1
|
Mandal AK, Parida S, Behera AK, Adhikary SP, Lukatkin AA, Lukatkin AS, Jena M. Seaweed in the Diet as a Source of Bioactive Metabolites and a Potential Natural Immunity Booster: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:367. [PMID: 40143143 PMCID: PMC11945151 DOI: 10.3390/ph18030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Seaweed plays an essential role in the survival of marine life, provides habitats and helps in nutrient recycling. It is rich in valuable nutritious compounds such as pigments, proteins, polysaccharides, minerals, vitamins, omega-rich oils, secondary metabolites, fibers and sterols. Pigments like fucoxanthin and astaxanthin and polysaccharides like laminarin, fucoidan, galactan and ulvan possess immune-modulatory and immune-enhancing properties. Moreover, they show antioxidative, antidiabetic, anticancer, anti-inflammatory, antiproliferative, anti-obesity, antimicrobial, anticoagulation and anti-aging properties and can prevent diseases such as Alzheimer's and Parkinson's and cardiovascular diseases. Though seaweed is frequently consumed by Eastern Asian countries like China, Japan, and Korea and has gained the attention of Western countries in recent years due to its nutritional properties, its consumption on a global scale is very limited because of a lack of awareness. Thus, to incorporate seaweed into the global diet and to make it familiar as a functional food, issues such as large-scale cultivation, processing, consumer acceptance and the development of seaweed-based food products need to be addressed. This review is intended to give a brief overview of the present status of seaweed, its nutritional value and its bioactive metabolites as functional foods for human health and diseases owing to its immunity-boosting potential. Further, seaweed as a source of sustainable food and its prospects along with its issues are discussed in this review.
Collapse
Affiliation(s)
- Amiya Kumar Mandal
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| | - Sudhamayee Parida
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| | - Akshaya Kumar Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| | - Siba Prasad Adhikary
- Department of Biotechnology, Institute of Science, Visva-Bharati, Santiniketan 731235, West Bengal, India;
| | - Andrey A. Lukatkin
- Department of Cytology, Histology and Embryology with Courses in Medical Biology and Molecular Cell Biology, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 68, Saransk 430005, Russia;
| | | | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India; (A.K.M.); (S.P.); (A.K.B.)
| |
Collapse
|
2
|
Shannon E, Hayes M. Alaria esculenta, Ulva lactuca, and Palmaria palmata as Potential Functional Food Ingredients for the Management of Metabolic Syndrome. Foods 2025; 14:284. [PMID: 39856950 PMCID: PMC11764973 DOI: 10.3390/foods14020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Hypertension, type 2 diabetes (T2D), and obesity raise an individual's risk of suffering from diseases associated with metabolic syndrome (MS). In humans, enzymes that play a role in the prevention and development of MS include angiotensin converting enzyme (ACE-1) associated with hypertension, α-amylase associated with T2D, and lipase linked to the development of obesity. Seaweeds are a rich source of bioactives consisting of proteins/peptides, polysaccharides, and lipids. This study examined the potential of seaweed-derived bioactives from Alaria esculenta, Ulva lactuca, and Palmaria palmata as inhibitors of ACE-1, α-amylase, and lipase. In vitro enzyme inhibitory assays were used to quantify the bioactivity of the seaweed extracts and compare their half-maximal inhibitory (IC50) values to recognised positive control enzyme inhibitory drugs captopril© (an ACE-1 inhibitor), acarbose (an α-amylase inhibitor), and orlistat (a lipase inhibitor). Three seaweed extracts displayed enzyme inhibitory activities equal to, or more effective than, the reference positive control drugs. These were P. palmata peptides (ACE-1 IC50 94.29 ± 3.07 µg/mL, vs. captopril© 91.83 ± 2.68 µg/mL); A. esculenta polyphenol extract (α-amylase IC50 147.04 ± 9.72 µg/mL vs. acarbose 185.67 ± 12.48 µg/mL, and lipase IC50 106.21 ± 6.53 µg/mL vs. orlistat 139.74 ± 9.33 µg/mL); and U. lactuca polysaccharide extract (α-amylase IC50 168.06 ± 10.53 µg/mL vs. acarbose 185.67 ± 12.48 µg/mL). Proximate analysis also revealed that all three seaweeds were a good source of protein, fibre, and polyunsaturated essential fatty acids (PUFAs). These findings highlight the potential of these seaweeds in the management of diseases associated with MS and as foods.
Collapse
Affiliation(s)
| | - Maria Hayes
- Food BioSciences, Teagasc Food Research Centre, Dunsinea Lane, Ashtown, D15 DY05 Dublin, Ireland;
| |
Collapse
|
3
|
Rahman MS, Alam MB, Naznin M, Madina MH, Rafiquzzaman SM. Glutamic-Alanine Rich Glycoprotein from Undaria pinnatifida: A Promising Natural Anti-Inflammatory Agent. Mar Drugs 2024; 22:383. [PMID: 39330264 PMCID: PMC11433183 DOI: 10.3390/md22090383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
This study aimed to assess the anti-inflammatory properties of a bioactive glutamic-alanine rich glycoprotein (GP) derived from Undaria pinnatifida on both LPS-stimulated RAW264.7 cells, peritoneal macrophages, and mouse models of carrageenan- and xylene-induced inflammation, investigating the underlying molecular mechanisms. In both in-vitro and in-vivo settings, GP was found to reduce the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) while also inhibiting the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in response to lipopolysaccharide (LPS) stimulation. GP treatment significantly impeded the nuclear translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway by blocking the phosphorylation of IKKα and IκBα, leading to a reduction in proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Additionally, GP effectively inhibited the activation of mitogen-activated protein kinases (MAPKs), with specific inhibitors of p38 and extra-cellular signal regulated kinase (ERK) enhancing GP's anti-inflammatory efficacy. Notably, GP administration at 10 mg/kg/day (p.o.) markedly reduced carrageenan-induced paw inflammation and xylene-induced ear edema by preventing the infiltration of inflammatory cells into targeted tissues. GP treatment also downregulated key inflammatory markers, including iNOS, COX-2, IκBα, and NF-κB, by suppressing the phosphorylation of p38 and ERK, thereby improving the inflammatory index in both carrageenan- and xylene-induced mouse models. These findings suggest that marine resources, particularly seaweeds like U. pinnatifida, could serve as valuable sources of natural anti-inflammatory proteins for the effective treatment of inflammation and related conditions.
Collapse
Affiliation(s)
- Md Saifur Rahman
- Institution of Nutrition and Functional Foods, Faculty Agricultural and Food Sciences, Laval University, Laval, QC G1V 0A6, Canada;
| | - Md Badrul Alam
- Inner Beauty/Antiaging Center, Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Mst Hur Madina
- Institution of Nutrition and Functional Foods, Faculty Agricultural and Food Sciences, Laval University, Laval, QC G1V 0A6, Canada;
| | - S. M. Rafiquzzaman
- Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| |
Collapse
|
4
|
Ocampo-Gallego JS, Pedroza-Escobar D, Caicedo-Ortega AR, Berumen-Murra MT, Novelo-Aguirre AL, de Sotelo-León RD, Delgadillo-Guzmán D. Human neutrophil elastase inhibitors: Classification, biological-synthetic sources and their relevance in related diseases. Fundam Clin Pharmacol 2024; 38:13-32. [PMID: 37609718 DOI: 10.1111/fcp.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Human neutrophil elastase is a multifunctional protease enzyme whose function is to break the bonds of proteins and degrade them to polypeptides or amino acids. In addition, it plays an essential role in the immune mechanism against bacterial infections and represents a key mediator in tissue remodeling and inflammation. However, when the extracellular release of this enzyme is dysregulated in response to low levels of its physiological inhibitors, it ultimately leads to the degradation of proteins, in particular elastin, as well as other components of the extracellular matrix, producing injury to epithelial cells, which can promote sustained inflammation and affect the innate immune system, and, therefore, be the basis for the development of severe inflammatory diseases, especially those associated with the cardiopulmonary system. OBJECTIVE This review aims to provide an update on the elastase inhibitory properties of several molecules, either synthetic or biological sources, as well as their classification and relevance in related pathologies since a clear understanding of the function of these molecules with the inhibitory capacity of this protease can provide valuable information for the development of pharmacological therapies that manage to modify the prognosis and survival of various inflammatory diseases. METHODS Collected data from scientific databases, including PubMed, Google Scholar, Science Direct, Nature, Wiley, Scopus, and Scielo. Articles published in any country and language were included. RESULTS We reviewed and included 132 articles conceptualizing neutrophil elastase activity and known inhibitors. CONCLUSION Understanding the mechanism of action of elastase inhibitors based on particular aspects such as their kinetic behavior, structure-function relationship, chemical properties, origin, pharmacodynamics, and experimental progress has allowed for a broad classification of HNE inhibitors.
Collapse
Affiliation(s)
| | - David Pedroza-Escobar
- Departamento de Bioquimica, Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Torreon, Mexico
| | - Ana Ruth Caicedo-Ortega
- Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota, Colombia
| | - María Teresa Berumen-Murra
- Departamento de Farmacologia, Facultad de Medicina UT, Universidad Autonoma de Coahuila, Torreon, Mexico
| | - Ana Lucía Novelo-Aguirre
- Departamento de Farmacologia, Facultad de Medicina UT, Universidad Autonoma de Coahuila, Torreon, Mexico
| | - Rebeca Denis de Sotelo-León
- Departmento de Nutricion. Unidad de Medicina Familiar, UMAA 53, Instituto Mexicano del Seguro Social, Durango, Mexico
| | - Dealmy Delgadillo-Guzmán
- Departamento de Farmacologia, Facultad de Medicina UT, Universidad Autonoma de Coahuila, Torreon, Mexico
| |
Collapse
|
5
|
Golovinskaia O, Wang CK. The hypoglycemic potential of phenolics from functional foods and their mechanisms. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Agabo-García C, Romero-García LI, Álvarez-Gallego CJ, Blandino A. Valorisation of the invasive alga Rugulopteryx okamurae through the production of monomeric sugars. Appl Microbiol Biotechnol 2023; 107:1971-1982. [PMID: 36735067 PMCID: PMC10006063 DOI: 10.1007/s00253-023-12402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023]
Abstract
Rugulopteryx okamurae is an invasive brown alga causing severe environmental and economic problems on the western Mediterranean coasts. Thus, in addition to the difficulties caused to the fishing and tourism sectors, there is a need to manage its accumulation on the beaches. This work aims to valorise this waste by using it as raw material for producing monosaccharides through a two-stage sequential process. These sugars could be used for different fermentative processes to obtain high-value-added bioproducts. In this work, biological pretreatment of the previously conditioned seaweed with the fungus Aspergillus awamori in solid-state fermentation (SSF), followed by enzymatic hydrolysis with a commercial enzyme cocktail, was performed. The effect of the extension of the biological pretreatment (2, 5, 8 and 12 days) on the subsequent release of total reducing sugars (TRS) in the enzymatic hydrolysis stage was studied. To analyse this effect, experimental data of TRS produced along the hydrolysis were fitted to simple first-order kinetics. Also, the secretion of cellulase and alginate lyase by the fungus, along with the biological pretreatment, was determined. The results suggest that 5 days of biological pretreatment of the macroalgae with A. awamori followed by enzymatic saccharification for 24 h with Cellic CTec2® (112 FP units/g of dry biomass) are the best conditions tested, allowing the production of around 240 g of TRS per kg of dried biomass. The main sugars obtained were glucose (95.8 %) and mannitol (1.5 %), followed by galactose (1 %), arabinose (0.9 %) and fucose (0.5 %). KEY POINTS: • Five-day SSF by A. awamori was the best condition to pretreat R. okamurae. • Five-day SSF was optimal for alginate lyase production (1.63 ±0.011 IU/g biomass). • A maximum yield of 239 mg TRS/g biomass was obtained (with 95.8 % glucose).
Collapse
Affiliation(s)
- Cristina Agabo-García
- Faculty of Science, Department of Chemical Engineering and Food Technology, Wine and Agri-Food Research Institute (IVAGRO) and International Campus of Excellence (ceiA3), University of Cadiz, Campus de Puerto Real, s/n. 11510, Puerto Real, Cádiz, Spain
| | - Luis I. Romero-García
- Faculty of Science, Department of Chemical Engineering and Food Technology, Wine and Agri-Food Research Institute (IVAGRO) and International Campus of Excellence (ceiA3), University of Cadiz, Campus de Puerto Real, s/n. 11510, Puerto Real, Cádiz, Spain
| | - Carlos J. Álvarez-Gallego
- Faculty of Science, Department of Chemical Engineering and Food Technology, Wine and Agri-Food Research Institute (IVAGRO) and International Campus of Excellence (ceiA3), University of Cadiz, Campus de Puerto Real, s/n. 11510, Puerto Real, Cádiz, Spain
| | - Ana Blandino
- Faculty of Science, Department of Chemical Engineering and Food Technology, Wine and Agri-Food Research Institute (IVAGRO) and International Campus of Excellence (ceiA3), University of Cadiz, Campus de Puerto Real, s/n. 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
7
|
Wang J, Cao Z, Wang F, Wang P, An J, Fu X, Liu T, Li Y, Li Y, Zhao Y, Lin H, He B. Cysteine derivatives as acetyl lysine mimics to inhibit zinc-dependent histone deacetylases for treating cancer. Eur J Med Chem 2021; 225:113799. [PMID: 34500130 DOI: 10.1016/j.ejmech.2021.113799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/09/2021] [Accepted: 08/22/2021] [Indexed: 12/12/2022]
Abstract
Zinc-dependent histone deacetylases (HDACs) are important epigenetic regulators that have become important drug targets for treating cancer. Although five HDAC inhibitors have been approved for treating several cancers, there is still a huge demand on discovering new HDAC inhibitors to explore the therapeutic potentials for treating solid tumor cancers. Substrate mimics are a powerful rational design approach for the development of potent inhibitors. Here we describe the rational design, synthesis, biological evaluation, molecular docking and in vivo efficacy study of a class of HDAC inhibitors using Nε-acetyl lysine mimics that are derived from cysteine. As a result, compounds 7a, 9b and 13d demonstrated pan-HDAC inhibition and broad cytotoxicity against several cancer cell lines, comparable to the approved HDAC inhibitor SAHA. Furthermore, 13d significantly inhibited tumor growth in a A549 xenograft mice model without any obvious weight loss, supporting that the cysteine-derived acetyl lysine mimics are promising HDAC inhibitors with therapeutic potentials for treating cancer.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Zhuoxian Cao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Fang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Pan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Jianxiong An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Xiaozhong Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China
| | - Hening Lin
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medicine, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
8
|
Feng H, Chen G, Zhang Y, Guo M. Exploring Multifunctional Bioactive Components from Podophyllum sinense Using Multi-Target Ultrafiltration. Front Pharmacol 2021; 12:749189. [PMID: 34759823 PMCID: PMC8573357 DOI: 10.3389/fphar.2021.749189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Podophyllum sinense (P. sinense) has been used as a traditional herbal medicine for ages due to its extensive pharmaceutical activities, including antiproliferative, anti-inflammatory, antiviral, insecticidal effects, etc. Nevertheless, the specific bioactive constituents responsible for its antiproliferative, anti-inflammatory, and antiviral activities remain elusive, owing to its complicated and diversified chemical components. In order to explore these specific bioactive components and their potential interaction targets, affinity ultrafiltration with multiple drug targets coupled with high performance liquid chromatography/mass spectrometry (UF–HPLC/MS) strategy was developed to rapidly screen out and identify bioactive compounds against four well-known drug targets that are correlated to the application of P. sinense as a traditional medicine, namely, Topo I, Topo II, COX-2, and ACE2. As a result, 7, 10, 6, and 7 phytochemicals were screened out as the potential Topo I, Topo II, COX-2, and ACE2 ligands, respectively. Further confirmation of these potential bioactive components with antiproliferative and COX-2 inhibitory assays in vitro was also implemented. Herein, diphyllin and podophyllotoxin with higher EF values demonstrated higher inhibitory rates against A549 and HT-29 cells as compared with those of 5-FU and etoposide. The IC50 values of diphyllin were calculated at 6.46 ± 1.79 and 30.73 ± 0.56 μM on A549 and HT-29 cells, respectively. Moreover, diphyllin exhibited good COX-2 inhibitory activity with the IC50 value at 1.29 ± 0.14 μM, whereas indomethacin was 1.22 ± 0.08 μM. In addition, those representative constituents with good affinity on Topo I, Topo II, COX-2, or ACE2, such as diphyllin, podophyllotoxin, and diphyllin O-glucoside, were further validated with molecular docking analysis. Above all, the integrated method of UF–HPLC/MS with multiple drug targets rapidly singled out multi-target bioactive components and partly elucidated their action mechanisms regarding its multiple pharmacological effects from P. sinense, which could provide valuable information about its further development for the new multi-target drug discovery from natural medicines.
Collapse
Affiliation(s)
- Huixia Feng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Yongli Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Menaa F, Wijesinghe U, Thiripuranathar G, Althobaiti NA, Albalawi AE, Khan BA, Menaa B. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Mar Drugs 2021; 19:484. [PMID: 34564146 PMCID: PMC8469996 DOI: 10.3390/md19090484] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Marine algae are rich in bioactive nutraceuticals (e.g., carbohydrates, proteins, minerals, fatty acids, antioxidants, and pigments). Biotic (e.g., plants, microorganisms) and abiotic factors (e.g., temperature, pH, salinity, light intensity) contribute to the production of primary and secondary metabolites by algae. Easy, profitable, and sustainable recovery methods include novel solid-liquid and liquid-liquid extraction techniques (e.g., supercritical, high pressure, microwave, ultrasound, enzymatic). The spectacular findings of algal-mediated synthesis of nanotheranostics has attracted further interest because of the availability of microalgae-based natural bioactive therapeutic compounds and the cost-effective commercialization of stable microalgal drugs. Algal extracts can serve as stabilizing/capping and reducing agents for the synthesis of thermodynamically stable nanoparticles (NPs). Different types of nanotherapeutics have been synthesized using physical, chemical, and biological methods. Marine algae are a fascinating source of lead theranostics compounds, and the development of nanotheranostics has been linked to enhanced drug efficacy and safety. Indeed, algae are remarkable nanobiofactories, and their pragmatic properties reside in their (i) ease of handling; (ii) capacity to absorb/accumulate inorganic metallic ions; (iii) cost-effectiveness; and (iv) capacity of eco-friendly, rapid, and healthier synthesis of NPs. Preclinical and clinical trials shall enable to really define effective algal-based nanotherapies. This review aims to provide an overview of the main algal compounds that are nutraceuticals and that can be extracted and purified for nanotheranostic purposes.
Collapse
Affiliation(s)
- Farid Menaa
- Department of Internal Medicine and Nanomedicine, Fluorotronics-CIC, San Diego, CA 92037, USA;
| | - Udari Wijesinghe
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10107, Sri Lanka; (U.W.); (G.T.)
| | - Gobika Thiripuranathar
- Institute of Chemistry Ceylon, College of Chemical Sciences, Rajagiriya 10107, Sri Lanka; (U.W.); (G.T.)
| | - Norah A. Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Al Quwaiiyah 19257, Saudi Arabia;
| | - Aishah E. Albalawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Barkat Ali Khan
- Department of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Bouzid Menaa
- Department of Internal Medicine and Nanomedicine, Fluorotronics-CIC, San Diego, CA 92037, USA;
| |
Collapse
|
10
|
Zhang C, Li M, Rauf A, Khalil AA, Shan Z, Chen C, Rengasamy KRR, Wan C. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Crit Rev Food Sci Nutr 2021; 63:303-329. [PMID: 34254536 DOI: 10.1080/10408398.2021.1946008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.
Collapse
Affiliation(s)
- Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Chuying Chen
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Reynolds D, Huesemann M, Edmundson S, Sims A, Hurst B, Cady S, Beirne N, Freeman J, Berger A, Gao S. Viral inhibitors derived from macroalgae, microalgae, and cyanobacteria: A review of antiviral potential throughout pathogenesis. ALGAL RES 2021; 57:102331. [PMID: 34026476 PMCID: PMC8128986 DOI: 10.1016/j.algal.2021.102331] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/19/2022]
Abstract
Viruses are abiotic obligate parasites utilizing complex mechanisms to hijack cellular machinery and reproduce, causing multiple harmful effects in the process. Viruses represent a growing global health concern; at the time of writing, COVID-19 has killed at least two million people around the world and devastated global economies. Lingering concern regarding the virus' prevalence yet hampers return to normalcy. While catastrophic in and of itself, COVID-19 further heralds in a new era of human-disease interaction characterized by the emergence of novel viruses from natural sources with heretofore unseen frequency. Due to deforestation, population growth, and climate change, we are encountering more viruses that can infect larger groups of people with greater ease and increasingly severe outcomes. The devastation of COVID-19 and forecasts of future human/disease interactions call for a creative reconsideration of global response to infectious disease. There is an urgent need for accessible, cost-effective antiviral (AV) drugs that can be mass-produced and widely distributed to large populations. Development of AV drugs should be informed by a thorough understanding of viral structure and function as well as human biology. To maximize efficacy, minimize cost, and reduce development of drug-resistance, these drugs would ideally operate through a varied set of mechanisms at multiple stages throughout the course of infection. Due to their abundance and diversity, natural compounds are ideal for such comprehensive therapeutic interventions. Promising sources of such drugs are found throughout nature; especially remarkable are the algae, a polyphyletic grouping of phototrophs that produce diverse bioactive compounds. While not much literature has been published on the subject, studies have shown that these compounds exert antiviral effects at different stages of viral pathogenesis. In this review, we follow the course of viral infection in the human body and evaluate the AV effects of algae-derived compounds at each stage. Specifically, we examine the AV activities of algae-derived compounds at the entry of viruses into the body, transport through the body via the lymph and blood, infection of target cells, and immune response. We discuss what is known about algae-derived compounds that may interfere with the infection pathways of SARS-CoV-2; and review which algae are promising sources for AV agents or AV precursors that, with further investigation, may yield life-saving drugs due to their diversity of mechanisms and exceptional pharmaceutical potential.
Collapse
Affiliation(s)
- Daman Reynolds
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Michael Huesemann
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Scott Edmundson
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Amy Sims
- Pacific Northwest National Laboratory, Chemical and Biological Signatures Group, Richland, WA, USA
| | - Brett Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - Sherry Cady
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Nathan Beirne
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Jacob Freeman
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Adam Berger
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| | - Song Gao
- Pacific Northwest National Laboratory, Marine and Coastal Research Laboratory, Sequim, WA, USA
| |
Collapse
|
12
|
Chen H, Wang Q. Regulatory mechanisms of lipid biosynthesis in microalgae. Biol Rev Camb Philos Soc 2021; 96:2373-2391. [PMID: 34101323 DOI: 10.1111/brv.12759] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/01/2023]
Abstract
Microalgal lipids are highly promising feedstocks for biofuel production. Microalgal lipids, especially triacylglycerol, and practical applications of these compounds have received increasing attention in recent years. For the commercial use of microalgal lipids to be feasible, many fundamental biological questions must be addressed based on detailed studies of algal biology, including how lipid biosynthesis occurs and is regulated. Here, we review the current understanding of microalgal lipid biosynthesis, with a focus on the underlying regulatory mechanisms. We also present possible solutions for overcoming various obstacles to understanding the basic biology of microalgal lipid biosynthesis and the practical application of microalgae-based lipids. This review will provide a theoretical reference for both algal researchers and decision makers regarding the future directions of microalgal research, particularly pertaining to microalgal-based lipid biosynthesis.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
13
|
Lobine D, Rengasamy KRR, Mahomoodally MF. Functional foods and bioactive ingredients harnessed from the ocean: current status and future perspectives. Crit Rev Food Sci Nutr 2021; 62:5794-5823. [PMID: 33724095 DOI: 10.1080/10408398.2021.1893643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
With an increase in life expectancy and decrease of quality-of-life couple with the high prevalence of diseases, diet is expected to play a key function in sustaining human health. Nutritionists, food technologists and medical experts are working in synergy to cater for the increasing demand of food with associated therapeutic benefits, commonly known as functional food, that may improve well-being and reduce the risk of diseases. Interestingly, the marine ecosystem, due to its abundant and phenomenal biodiversity of marine organisms, constitutes a vital source of a panoply of healthy foods supply for the thriving functional food industry. Marine organisms such as seaweeds, sea cucumbers, sponges, and mollusks amongst others are sources of thousands of biologically active metabolites with antioxidant, anti-parasitic, antiviral, anti-inflammatory and anticancer properties. Given the growing number of research and interest to probe into the therapeutic roles of marine products, this review was designed to provide a comprehensive summary of the therapeutic properties of marine organisms (macroalgae, sea cucumbers and fish among others) which are consumed worldwide, in addition to their potentials and as sources of functional ingredients for developing novel food and fostering wellness. The gap between research development and actual commercialization, and future prospects of marine-based products also summarized to some extent.
Collapse
Affiliation(s)
- Devina Lobine
- Department of Health Sciences; Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Kannan R R Rengasamy
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North West Province, South Africa
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences; Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| |
Collapse
|
14
|
Dimitrova-Shumkovska J, Krstanoski L, Veenman L. Potential Beneficial Actions of Fucoidan in Brain and Liver Injury, Disease, and Intoxication-Potential Implication of Sirtuins. Mar Drugs 2020; 18:E242. [PMID: 32380741 PMCID: PMC7281157 DOI: 10.3390/md18050242] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Increased interest in natural antioxidants has brought to light the fucoidans (sulfated polysaccharides present in brown marine algae) as highly valued nutrients as well as effective and safe therapeutics against several diseases. Based on their satisfactory in vitro antioxidant potency, researchers have identified this molecule as an efficient remedy for neuropathological as well as metabolic disorders. Some of this therapeutic activity is accomplished by upregulation of cytoprotective molecular pathways capable of restoring the enzymatic antioxidant activity and normal mitochondrial functions. Sirtuin-3 has been discovered as a key player for achieving the neuroprotective role of fucoidan by managing these pathways, whose ultimate goal is retrieving the entirety of the antioxidant response and preventing apoptosis of neurons, thereby averting neurodegeneration and brain injuries. Another pathway whereby fucoidan exerts neuroprotective capabilities is by interactions with P-selectin on endothelial cells, thereby preventing macrophages from entering the brain proper. Furthermore, beneficial influences of fucoidan have been established in hepatocytes after xenobiotic induced liver injury by decreasing transaminase leakage and autophagy as well as obtaining optimal levels of intracellular fiber, which ultimately prevents fibrosis. The hepatoprotective role of this marine polysaccharide also includes a sirtuin, namely sirtuin-1 overexpression, which alleviates obesity and insulin resistance through suppression of hyperglycemia, reducing inflammation and stimulation of enzymatic antioxidant response. While fucoidan is very effective in animal models for brain injury and neuronal degeneration, in general, it is accepted that fucoidan shows somewhat limited potency in liver. Thus far, it has been used in large doses for treatment of acute liver injuries. Thus, it appears that further optimization of fucoidan derivatives may establish enhanced versatility for treatments of various disorders, in addition to brain injury and disease.
Collapse
Affiliation(s)
- Jasmina Dimitrova-Shumkovska
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 6, P.O. Box 162, 1000 Skopje, Macedonia;
| | - Ljupcho Krstanoski
- Department of Experimental Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University Ss Cyril and Methodius, Arhimedova 6, P.O. Box 162, 1000 Skopje, Macedonia;
| | - Leo Veenman
- Israel Institute of Technology, Faculty of Medicine, Rappaport Institute of Medical Research, 1 Efron Street, P.O. Box 9697, Haifa 31096, Israel
| |
Collapse
|
15
|
Rengasamy KR, Mahomoodally MF, Aumeeruddy MZ, Zengin G, Xiao J, Kim DH. Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food Chem Toxicol 2020; 135:111013. [PMID: 31794803 DOI: 10.1016/j.fct.2019.111013] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023]
Abstract
Seaweeds are among the significant currently exploited marine plant resources which are gaining full applications in culinary, cosmetic, pharmaceutical, and biotechnological processes. Much attention has been devoted to seaweeds based on their proven health benefits and is considered as a rich source of structurally different bioactive metabolites for the discovery of novel functional food-based pharmacophores/drugs. Nonetheless, there is still a dearth of updated compilation and analysis of the in-depth pharmacological activities of these compounds. This review, therefore, aims to provide a piece of up-to-date detailed information on the major compounds isolated from various seaweed species together with their in-vitro and in-vivo biological properties. These compounds were found to possess broad pharmacological properties and inhibitory enzyme activities against critical enzymes involved in the aetiology of noncommunicable diseases. However, their toxicity, clinical efficacy, mechanisms of action, and interaction with conventional foods, are still less explored and require more attention in future studies.
Collapse
Affiliation(s)
- Kannan Rr Rengasamy
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 05029, South Korea.
| | | | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Doo Hwan Kim
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
16
|
Gautam R, Vinu R. Reaction engineering and kinetics of algae conversion to biofuels and chemicals via pyrolysis and hydrothermal liquefaction. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00084a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A state-of-the-art review on pyrolysis and hydrothermal liquefaction of algae to fuels and chemicals with emphasis on reaction chemistry and kinetics.
Collapse
Affiliation(s)
- Ribhu Gautam
- Department of Chemical Engineering and National Center for Combustion Research and Development
- Indian Institute of Technology Madras
- Chennai – 600036
- India
| | - R. Vinu
- Department of Chemical Engineering and National Center for Combustion Research and Development
- Indian Institute of Technology Madras
- Chennai – 600036
- India
| |
Collapse
|
17
|
AYVAZ MÇOL. Phenolic compounds profile, neuroprotective effect and antioxidant potential of a commercial Turkish coffee. REV NUTR 2020. [DOI: 10.1590/1678-9865202033e190097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Objective The purpose of this study is to determine the phenolic and flavonoid contents, and antioxidant activities and neuroprotective effects of powdered coffee sample of a commercial coffee brand originated from Sivas, Turkey. Methods Total phenolic, flavonoid and antioxidant contents, enzymatic and non-enzymatic antioxidative activities based on 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity, metal chelating potential, reducing power, superoxide dismutase and catalase activity tests and lipid peroxidation inhibition potentials of the ethanolic and aqueous extracts of the coffee sample were assayed using the commonly preferred spectrophotometric methods. Furthermore the extracts’ cholinesterase and tyrosinase inhibition potentials were evaluated. Phenolic profiles of the coffee sample were investigated using high performance liquid chromatography. Results Catechin was the most frequently detected phenolic acid. In addition, it was demonstrated that the water extract has a significant impact when compared with standard antioxidants. While the SC50 (sufficient concentration to obtain 50% of a maximum scavenging capacity) value for the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl free radical was calculated as being 0.08mg/mL for water extract, the amount of chelating agents with half Fe2+ ions in the medium was found to be 0.271mg/mL. Additionally, it was shown that 0.1mg/mL concentration of both extracts prevents lipid peroxidation by 8%. Compared with standard drugs, inhibition potentials of cholinesterase and tyrosinase enzymes were considered as moderately acceptable in these samples. Conclusion Besides the extracts’ enzymatic antioxidant activity, their inhibition potential on cholinesterase and tyrosinase enzymes – which are important clinical enzymes – reveal that this natural source can be used as a valuable resource in different fields, especially in medicine.
Collapse
|
18
|
Macroalgae as a Valuable Source of Naturally Occurring Bioactive Compounds for the Treatment of Alzheimer's Disease. Mar Drugs 2019; 17:md17110609. [PMID: 31731422 PMCID: PMC6891758 DOI: 10.3390/md17110609] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 01/02/2023] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that affects mostly aged individuals. Evidence suggests that pathological mechanisms involved in the development of AD are associated with cholinergic deficit, glutamate excitotoxicity, beta-amyloid aggregation, tau phosphorylation, neuro-inflammation, and oxidative damage to neurons. Currently there is no cure for AD; however, synthetic therapies have been developed to effectively manage some of the symptoms at the early stage of the disease. Natural products from plants and marine organisms have been identified as important sources of bioactive compounds with neuroprotective potentials and less adverse effects compared to synthetic agents. Seaweeds contain several kinds of secondary metabolites such as phlorotannins, carotenoids, sterols, fucoidans, and poly unsaturated fatty acids. However, their neuroprotective effects and mechanisms of action have not been fully explored. This review discusses recent investigations and/or updates on interactions of bioactive compounds from seaweeds with biomarkers involved in the pathogenesis of AD using reports in electronic databases such as Web of science, Scopus, PubMed, Science direct, Scifinder, Taylor and Francis, Wiley, Springer, and Google scholar between 2015 and 2019. Phlorotannins, fucoidans, sterols, and carotenoids showed strong neuroprotective potentials in different experimental models. However, there are no data from human studies and/or clinical trials.
Collapse
|
19
|
Prospective natural anti-inflammatory drimanes attenuating pro-inflammatory 5-lipoxygenase from marine macroalga Gracilaria salicornia. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Lee J, Jun M. Dual BACE1 and Cholinesterase Inhibitory Effects of Phlorotannins from Ecklonia cava-An In Vitro and in Silico Study. Mar Drugs 2019; 17:E91. [PMID: 30717208 PMCID: PMC6410325 DOI: 10.3390/md17020091] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases with a multifactorial nature. β-Secretase (BACE1) and acetylcholinesterase (AChE), which are required for the production of neurotoxic β-amyloid (Aβ) and the promotion of Aβ fibril formation, respectively, are considered as prime therapeutic targets for AD. In our efforts towards the development of potent multi-target, directed agents for AD treatment, major phlorotannins such as eckol, dieckol, and 8,8'-bieckol from Ecklonia cava (E. cava) were evaluated. Based on the in vitro study, all tested compounds showed potent inhibitory effects on BACE1 and AChE. In particular, 8,8'-bieckol demonstrated the best inhibitory effect against BACE1 and AChE, with IC50 values of 1.62 ± 0.14 and 4.59 ± 0.32 µM, respectively. Overall, kinetic studies demonstrated that all the tested compounds acted as dual BACE1 and AChE inhibitors in a non-competitive or competitive fashion, respectively. In silico docking analysis exhibited that the lowest binding energies of all compounds were negative, and specifically different residues of each target enzyme interacted with hydroxyl groups of phlorotannins. The present study suggested that major phlorotannins derived from E. cava possess significant potential as drug candidates for therapeutic agents against AD.
Collapse
Affiliation(s)
- Jinhyuk Lee
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Department of Bioinformatics, KIRBB School of Bioscience, Korea University of Sciences and Technology, 217 Gajung-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Mira Jun
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Korea.
| |
Collapse
|
21
|
Chen H, Li T, Wang Q. Ten years of algal biofuel and bioproducts: gains and pains. PLANTA 2019; 249:195-219. [PMID: 30603791 DOI: 10.1007/s00425-018-3066-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/10/2018] [Indexed: 05/09/2023]
Abstract
It has been proposed that future efforts should focus on basic studies, biotechnology studies and synthetic biology studies related to algal biofuels and various high-value bioproducts for the economically viable production of algal biof uels. In recognition of diminishing fossil fuel reserves and the worsening environment, microalgal biofuel has been proposed as a renewable energy source with great potential. Algal biofuel thus became one of the hottest topics in renewable energy research in the new century, especially over the past decade. Between 2007 and 2017, research related to microalgal biofuels experienced a dramatic, three-stage development, rising, growing exponentially, and then declining rapidly due to overheating of the subject. However, biofuel-driven algal biotechnology and bioproducts research has been thriving since 2010. To clarify the gains (and pains) of the past decade and detail prospects for the future, this review summarizes the extensive scientific progress and substantial technical advances in algal biofuel over the past decade, covering basic biology, applied research, as well as the production of value-added natural products. Even after 10 years of hard work and billions of dollars in investments, its unacceptably high cost remains the ultimate bottleneck for the industrialization of algal biofuel. To maximize the total research benefits, both economically and socially, it has been proposed that future efforts should focus on basic studies to characterize oilgae, on biotechnology studies into various high-value bioproducts. Moreover, the development of synthetic biology provides new possibilities for the economically viable production of biofuels via the directional manufacture of microalgal bioproducts in algal cell factories.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Rd., Wuhan, 430072, Hubei Province, China
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Tianpei Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Rd., Wuhan, 430072, Hubei Province, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, 7 South Donghu Rd., Wuhan, 430072, Hubei Province, China.
- University of the Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
22
|
Lee S, Youn K, Kim DH, Ahn MR, Yoon E, Kim OY, Jun M. Anti-Neuroinflammatory Property of Phlorotannins from Ecklonia cava on Aβ 25-35-Induced Damage in PC12 Cells. Mar Drugs 2018; 17:E7. [PMID: 30583515 PMCID: PMC6356621 DOI: 10.3390/md17010007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/24/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized by excessive accumulation of amyloid-beta peptide (Aβ) and progressive loss of neurons. Therefore, the inhibition of Aβ-induced neurotoxicity is a potential therapeutic approach for the treatment of AD. Ecklonia cava is an edible brown seaweed, which has been recognized as a rich source of bioactive derivatives, mainly phlorotannins. In this study, phlorotannins including eckol, dieckol, 8,8'-bieckol were used as potential neuroprotective candidates for their anti-apoptotic and anti-inflammatory effects against Aβ25-35-induced damage in PC12 cells. Among the tested compounds, dieckol showed the highest effect in both suppressing intracellular oxidative stress and mitochondrial dysfunction and activation of caspase family. Three phlorotannins were found to inhibit TNF-α, IL-1β and PGE₂ production at the protein levels. These result showed that the anti-inflammatory properties of our compounds are related to the down-regulation of proinflammatory enzymes, iNOS and COX-2, through the negative regulation of the NF-κB pathway in Aβ25-35-stimulated PC12 cells. Especially, dieckol showed the strong anti-inflammatory effects via suppression of p38, ERK and JNK. However, 8,8'-bieckol markedly decreased the phosphorylation of p38 and JNK and eckol suppressed the activation of p38. Therefore, the results of this study indicated that dieckol from E. cava might be applied as a drug candidate for the development of new generation therapeutic agents against AD.
Collapse
Affiliation(s)
- Seungeun Lee
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Kumju Youn
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Korea.
| | - Mok-Ryeon Ahn
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Eunju Yoon
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Oh-Yoen Kim
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
| | - Mira Jun
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, 37, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan 49315, Korea.
- Institute of Convergence Bio-Health, Dong-A University, Busan 49315, Korea.
| |
Collapse
|
23
|
Ryu B, Jiang Y, Kim HS, Hyun JM, Lim SB, Li Y, Jeon YJ. Ishophloroglucin A, a Novel Phlorotannin for Standardizing the Anti-α-Glucosidase Activity of Ishige okamurae. Mar Drugs 2018; 16:E436. [PMID: 30413003 PMCID: PMC6266998 DOI: 10.3390/md16110436] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/15/2023] Open
Abstract
Nutraceutical use of algae requires understanding of the diversity and significance of their active compositions for intended activities. Ishige okamurae (I. okamurae) extract is well-known to possess α-glucosidase inhibitory activity; however, studies are needed to investigate its active composition in order to standardize its α-glucosidase inhibitory activity. In this study, we observed the intensity of the dominant compounds of each I. okamurae extract harvested between 2016 and 2017, and the different potency of each I. okamurae extract against α-glucosidase. By comparing the anti-α-glucosidase ability of the dominant compounds, a novel Ishophloroglucin A with highest α-glucosidase inhibitory activity was identified and suggested for standardization of anti-α-glucosidase activity in I. okamurae extract. Additionally, a validated analytical method for measurement of Ishophloroglucin A for future standardization of I. okamurae extract was established in this study. We suggest using Ishophloroglucin A to standardize anti-α-glucosidase potency of I. okamurae and propose the significance of standardization based on their composition for effective use of algae as marine-derived nutraceuticals.
Collapse
Affiliation(s)
- BoMi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Yunfei Jiang
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Hyun-Soo Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Jee-Min Hyun
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| | - Sang-Bin Lim
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea.
| | - Yong Li
- Department of Pharmaceutical Sciences, Changchun University of Chinese Medicine, 1035 Boshuo Road, Jing Yue Economic Development Zone, Chanchun 130117, China.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea.
| |
Collapse
|
24
|
Zhao C, Yang C, Liu B, Lin L, Sarker SD, Nahar L, Yu H, Cao H, Xiao J. Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends Food Sci Technol 2018; 72:1-12. [DOI: 10.1016/j.tifs.2017.12.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Birringer M, Siems K, Maxones A, Frank J, Lorkowski S. Natural 6-hydroxy-chromanols and -chromenols: structural diversity, biosynthetic pathways and health implications. RSC Adv 2018; 8:4803-4841. [PMID: 35539527 PMCID: PMC9078042 DOI: 10.1039/c7ra11819h] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/18/2018] [Indexed: 01/26/2023] Open
Abstract
We present the first comprehensive and systematic review on the structurally diverse toco-chromanols and -chromenols found in photosynthetic organisms, including marine organisms, and as metabolic intermediates in animals. The focus of this work is on the structural diversity of chromanols and chromenols that result from various side chain modifications. We describe more than 230 structures that derive from a 6-hydroxy-chromanol- and 6-hydroxy-chromenol core, respectively, and comprise di-, sesqui-, mono- and hemiterpenes. We assort the compounds into a structure-activity relationship with special emphasis on anti-inflammatory and anti-carcinogenic activities of the congeners. This review covers the literature published from 1970 to 2017.
Collapse
Affiliation(s)
- Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Karsten Siems
- AnalytiCon Discovery GmbH Hermannswerder Haus 17 14473 Potsdam Germany
| | - Alexander Maxones
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences Leipziger Straße 123 36037 Fulda Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim Garbenstr. 28 70599 Stuttgart Germany
| | - Stefan Lorkowski
- Institute of Nutrition, Friedrich Schiller University Jena Dornburger Str. 25 07743 Jena Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig Germany
| |
Collapse
|
26
|
Cuparane sesquiterpenes from Laurencia natalensis Kylin as inhibitors of alpha-glucosidase, dipeptidyl peptidase IV and xanthine oxidase. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Mafole TC, Aremu AO, Mthethwa T, Moyo M. An overview on Leucosidea sericea Eckl. & Zeyh.: A multi-purpose tree with potential as a phytomedicine. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:288-303. [PMID: 28363524 DOI: 10.1016/j.jep.2017.03.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leucosidea sericea (the sole species in this genus) is a tree species found in southern Africa and possesses several therapeutical effects against infectious diseases in humans and livestock. This review aims to document and summarize the botany, phytochemical and biological properties of Leucosidea sericea. MATERIALS AND METHODS Using the term 'Leucosidea sericea', we systematically searched literature including library catalogues, academic dissertations and databases such as PubMed, SciFinder, Web of Science, Google Scholar and Wanfang. Taxonomy of the species was validated using 'The Plant List' (www.theplantlist.org). RESULTS Leucosidea sericea remains a widely used species among the different ethnic groups in southern Africa. The species is a rich source of approximately 50 essential oils and different classes of phytochemicals (phenolics, phloroglucinols, cholestane triterpenoids, alkaloids and saponins) which may account for their diverse biological properties. Documented biological activities which were mainly observed under in vitro systems included antimicrobial, anti-parasitic, antioxidant, acetylcholinesterase (AChE) inhibition and anti-inflammatory properties. Preliminary safety tests on Leucosidea sericea extracts suggest moderate cytotoxic effects based on a few cell lines that were investigated. CONCLUSIONS Leucosidea sericea possesses diverse medicinal potential with the antimicrobial, anti-parasitic, antioxidant and anti-inflammatory activities being the most prominent. The relative abundance and tendency of Leucosidea sericea to evade in nature suggest an abundant reservoir of raw materials for potential commercialization (upon validation of its pharmacological potential). However, more stringent investigations on the extracts (and isolated bioactive compounds) focusing on the mode of actions, which will inevitably unravel their pharmacokinetics, pharmacodynamics and clinical relevance remain pertinent.
Collapse
Affiliation(s)
- Tshepiso C Mafole
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Adeyemi O Aremu
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.
| | - Thandekile Mthethwa
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Technology, Cape Peninsula University of Technology, Symphony Way, P.O. Box 1906, Bellville 7535, Cape Town, South Africa
| | - Mack Moyo
- Department of Horticultural Sciences, Faculty of Applied Sciences, Cape Peninsula University of Technology, Symphony Way, P.O. Box 1906, Bellville 7535, Cape Town, South Africa
| |
Collapse
|
28
|
Silchenko AS, Imbs TI, Zvyagintseva TN, Fedoreyev SA, Ermakova SP. Brown Alga Metabolites – Inhibitors of Marine Organism Fucoidan Hydrolases. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-1985-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Rengasamy KR, Kulkarni MG, Papenfus HB, Van Staden J. Quantification of plant growth biostimulants, phloroglucinol and eckol, in four commercial seaweed liquid fertilizers and some by-products. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Antibacterial and insecticidal activity of volatile compounds of three algae species of Oman Sea. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2016. [DOI: 10.21448/http-ijate-net-index-php-ijsm.243308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
31
|
Rafiquzzaman S, Kim EY, Lee JM, Mohibbullah M, Alam MB, Soo Moon I, Kim JM, Kong IS. Anti-Alzheimers and anti-inflammatory activities of a glycoprotein purified from the edible brown alga Undaria pinnatifida. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Aremu AO, Masondo NA, Rengasamy KRR, Amoo SO, Gruz J, Bíba O, Šubrtová M, Pěnčík A, Novák O, Doležal K, Van Staden J. Physiological role of phenolic biostimulants isolated from brown seaweed Ecklonia maxima on plant growth and development. PLANTA 2015; 241:1313-24. [PMID: 25672504 DOI: 10.1007/s00425-015-2256-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/30/2015] [Indexed: 05/19/2023]
Abstract
MAIN CONCLUSION Eckol, a major phenolic compound isolated from brown seaweed significantly enhanced the bulb size and bioactive compounds in greenhouse-grown Eucomis autumnalis. We investigated the effect of eckol and phloroglucinol (PG) (phenolic compounds) isolated from the brown seaweed, Ecklonia maxima (Osbeck) Papenfuss on the growth, phytochemical and auxin content in Eucomis autumnalis (Mill.) Chitt. The model plant is a popular medicinal species with increasing conservation concern. Eckol and PG were tested at 10(-5), 10(-6) and 10(-7) M using soil drench applications. After 4 months, growth parameters, phytochemical and auxin content were recorded. When compared to the control, eckol (10(-6) M) significantly improved bulb size, fresh weight and root production while the application of PG (10(-6) M) significantly increased the bulb numbers. However, both compounds had no significant stimulatory effect on aerial organs. Bioactive phytochemicals such as p-hydroxybenzoic and ferulic acids were significantly increased in eckol (10(-5) M) and PG (10(-6) M) treatments, compared to the control. Aerial (1,357 pmol/g DW) and underground (1,474 pmol/g DW) parts of eckol-treated (10(-5) M) plants yielded the highest concentration of indole-3-acetic acid. Overall, eckol and PG elicited a significant influence on the growth and physiological response in E. autumnalis. Considering the medicinal importance of E. autumnalis and the increasing strains on its wild populations, these compounds are potential tools to enhance their cultivation and growth.
Collapse
Affiliation(s)
- Adeyemi O Aremu
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville, 3209, South Africa
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vinayak V, Manoylov KM, Gateau H, Blanckaert V, Hérault J, Pencréac'h G, Marchand J, Gordon R, Schoefs B. Diatom milking: a review and new approaches. Mar Drugs 2015; 13:2629-65. [PMID: 25939034 PMCID: PMC4446598 DOI: 10.3390/md13052629] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 11/16/2022] Open
Abstract
The rise of human populations and the growth of cities contribute to the depletion of natural resources, increase their cost, and create potential climatic changes. To overcome difficulties in supplying populations and reducing the resource cost, a search for alternative pharmaceutical, nanotechnology, and energy sources has begun. Among the alternative sources, microalgae are the most promising because they use carbon dioxide (CO2) to produce biomass and/or valuable compounds. Once produced, the biomass is ordinarily harvested and processed (downstream program). Drying, grinding, and extraction steps are destructive to the microalgal biomass that then needs to be renewed. The extraction and purification processes generate organic wastes and require substantial energy inputs. Altogether, it is urgent to develop alternative downstream processes. Among the possibilities, milking invokes the concept that the extraction should not kill the algal cells. Therefore, it does not require growing the algae anew. In this review, we discuss research on milking of diatoms. The main themes are (a) development of alternative methods to extract and harvest high added value compounds; (b) design of photobioreactors;
Collapse
Affiliation(s)
- Vandana Vinayak
- Department of Criminology & Forensic Science, School of Applied Sciences, Dr. H.S. Gour University (Central University), Sagar Madhya Pradesh, India.
| | - Kalina M Manoylov
- Department of Biological & Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | - Hélène Gateau
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| | - Vincent Blanckaert
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Josiane Hérault
- ChimiMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Gaëlle Pencréac'h
- ChimiMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, IUT de Laval, Rue des Drs Calmette et Guerin, 53020 Laval Cedex 9, France.
| | - Justine Marchand
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| | - Richard Gordon
- Gulf Specimen Aquarium & Marine Laboratory, Panacea, FL 32346, USA.
- Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI 48201, USA.
| | - Benoît Schoefs
- MicroMar, Mer Molécules Santé, IUML-FR 3473 CNRS, University of Le Mans, Faculté des Sciences et Techniques, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France.
| |
Collapse
|