1
|
Liu J, Liu K, Liu X, Zhu X, Liu X, Alwarappan S. Self-Powered Biosensor Driven by a Hybrid Biofuel Cell with CuCoP-Polyoxometallate Composite as Both Cathode Catalyst and Sensing Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500451. [PMID: 40318000 DOI: 10.1002/smll.202500451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/27/2025] [Indexed: 05/07/2025]
Abstract
Abnormal concentrations of hydrogen peroxide (H2O2) are toxic to living cells and may induce a number of diseases. Herein, a self-powered miniaturized biosensor (SPB) based on an enzyme biofuel cell is constructed to monitor H2O2. This SPB significantly minimized the use of bioenzymes that often experience instability and lead to the high cost of biosensors. More specifically, a composite of polydopamine (PDA)-gold nanoparticles (AuNPs) is prepared as an anodic catalyst scaffold to immobilize glucose oxidase to efficiently catalyze the oxidation of glucose (fuel) due to its excellent biocompatibility and electrical conductivity. Upon the incorporation of CuCoP with a polyoxometalate H3PW12O40 (PW12), a nanoenzyme of CuCoP-PW12 composite is realized as a non-biological cathodic catalyst to replace the conventional cathode enzymes for the reduction of H2O2. The abundant catalytic active sites on CuCoP-PW12 and high electron transfer rate of PW12 result in a high catalytic activity toward H2O2 reduction at the cathode. Owing to a good synergy between the bioanode and abiotic-cathode, the prepared SPB exhibits two linear ranges (2-20 and 20-50 µm) and a low detection limit (0.0589 µm) toward H2O2 detection. Upon the use of H2O2 as a model analyte, this work demonstrates that SPB can be effectively applied in biomedical sensing.
Collapse
Affiliation(s)
- Jiaojiao Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Karen Liu
- Sheldon College, Sheldon, Queensland, 4157, Australia
| | - Xiaoqiang Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Xinyao Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Kandi, Karaikudi, Tamilnadu, 630003, India
| |
Collapse
|
2
|
Niu J, Jin X, Wang X, Ren Z, Li B, Liu X, Wong DK. An Enzyme-Encapsulated MOF@MOF Nanocomposite for Detecting H 2O 2 Derived From Superoxide Anion Released by Mitochondria of HeLa Cells. SMALL METHODS 2025; 9:e2401070. [PMID: 39279552 PMCID: PMC11926491 DOI: 10.1002/smtd.202401070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Indexed: 09/18/2024]
Abstract
In this work, a horseradish peroxidase (HRP)-encapsulated metal organic framework (MOF)@MOF nanocomposite is developed for detecting H2O2 converted by dismutation of superoxide anions released from live HeLa mitochondria. Initially, an HRP-polyacrylic acid cluster is incorporated on a mesoporous, peroxidase-like Cu/Co-1,4-benzenedicarboxylate (BDC) MOF platform to avoid structural change and deactivation of HRP through its interactions with MOF metal ions. Additionally, a Cu/Co-BDC(HRP)@1,3,5-benzenetricarboxyate (BTC) core-shell MOF/MOF structure, also with peroxide-like properties, serves as a protective matrix for HRP. Then, ultrathin porous carbon shells (UPCS) are adopted to improve the electrical conductivity of the MOF@MOF. The Cu/Co-BDC(HRP)@BTC|UPCS sensing platform exhibits two linear ranges of 0.05-1 µM and 1-1000 µM with a sensitivity of 172 mA mM-1 cm-2 and 1.63 mA mM-1 cm-2, respectively. A limit of detection of 0.057 µM, good selectivity and stability over 35 days for H2O2 detection are also achieved. After treating the mitochondrial complex with specific inhibitors, amperometric results at the sensing platform confirmed complex I and III within mitochondria as the main electron leakage sites in the electron transfer chains. Therefore, this sensing platform provides a tool that may aid in predicting and even developing treatments for some oxidative stress diseases caused by mitochondrial abnormalities.
Collapse
Affiliation(s)
- Jiaqi Niu
- Henan International Joint Laboratory of Medicinal Plants UtilizationCollege of Chemistry and Molecular SciencesHenan UniversityZhengzhouHenan450046P. R. China
| | - Xiaoxin Jin
- Henan International Joint Laboratory of Medicinal Plants UtilizationCollege of Chemistry and Molecular SciencesHenan UniversityZhengzhouHenan450046P. R. China
| | - Xingqi Wang
- Henan International Joint Laboratory of Medicinal Plants UtilizationCollege of Chemistry and Molecular SciencesHenan UniversityZhengzhouHenan450046P. R. China
| | - Zhenhua Ren
- Henan International Joint Laboratory of Medicinal Plants UtilizationCollege of Chemistry and Molecular SciencesHenan UniversityZhengzhouHenan450046P. R. China
| | - Bingjie Li
- Henan International Joint Laboratory of Medicinal Plants UtilizationCollege of Chemistry and Molecular SciencesHenan UniversityZhengzhouHenan450046P. R. China
| | - Xiaoqiang Liu
- Henan International Joint Laboratory of Medicinal Plants UtilizationCollege of Chemistry and Molecular SciencesHenan UniversityZhengzhouHenan450046P. R. China
| | - Danny K.Y. Wong
- Department of Applied BioSciencesMacquarie UniversitySydneyNSW2109Australia
| |
Collapse
|
3
|
Geng C, Zhang X, Zhu X, Li B, Ren Z, Liu X, Travas-Sejdic J, Liu X. Fabrication of polyoxometalate dispersed cobalt oxide nanowires for electrochemically monitoring superoxide radicals from Hela cell mitochondria. Talanta 2025; 282:127037. [PMID: 39427407 DOI: 10.1016/j.talanta.2024.127037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/08/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
An ultrasensitive electrochemical sensor is constructed by electrostatically adsorbing negatively charged hourglass-shape Cu-Polyoxometalate (POM) onto a positively charged CoO nanowires modified carbon cloth. The petaloid CoO nanowires have a large specific surface area that can well disperse open-structured Cu-POM to form Cu-POM@CoONWs@CC, which can maximumly expose catalytic active centers (Co2+ and Cu2+) and accelerate mass/charge transfer. In addition to the above advantages, the excellent electron exchange ability of Cu-POM and good conductivity of CoONWs@CC endow the sensor with good detection capability to H2O2 including a linear detection range of 0.05-1.4 μA μM-1, a low detection limit of 0.022 μM, high sensitivity of 110.48 μA μM-1, good selectivity and long-term stability. Due to the fast transformation of superoxide anion (O2∙-) to H2O2, the sensor can indirectly monitor the electron leakage resulting in the formation of O2∙- via detecting H2O2. Afterwards, Hela cell mitochondria were extracted from the living cells that cultured with different mitochondrial inhibitors and the release of O2∙- from the corresponding mitochondrial complexes was monitored by the sensor. Through comparing the current signals, we determined that complex I is probably the main electron leakage site. This work could provide meaningful information for the diagnosis of certain oxidative stress diseases.
Collapse
Affiliation(s)
- Chaoyao Geng
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Xiujuan Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Xinyao Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Bingjie Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Zhenhua Ren
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China
| | - Jadranka Travas-Sejdic
- Centre for Innovative Materials for Health, School of Chemical Sciences, The University of Auckland - Waipapa Taumata Rau, 23 Symonds Street, Auckland, 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Kelburn Parade, Wellington, 6140, New Zealand.
| | - Xiaoqiang Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Xu Y, Huang W, Duan H, Xiao F. Bimetal-organic framework-integrated electrochemical sensor for on-chip detection of H 2S and H 2O 2 in cancer tissues. Biosens Bioelectron 2024; 260:116463. [PMID: 38838574 DOI: 10.1016/j.bios.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Studies on the interaction between hydrogen sulfide (H2S) and hydrogen peroxide (H2O2) in redox signaling motivate the development of a sensitive sensing platform for their discriminatory and dynamic detection. Herein, we present a fully integrated microfluidic on-chip electrochemical sensor for the online and simultaneous monitoring of H2S and H2O2 secreted by different biological samples. The sensor utilizes a cicada-wing-like RuCu bimetal-organic framework with uniform nanorods architecture that grows on a flexible carbon fiber microelectrode. Owing to the optimized electronic structural merits and satisfactory electrocatalytic properties, the resultant microelectrode shows remarkable electrochemical sensing performance for sensitive and selective detection of H2S and H2O2 at the same time. The result exhibits low detection limits of 0.5 μM for H2S and 0.1 μM for H2O2, with high sensitivities of 61.93 μA cm-2 mM-1 for H2S, and 75.96 μA cm-2 mM-1 for H2O2. The integration of this biocompatible microelectrode into a custom wireless microfluidic chip enables the construction of a miniature intelligent system for in situ monitoring of H2S and H2O2 released from different living cells to differentiate between cancerous and normal cells. When applied for real-time tracking of H2S and H2O2 secreted by colorectal cancer tissues, it allows the evaluation of their chemotherapeutic efficacy. These findings hold paramount implications for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Yun Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Wei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore.
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China.
| |
Collapse
|
5
|
Theyagarajan K, Lakshmi BA, Kim YJ. Enzymeless detection and real-time analysis of intracellular hydrogen peroxide released from cancer cells using gold nanoparticles embedded bimetallic metal organic framework. Colloids Surf B Biointerfaces 2024; 245:114209. [PMID: 39255750 DOI: 10.1016/j.colsurfb.2024.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Abnormal cell growth and proliferation can lead to tumor formation and cancer, one of the most fatal diseases worldwide. Hydrogen peroxide (H2O2) has emerged as a cancer biomarker, with its concentration being crucial for distinguishing cancer cells from normal cells. Herein, a cost-effective and enzymeless electrochemical sensing system for the monitoring of intracellular H2O2 has been constructed. The sensor is fabricated using gold nanoparticles embedded bimetallic copper/nickel metal organic framework (Au-CNMOF) immobilized reduced graphene oxide (RGO) modified screen printed electrode (SPE). The synthesized materials were characterized and confirmed by XRD, FTIR, SEM with EDS, and electrochemical analysis. The fabricated sensor displayed a redox peak at a formal potential (E°) of -0.155 V, corresponding to CuII/I redox couple of CNMOF in 0.1 M phosphate buffer. Electrochemical investigations revealed that the proposed sensor has a large electrochemical active surface area (1.113 cm2) and a higher surface roughness (5.67). Additionally, the sensor demonstrated excellent electrocatalytic activity towards H2O2 at -0.3 V, over a wide linear detection range from 28.5 µM to 4.564 mM with a limit of detection of 4.2 µM (S/N=3). Furthermore, the proposed sensor exhibits excellent stability, repeatability, reproducibility, and good anti-interference activity. Ultimately, the sensor was validated through real-time analysis of H2O2 released from cancer cells, successfully quantifying the released H2O2. The developed sensor holds great promise for real-time H2O2 analysis, with potential applications in clinical diagnostics, biological research and environmental monitoring.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea; Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Buddolla Anantha Lakshmi
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea; Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea; Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
6
|
Cui Q, Zhou M, Wen Q, Li L, Xiong C, Adeli M, Cheng L, Xu X, Ren X, Cheng C. Pyridine-Bridged Covalent Organic Frameworks with Adjustable Band Gaps as Intelligent Artificial Enzymes for Light-Augmented Biocatalytic Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401673. [PMID: 38721983 DOI: 10.1002/smll.202401673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Indexed: 10/01/2024]
Abstract
One of the biggest challenges in biotechnology and medical diagnostics is finding extremely sensitive and adaptable biosensors. Since metal-based enzyme-mimetic biocatalysts may lead to biosafety concerns on accumulative toxicity, it is essential to synthesize metal-free enzyme-mimics with optimal biocatalytic activity and superior selectivity. Here, the pyridine-bridged covalent organic frameworks (COFs) with specific oxidase-like (OXD-like) activities as intelligent artificial enzymes for light-augmented biocatalytic sensing of biomarkers are disclosed. Because of the adjustable bandgaps of pyridine structures on the photocatalytic properties of the pristine COF structures, the pyridine-bridged COF exhibit efficient, selective, and light-responsive OXD-like biocatalytic activity. Moreover, the pyridine-bridged COF structures show tunable and light-augmented biocatalytic detection capabilities, which outperform the recently reported state-of-the-art OXD-mimics regarding biosensing efficiency. Notably, the pyridine-bridged COF exhibits efficient and multifaceted diagnostic activity, including the extremely low limit of detection (LOD), which enables visual assays for abundant reducibility biomarkers. It is believed that this design will offer unique metal-free biocatalysts for high-sensitive and low-cost colorimetric detection and also provide new insights to create highly efficient enzyme-like COF materials via linkage-modulation strategies for future biocatalytic applications.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinlong Wen
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Lin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Xiong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, 68137-17133, Iran
| | - Liang Cheng
- Department of Materials Science and Engineering, The Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Xiaohui Xu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
7
|
Cui Q, Gao Y, Wen Q, Wang T, Ren X, Cheng L, Bai M, Cheng C. Tunable Structured 2D Nanobiocatalysts: Synthesis, Catalytic Properties and New Horizons in Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311584. [PMID: 38566551 DOI: 10.1002/smll.202311584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Indexed: 04/04/2024]
Abstract
2D materials have offered essential contributions to boosting biocatalytic efficiency in diverse biomedical applications due to the intrinsic enzyme-mimetic activity and massive specific surface area for loading metal catalytic centers. Since the difficulty of high-quality synthesis, the varied structure, and the tough choice of efficient surface loading sites with catalytic properties, the artificial building of 2D nanobiocatalysts still faces great challenges. Here, in this review, a timely and comprehensive summarization of the latest progress and future trends in the design and biotherapeutic applications of 2D nanobiocatalysts is provided, which is essential for their development. First, an overview of the synthesis-structure-fundamentals and structure-property relationships of 2D nanobiocatalysts, both metal-free and metal-based is provided. After that, the effective design of the active sites of nanobiocatalysts is discussed. Then, the progress of their applied research in recent years, including biomedical analysis, biomedical therapeutics, pharmacokinetics, and toxicology is systematically highlighted. Finally, future research directions of 2D nanobiocatalysts are prospected. Overall, this review to provide cutting-edge and multidisciplinary guidance for accelerating future developments and biomedical applications of 2D nanobiocatalysts is expected.
Collapse
Affiliation(s)
- Qiqi Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qinlong Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liang Cheng
- Department of Materials Science and Engineering, Center for Oral Diseases, The Macau University of Science and Technology, Taipa, Macau, China
| | - Mingru Bai
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases & National Clinical Research, Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Koo KM, Kim CD, Kim TH. Recent Advances in Electrochemical Detection of Cell Energy Metabolism. BIOSENSORS 2024; 14:46. [PMID: 38248422 PMCID: PMC10813075 DOI: 10.3390/bios14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Cell energy metabolism is a complex and multifaceted process by which some of the most important nutrients, particularly glucose and other sugars, are transformed into energy. This complexity is a result of dynamic interactions between multiple components, including ions, metabolic intermediates, and products that arise from biochemical reactions, such as glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the two main metabolic pathways that provide adenosine triphosphate (ATP), the main source of chemical energy driving various physiological activities. Impaired cell energy metabolism and perturbations or dysfunctions in associated metabolites are frequently implicated in numerous diseases, such as diabetes, cancer, and neurodegenerative and cardiovascular disorders. As a result, altered metabolites hold value as potential disease biomarkers. Electrochemical biosensors are attractive devices for the early diagnosis of many diseases and disorders based on biomarkers due to their advantages of efficiency, simplicity, low cost, high sensitivity, and high selectivity in the detection of anomalies in cellular energy metabolism, including key metabolites involved in glycolysis and mitochondrial processes, such as glucose, lactate, nicotinamide adenine dinucleotide (NADH), reactive oxygen species (ROS), glutamate, and ATP, both in vivo and in vitro. This paper offers a detailed examination of electrochemical biosensors for the detection of glycolytic and mitochondrial metabolites, along with their many applications in cell chips and wearable sensors.
Collapse
Affiliation(s)
| | | | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea; (K.-M.K.); (C.-D.K.)
| |
Collapse
|