1
|
Lan X, Johnston E, Ning T, Chen G, Haglund L, Li J. Immunomodulatory bioadhesive technologies. Biomaterials 2025; 321:123274. [PMID: 40156979 DOI: 10.1016/j.biomaterials.2025.123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Bioadhesives have found significant use in medicine and engineering, particularly for wound care, tissue engineering, and surgical applications. Compared to traditional wound closure methods such as sutures and staples, bioadhesives offer advantages, including reduced tissue damage, enhanced healing, and ease of implementation. Recent progress highlights the synergy of bioadhesives and immunoengineering strategies, leading to immunomodulatory bioadhesives capable of modulating immune responses at local sites where bioadhesives are applied. They foster favorable therapeutic outcomes such as reduced inflammation in wounds and implants or enhanced local immune responses to improve cancer therapy efficacy. The dual functionalities of bioadhesion and immunomodulation benefit wound management, tissue regeneration, implantable medical devices, and post-surgical cancer management. This review delves into the interplay between bioadhesion and immunomodulation, highlighting the mechanobiological coupling involved. Key areas of focus include the modulation of immune responses through chemical and physical strategies, as well as the application of these bioadhesives in wound healing and cancer treatment. Discussed are remaining challenges such as achieving long-term stability and effectiveness, necessitating further research to fully harness the clinical potential of immunomodulatory bioadhesives.
Collapse
Affiliation(s)
- Xiaoyi Lan
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Evan Johnston
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada
| | - Tianqin Ning
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, 1160 Pine Ave W, Montreal, Quebec, H3A 1A3, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Shriners Hospital for Children, 1003 Decarie Blvd, Montreal, Quebec, H4A 0A9, Canada.
| | - Jianyu Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A3, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, Quebec, H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 3775 Rue University, Montreal, Quebec, H3A 2B4, Canada.
| |
Collapse
|
2
|
Lee S, Lee GH, Kang I, Jeon W, Kim S, Ahn Y, Kim CY, Kwon DA, Dickey MD, Park S, Park S, Jeong JW. Phase-change metal ink with pH-controlled chemical sintering for versatile and scalable fabrication of variable stiffness electronics. SCIENCE ADVANCES 2025; 11:eadv4921. [PMID: 40446038 PMCID: PMC12124352 DOI: 10.1126/sciadv.adv4921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/25/2025] [Indexed: 06/02/2025]
Abstract
Variable stiffness electronics represent the forefront of adaptive technology, integrating rigid and soft electronics in a single system through dynamic mechanical modulation. While gallium's high modulus tuning ratio and rapid phase transitions make it ideal for transformative electronic systems (TES), its liquid-state instability, high surface tension, and unintended phase transitions during processing pose substantial challenges. Here, we introduce STiffness-Adjustable temperature-Responsive ink (STAR ink), a chemically sinterable gallium composite electronic ink designed to overcome these obstacles. STAR ink enables high-resolution (~50 micrometers) circuit patterning, large-scale batch fabrication, and three-dimensional structure coating at room temperature. Through pH-controlled chemical sintering, STAR ink-based TES exhibits exceptional mechanical tunability (tuning ratio: 1465) and electrical conductivity (2.27 × 106 siemens per meter). Demonstrated applications-from multilayered variable stiffness printed circuit boards (PCBs) matching standard PCBs' complexity to body-temperature responsive neural probe-underscore STAR ink's potential for reconfigurable electronics across consumer electronics and biomedical devices.
Collapse
Affiliation(s)
- Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Gun-Hee Lee
- Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
- Departments of Cogno-Mechatronics Engineering and Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Inho Kang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woojin Jeon
- Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Semin Kim
- Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yejin Ahn
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Information and Electronics Research Institute, Daejeon 34141, Republic of Korea
| | - Do A Kwon
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Michael D. Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, NC 27606, USA
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Daejeon 34141, Republic of Korea
| | - Seongjun Park
- Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- School of Transdisciplinary Innovations, Seoul National University, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Graduate School of Semiconductor Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Li J, Mo D, Hu J, Wang S, Gong J, Huang Y, Li Z, Yuan Z, Xu M. PEDOT:PSS-based bioelectronics for brain monitoring and modulation. MICROSYSTEMS & NANOENGINEERING 2025; 11:87. [PMID: 40360495 PMCID: PMC12075682 DOI: 10.1038/s41378-025-00948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025]
Abstract
The growing demand for advanced neural interfaces that enable precise brain monitoring and modulation has catalyzed significant research into flexible, biocompatible, and highly conductive materials. PEDOT:PSS-based bioelectronic materials exhibit high conductivity, mechanical flexibility, and biocompatibility, making them particularly suitable for integration into neural devices for brain science research. These materials facilitate high-resolution neural activity monitoring and provide precise electrical stimulation across diverse modalities. This review comprehensively examines recent advances in the development of PEDOT:PSS-based bioelectrodes for brain monitoring and modulation, with a focus on strategies to enhance their conductivity, biocompatibility, and long-term stability. Furthermore, it highlights the integration of multifunctional neural interfaces that enable synchronous stimulation-recording architectures, hybrid electro-optical stimulation modalities, and multimodal brain activity monitoring. These integrations enable fundamentally advancing the precision and clinical translatability of brain-computer interfaces. By addressing critical challenges related to efficacy, integration, safety, and clinical translation, this review identifies key opportunities for advancing next-generation neural devices. The insights presented are vital for guiding future research directions in the field and fostering the development of cutting-edge bioelectronic technologies for neuroscience and clinical applications.
Collapse
Affiliation(s)
- Jing Li
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Daize Mo
- School of Applied Physics and Materials, Wuyi University, Jiangmen, 529020, P. R. China
| | - Jinyuan Hu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Shichao Wang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Jun Gong
- Central Laboratory of YunFu People's Hospital, Yunfu, Guangdong, China
| | - Yujing Huang
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, SAR 999078, China
| | - Zheng Li
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, SAR 999078, China
| | - Mengze Xu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China.
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, SAR 999078, China.
- Department of Psychology, Faculty of Arts and Sciences, Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China.
| |
Collapse
|
4
|
Tu M, Zhao T, Guo H, Zhang C, Liu M, Zhang Z, Wang B, Yu H. Functional Hydrogels for Implantable Bioelectronic Devices. LUMINESCENCE 2025; 40:e70148. [PMID: 40099618 DOI: 10.1002/bio.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
In recent years, with the rapid development of flexible electronics, implantable electronic devices have received increasing attention, and they provide new solutions for medical diagnosis and treatment. To ensure the long-term and stable operation of electronic devices in the internal environment, materials with conductivity, flexibility, biocompatibility, and other properties are in high demand. Hydrogels are polymers with three-dimensional network structures that not only have physical and chemical properties similar to those of biological tissues but can be also modulated by introducing functional groups to regulate the conductivity, adhesion, self-healing, and other functions. Therefore, hydrogel-based implantable bioelectronic devices are considered to be a candidate development direction in the future of the biomedical field. Here, this paper reviews the research progress in the molecular design and performance modulation of functionalized hydrogels based on four key properties of hydrogels: conductivity, self-healing, adhesion, and toughness. The latest progress in the use of functionalized hydrogels in implantable bioelectronic device applications is summarized below. Finally, discussions are given on the challenges and opportunities of hydrogels for implantable bioelectronic devices.
Collapse
Affiliation(s)
- Mingxi Tu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianming Zhao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Hongji Guo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Chengzhi Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Meihan Liu
- School of Electrical & Control Engineering, Shenyang Jianzhu University, Shenyang, China
| | - Zeyu Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Bo Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
5
|
Wang S, Song X, Xu J, Wang J, Yu L. Flexible silicon for high-performance photovoltaics, photodetectors and bio-interfaced electronics. MATERIALS HORIZONS 2025; 12:1106-1132. [PMID: 39688131 DOI: 10.1039/d4mh01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Silicon (Si) is currently the most mature and reliable semiconductor material in the industry, playing a pivotal role in the development of modern microelectronics, renewable energy, and bio-electronic technologies. In recent years, widespread research attention has been devoted to the development of advanced flexible electronics, photovoltaics, and bio-interfaced sensors/detectors, boosting their emerging applications in distributed energy sources, healthcare, environmental monitoring, and brain-computer interfaces (BCIs). Despite the rigid and brittle nature of Si, a series of new fabrication technologies and integration strategies have been developed to enable a wide range of c-Si-based high-performance flexible photovoltaics and electronics, which were previously only achievable with intrinsically soft organic and polymer semiconductors. More interestingly, programmable geometric engineering of crystalline silicon (c-Si) units and logic circuits has been explored to enable the fabrication of various highly flexible nanoprobes for intracellular sensing and the deployment of soft BCI matrices to record and understand brain neural activities for the development of advanced neuroprosthetics. This review will systematically examine the latest progress in the fabrication of Si-based flexible solar cells, photodetectors, and biological probing interfaces over the past decade, identifying key design principles, mechanisms, and technological milestones achieved through novel geometry, morphology, and composition control. These advancements, when combined, will not only promote the practical applications of sustainable energy and wearable electronics but also spur new breakthroughs in emerging human-machine interfaces (HMIs) and artificial intelligence applications, which hold significant implications for understanding neural activities, implementing more efficient artificial Intelligence (AI) algorithms, and developing new therapies or treatments. Finally, we will summarize and provide an outlook on the current challenges and future opportunities of Si-based electronics, flexible optoelectronics, and bio-sensing.
Collapse
Affiliation(s)
- Shuyi Wang
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| | - Xiaopan Song
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| | - Jun Xu
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
- School of Microelectronics and School of Integrated Circuits, Nantong University, 226019, Nantong, P. R. China.
| | - Junzhuan Wang
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| | - Linwei Yu
- School of Electronics Science and Engineering, Nanjing University, 210023 Nanjing, P. R. China.
| |
Collapse
|
6
|
Robinson KJ, Voelcker NH, Thissen H. Clinical challenges and opportunities related to the biological responses experienced by indwelling and implantable bioelectronic medical devices. Acta Biomater 2025; 193:49-64. [PMID: 39675496 DOI: 10.1016/j.actbio.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Implantable electrodes have been utilized for decades to stimulate, sense, or monitor a broad range of biological processes, with examples ranging from glucose monitoring devices to cochlear implants. While the underlying science related to the application of electrodes is a mature field, preclinical and clinical studies have demonstrated that there are still significant challenges in vivo associated with a lack of control over tissue-material interfacial interactions, especially over longer time frames. Herein we discuss the current challenges and opportunities for implantable electrodes and the associated bioelectronic interfaces across the clinical landscape with a focus on emerging technologies and the obstacles of biofouling, microbial colonization, and the foreign body response. Overcoming these challenges is predicted to open the door for a new generation of implantable medical devices and significant associated clinical impact. STATEMENT OF SIGNIFICANCE: Implantable electrodes have been utilised for decades to stimulate, sense, or monitor a broad range of biological processes, with examples ranging from glucose monitoring devices to cochlear implants. Next-generation bioelectronic implantable medical devices promise an explosion of new applications that have until this point in time been impossible to achieve. However, there are several persistent biological challenges hindering the realisation of these new applications. We present a clinical perspective on how these biological challenges have shaped the device market and clinical trial landscape. Specifically, we present statistical breakdowns of current device applications and discuss biofouling, the foreign body response, and microbial colonisation as the main factors that need to be addressed before a new generation of devices can be explored.
Collapse
Affiliation(s)
- Kye J Robinson
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia.
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| |
Collapse
|
7
|
Handschuh-Wang S, Wang T, Gancarz T, Liu X, Wang B, He B, Dickey MD, Wimmer GW, Stadler FJ. The Liquid Metal Age: A Transition From Hg to Ga. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408466. [PMID: 39295483 DOI: 10.1002/adma.202408466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/25/2024] [Indexed: 09/21/2024]
Abstract
This review offers an illuminating journey through the historical evolution and modern-day applications of liquid metals, presenting a comprehensive view of their significance in diverse fields. Tracing the trajectory from mercury applications to contemporary innovations, the paper explores their pivotal role in industry and research. The analysis spans electrical switches, mechanical applications, electrodes, chemical synthesis, energy storage, thermal transport, electronics, and biomedicine. Each section examines the intricacies of liquid metal integration, elucidating their contributions to technological advancements and societal progress. Moreover, the review critically appraises the challenges and prospects inherent in liquid metal applications, addressing issues of recycling, corrosion management, device stability, economic feasibility, translational hurdles, and market dynamics. By delving into these complexities, the paper advances scholarly understanding and offers actionable insights for researchers, engineers, and policymakers. It aims to catalyze innovation, foster interdisciplinary collaboration, and promote liquid metal-enabled solutions for societal needs. Through its comprehensive analysis and forward-looking perspective, this review serves as a guide for navigating the landscape of liquid metal applications, bridging historical legacies with contemporary challenges, and highlighting the transformative potential of liquid metals in shaping future technologies.
Collapse
Affiliation(s)
- Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Tao Wang
- Advanced Materials Group Co., LTD, Fusionopolis Link #06-07, Nexus One-North, Singapore, 138543, Singapore
| | - Tomasz Gancarz
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, Krakow, 30-059, Poland
| | - Xiaorui Liu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Bin He
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC, 27695, USA
| | - Georg W Wimmer
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Florian J Stadler
- Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Zhu Z, Yan Z, Ni S, Yang H, Xie Y, Wang X, Zou D, Tao C, Jiang W, Jiang J, Su Z, Xia Y, Zhou Z, Sun L, Fan C, Tao TH, Wei X, Qian Y, Liu K. Tissue/Organ Adaptable Bioelectronic Silk-Based Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405892. [PMID: 39036824 DOI: 10.1002/adma.202405892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Implantable bioelectronic devices, designed for both monitoring and modulating living organisms, require functional and biological adaptability. Pure silk is innovatively employed, which is known for its excellent biocompatibility, to engineer water-triggered, geometrically reconfigurable membranes, on which functions can be integrated by Micro Electro Mechanical System (MEMS) techniques and specially functionalized silk. These devices can undergo programmed shape deformations within 10 min once triggered by water, and thus establishing stable bioelectronic interfaces with natively fitted geometries. As a testament to the applicability of this approach, a twining peripheral nerve electrode is designed, fabricated, and rigorously tested, demonstrating its efficacy in nerve modulation while ensuring biocompatibility for successful implantation.
Collapse
Affiliation(s)
- Ziyi Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Siyuan Ni
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Huiran Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
| | - Yating Xie
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 200120, China
| | - Xueying Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Dujuan Zou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 1455 Pingcheng Rd., Shanghai, 201800, China
| | - Chen Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 200120, China
| | - Wanqi Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Jianbo Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Zexi Su
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 1455 Pingcheng Rd., Shanghai, 201800, China
| | - Yuxin Xia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Liuyang Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 1455 Pingcheng Rd., Shanghai, 201800, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
- ShanghaiTech University, 393 Middle Huaxia Rd., Shanghai, 200120, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 1455 Pingcheng Rd., Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, 519031, China
- Tianqiao and Chrissy Chen Institute for Translational Research, Shanghai, 200040, China
| | - Xiaoling Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Rd., Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, 1 East Yanqi Lake Rd., Beijing, 101408, China
| |
Collapse
|