422550 DOI: 10.1021/acs.analchem.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
As an important component of highly heterogeneous exosomes, exosomal microRNAs (miRNAs) have great potential as noninvasive biomarkers for cancer diagnosis. Therefore, a sensitive and simple sensor is the key for its clinical application. Herein, we designed an exponential amplification reaction (EXPAR) to induce the reactivation of the CRISPR-associated protein 9/small guide RNA (Cas9/sgRNA) complex, thus achieving sensitive and visual exosomal miRNAs-21 (miR-21) fluorescence sensing. In this design, we inactivated the sgRNA by hybridizing sgRNA and blocker DNA. Then, we used a trigger DNA to hybridize with miR-21 and produced a lot of activated DNA by EXPAR. Those activated DNA further hybridized with blocker DNA and released the free sgRNA to form the activated Cas9/sgRNA complex. Based on the quick cleavage of activated Cas9/sgRNA complex, the reporter DNA labeled by SYBR Green I was released from the surface of the magnetic nanoparticles (MNPs) into the supernatant, and thus was used to sensitively quantify the miRNAs concentration with a limit of detection of 3 × 103 particles/mL. In addition, this fluorescence sensor has also been successfully employed to distinguish healthy people and cancer patients by naked-eye observation of the fluorescence, thus demonstrating its great potential for accurate and point-of-care cancer diagnosis.
Collapse
Affiliation(s)
- Mengyang Zhou
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chao Li
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Rong Wei
- Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, Anhui 230000, China
| | - Haoyu Wang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Haojie Jia
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chao Yan
- School of Life Science, Anhui University, Hefei 230601, China
| | - Lin Huang
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
13
|
Liu Z, Xu J, Huang S, Dai W, Zhang W, Li L, Xiao X, Wu T. Gene point mutation information translation and detection: Leveraging single base extension and CRISPR/Cas12a. Biosens Bioelectron 2024; 247:115936. [PMID: 38142668 DOI: 10.1016/j.bios.2023.115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Gene point mutations play a significant role in the development of cancer. Therefore, developing a sensitive, specific, and universally applicable method for detecting gene point mutation is crucial for clinical diagnosis, prognosis, and cancer treatment. Recently, gene point mutation detection methods based on CRISPR/Cas12a detection have emerged. However, existing methods generally lack universality and specificity. In this study, we have developed a CRISPR/Cas12a-based method that combines improved allele-specific polymerase chain reaction and single base extension to translate the point mutation information in the target dsDNA into length information in ssDNA activators to overcome the limitations associated with PAM sequences in the CRISPR/Cas12a system. Our method achieved a detection limit of 0.002% for clinically significant EGFR T790M mutation. The CRISPR/Cas12a system we constructed demonstrates high sensitivity, specificity, and universality in detecting gene point mutations, making it a promising tool for clinical cancer screening.
Collapse
Affiliation(s)
- Zhujun Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shan Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Dai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Longjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Sun T, Wang W, Wang F, Shen W, Geng L, Zhang Y, Bi M, Gong T, Liu C, Guo C, Yao Z, Wang T, Bai J. A novel universal small-molecule detection platform based on antibody-controlled Cas12a switching. Biosens Bioelectron 2024; 246:115897. [PMID: 38064994 DOI: 10.1016/j.bios.2023.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Molecular diagnostics play an important role in illness detection, prevention, and treatment, and are vital in point-of-care test. In this investigation, a novel CRISPR/Cas12a based small-molecule detection platform was developed using Antibody-Controlled Cas12a Biosensor (ACCBOR), in which antibody would control the trans-cleavage activity of CRISPR/Cas12a. In this system, small-molecule was labeled around the PAM sites of no target sequence(NTS), and antibody would bind on the labeled molecule to prevent the combination of CRISPR/Cas12a, resulting the decrease of trans-cleavage activity. Biotin-, digoxin-, 25-hydroxyvitamin D3 (25-OH-VD3)-labeled NTS and corresponding binding protein were separately used to verify its preformance, showing great universality. Finally, one-pot detection of 25-OH-VD3 was developed, exhibiting high sensitivity and excellent specificity. The limit of detection could be 259.86 pg/mL in serum within 30 min. This assay platform also has the advantages of low cost, easy operation (one-pot method), and fast detection (∼30 min), would be a new possibilities for the highly sensitive detection of other small-molecule targets.
Collapse
Affiliation(s)
- Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Wen Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China; School of Public Health and Management, Binzhou Medical College, Shandong, 264003, PR China
| | - Feng Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Weili Shen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Lu Geng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Yiyang Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Meng Bi
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Tingting Gong
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Cong Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China
| | - Changjiang Guo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China; School of Public Health and Management, Binzhou Medical College, Shandong, 264003, PR China
| | - Zhanxin Yao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| | - Tianhui Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, PR China.
| |
Collapse
|
15
|
Liu B, Li Y, Du L, Zhang F, Liu Y, Sun J, Zhang Q, Li C, Li X, Xue Q. "One-to-many" signal-output strategy-based CRISPR/Cas12a system for sensitive label-free fluorescence detection of HBV-DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123338. [PMID: 37683439 DOI: 10.1016/j.saa.2023.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Although CRISPR/Cas12a systems significantly enhance the analytical accuracy and flexibility of fluorescent biosensors, their sensitivity is limited by traditional "one-to-one" mediation types and ineffective signal-output turnover routes. Herein, we demonstrate a "one-to-many" signal-output strategy-based CRISPR/Cas12a systems resembling a "seaweed" to enhance the sensitivity. Based on dendrimer DNA from high-dimensional hybridization chain (HCR) of three hairpin-free DNA building blocks, the 3D magnetic DNA machine was created. The HBV-DNA initiates the rolling circle amplification (RCA) reaction and produces DNA nanowires to activate the CRISPR/Cas12a system. The trans-cleavage of the "seaweed root" by CRISPR/Cas12a system left dendrimer DNA in solution, thus, adding SYBR Green I (SG I) to the high-density DNA duplexes, achieving multiple-turnover label-free fluorescence signal output demonstrated and a low LOD (1.502 pM). However, in the absence of target, the blocked RCA failed to activate the CRISPR/Cas12a system, resulting in complete separation from substrate and negligible fluorescence signals. Moreover, the mandatory RCA-based pre-amplification of the DNA activator could efficiently trigger the multiple-turnover trans-cleavage activity of Cas12a. it can cleave one single-stranded linker of "seaweed-like" DNA machine, thereby releasing massive DNA duplex-enriched dendrimer DNA with a "one-to-many" signal-output turnover. By coupling the periodically extended Cas12a activator generated by RCA with hyperbranched DNA duplex by high-dimensional HCR, compact 3D extension structures were formed, achieving high-density fluorescence distribution in focal volume, avoiding signal dilution and ensuring high enhancement. Additionally, spiked recoveries in physiological media exceeded 95%, demonstrating the potential application of such platforms in clinical diagnosis.
Collapse
Affiliation(s)
- Bingxin Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Yanli Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Lei Du
- Shandong Public Health Clinical Center, Shandong University, Jinan 250010, P. R. China
| | - Fengqi Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Yeling Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Jiuming Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Qi Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Avenue, Longgang District, Shenzhen 518172, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China.
| | - Qingwang Xue
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, PR China.
| |
Collapse
|