1
|
Hazra S, Gupta M, Bhatnagar R, Chatterjee PC, Patra S. Development of DNA aptamers towards detection of tuberculosis biomarker Ag85B in a fluorescence-based sensing platform. Anal Chim Acta 2025; 1357:344029. [PMID: 40316380 DOI: 10.1016/j.aca.2025.344029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Timely diagnosis of tuberculosis (TB) remains a critical challenge, highlighting the need for better screening tools. Traditional antibody-based detection methods for TB are often costly and cumbersome. To address this, we developed a streamlined centrifugal SELEX approach using a 69-nucleotide DNA library and the recombinant TB biomarker Ag85B, towards fabrication of an aptasensing platform offering a simpler and faster alternative. RESULTS Two high affinity DNA aptamers were screened through 12 rounds of SELEX and verified with in silico docking, circular dichroism spectroscopy and electrophoretic shift assays for binding interactions with Ag85B. The aptamer with highest binding affinity (KD values 76.36 ± 10.76 nM in binding buffer and 86.62 ± 6.20 nM in spiked serum) was used for fabrication of a fluorescence based aptasensing platform using graphene oxide as a quencher. The aptamer demonstrated specificity towards Ag85B without interference from two other recombinant TB proteins MPT64 and ESAT6. The aptasensing platform offered limits of detection of 5.83 nM in binding buffer and 6.51 nM in spiked serum. SIGNIFICANCE This work developed a modified SELEX approach combining a centrifugal filter and streptavidin-biotin magnetic separation technique for isolation of DNA aptamers. We report for the first time, a DNA aptamer against Ag85B biomarker that holds high prospects for clinical applications in diagnosing TB.
Collapse
Affiliation(s)
- Satakshi Hazra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Manish Gupta
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh Bhatnagar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Murtaza G, Rizvi AS, Irfan M, Meng Z, Yang Y. Integration of high refractive index sulfonated polystyrene opals with aptamers for rapid testing of neuron-specific enolase. Int J Biol Macromol 2025; 305:141079. [PMID: 39961561 DOI: 10.1016/j.ijbiomac.2025.141079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
We introduce a microplate assay for Neuron-Specific Enolase (NSE), a pivotal biomarker in neurodegenerative disorders, neuroendocrine tumors, and lung cancers, including small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). The assay involves the self-assembly of polystyrene microspheres into a photonic crystal array (PCA) via pre-adsorption within microplate wells. Sulfonation of the PCA with sulfuric acid yields sulfonated-PCA (SPCA) with a high refractive index. NSE-specific aptamers are crosslinked to SPCA using EDC crosslinking, resulting in an aptamer-linked sulfonated photonic crystals assay (APSA). This APSA platform is employed to detect NSE in human serum samples. Aptamer-NSE binding induces shifts in wavelength values (∆PWV), generating discernible color changes in SPCA. This binding is further analyzed by molecular dynamics simulations. As NSE concentrations increase, the refractive index decreases, causing reflection peak shifts across the entire visible wavelength range. The assay demonstrates remarkable sensitivity with a limit of detection (LOD) of 3.21 ± 0.45 pg mL-1 and a rapid response time of 30 s. This sensitivity outperforms existing biosensing methods accompanied by better selectivity. The presented APSA platform serves as a robust NSE detection tool in human serum and holds promise for customization to target other molecules, offering significant potential for clinical applications.
Collapse
Affiliation(s)
- Ghulam Murtaza
- School of Science, Minzu University of China, Beijing 100081, China; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Aysha Sarfraz Rizvi
- School of Science, Minzu University of China, Beijing 100081, China; School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Muhammad Irfan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Yuping Yang
- School of Science, Minzu University of China, Beijing 100081, China; Engineering Research Center of Photonic Design Software, Ministry of Education, Beijing 100081, China.
| |
Collapse
|
3
|
Liu G, Wang X, Su X, Ji S, Ma Z, Gao Y, Song X. The Development Potential of AuNPs-Based Lateral Flow Technology Combined with Other Advanced Technologies in POCT. Appl Biochem Biotechnol 2025; 197:2867-2886. [PMID: 39937412 DOI: 10.1007/s12010-025-05190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Currently, there is a demand for rapid, sensitive, low-cost, portable, and visualized testing technologies for point-of-care testing (POCT). However, most traditional testing methods face challenges such as long testing times, complicated operations, and high costs, limiting their implementation in resource-limited areas and hindering the fulfillment of POCT demands. Lateral flow assay (LFA) has emerged as an ideal detection technique for POCT, particularly when utilizing gold nanoparticles (AuNPs) as labels. This approach not only enables visualization with the naked eye but also reduces the need for expensive reading instruments. The technologies reviewed in this paper encompass integrated detection technology utilizing amplification technique and LFA, integrated detection technology utilizing clustered regularly interspaced short palindromic repeats (CRISPR) system and LFA, the utilization of surface-enhanced Raman spectroscopy (SERS) in LFA detection technique, the utilization of aptamers in LFA detection technique, and the utilization of DNA barcodes in LFA detection technique. By integrating these advanced techniques, there is significant potential to overcome the limitations of LFA, including low sensitivity, poor specificity, inability to quantify, and false positives, thereby enabling broader applications in resource-constrained settings. Additionally, this article comprehensively evaluates the strengths and weaknesses of each approach, underscoring the immense developmental potential of AuNPs-based LFA in point-of-care testing (POCT).
Collapse
Affiliation(s)
- Guiping Liu
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Xueli Wang
- School of Grain, Jilin Business and Technology College, Changchun, China
| | - Xiaomeng Su
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Shixin Ji
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Zelong Ma
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Yimeng Gao
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Xiangwei Song
- School of Life Sciences, Changchun Normal University, Changchun, China.
| |
Collapse
|
4
|
Zhang X, Li Y, Xia S, Yang Z, Zhang B, Wang Y. Chemiluminescence detection of kanamycin by DNA aptamer regulating peroxidase-like activity of Co 3O 4 nanoparticles. ANAL SCI 2025; 41:45-53. [PMID: 39287726 DOI: 10.1007/s44211-024-00672-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Kanamycin (KAN) is widely used as a growth hormone analog and an antibacterial agent. However, abuse of this substance has resulted in the accumulation of excessive residue levels in foods of animal origin, which presents a significant risk to human health. A chemiluminescent aptasensor was constructed for the rapid quantitative detection of KAN by combining the properties of Co3O4 nanoparticles (Co3O4 NPs) nanozyme activity and DNA aptamer with high specificity. The DNA aptamer/Co3O4 NPs nanozyme regulated the chemiluminescence signal by exploiting the chemiluminescent properties of luminol oxidation by H2O2. Specific binding of KAN to the aptamer led to the formation of a steric hindrance block in the solution, which inhibited the activity of nanozyme and reduced signal intensity. The degree of signal reduction is related to the concentration of KAN. Under optimal conditions, there was good linearity between KAN concentration and chemiluminescence signal intensity in the range of 0.5-8.0 μΜ, with a detection limit of 0.26 μΜ. The detection system performed well in the presence of competing antibiotics and was virtually unaffected. The method was also suitable for the detection of KAN in milk samples with sample recoveries of 97.8%-99.1%. The chemiluminescence sensor has the advantages of low cost, specificity, and sensitivity, and does not require an external light source or modification of the nucleic acid aptamer which makes it a promising candidate for applications in the field of food detection.
Collapse
Affiliation(s)
- Xuxin Zhang
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yihao Li
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Shaojie Xia
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhenyuan Yang
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Baiyun Zhang
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.
- Yuelushan Laboratory, Changsha, 410004, China.
| |
Collapse
|
5
|
Madalgi RK, Arakera SB, Kulkarni RD. Aptamer and aptasensor technology for diagnosis of infectious diseases: A mini review. Indian J Med Microbiol 2024; 51:100694. [PMID: 39074769 DOI: 10.1016/j.ijmmb.2024.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/20/2024] [Accepted: 07/27/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Aptamers are not so new a concept, however, it is scarcely discussed by medical fraternity. Aptamers are potent, new identification molecules set to rope in a new technique in the diagnostic arena. Aptamers have started almost a revolution in diagnostic assays since their discovery in the 90s. (Radu S. Current and previous disease outbreaks around the world, U.S. News & World Report. 2020 Mar 13 [cited 2024 Jun 17]. Available from: https://www.usnews.com/news/best-countries/slideshows/20-pandemic-and-epidemic-diseases-according-to-who) provides an overview of pandemics and epidemics as reported by the WHO. It is interesting to note that several endemic and epidemic diseases viz. Chikungunya, Cholera, Crimean-Congo haemorrhagic fever, Ebola virus disease, Hendra virus infection, Influenza, Lassa fever, Marburg virus disease, Meningitis, MERS-CoV (Middle East Respiratory Syndrome Corona Virus), Monkeypox, Nipah virus infection, Novel coronavirus, Plague, Rift Valley fever, SARS (Severe Acute Respiratory Syndrome), Smallpox, Tularaemia, Yellow fever, and Zika virus disease have been identified by the WHO and are being explored for applicability of aptamer technology in their identification. OBJECTIVES One of the most important necessities to control epidemic or pandemic diseases is early diagnosis. However, the majority of the diagnostic tests for these diseases are available only in tertiary care centres. The objective of this review is to discuss the potential of aptamer technology to provide undemanding, simple, specific, sensitive, and cost-effective diagnostic assays that are useable in remote and field conditions. CONTENT Here, we discuss recent advances and approaches in aptamer and aptamer engineering useful in the diagnosis of infectious and non-infectious conditions. This review also discusses a few sensing discoveries which are a gift of advanced engineering and technology using optical and electrochemical aptasensors. It's still a long way to go, and we need to take into account the technological challenges being faced by aptamer-aptasensor technology.
Collapse
Affiliation(s)
- Radhika K Madalgi
- Molecular Medicine & Microbial Genetics Laboratory, Department of Applied Genetics, Karnatak University, Pavate Nagar, Dharwad, 580003, Karnataka, India.
| | - Suresh B Arakera
- Molecular Medicine & Microbial Genetics Laboratory, Department of Applied Genetics, Karnatak University, Pavate Nagar, Dharwad, 580003, Karnataka, India.
| | - Raghavendra D Kulkarni
- Department of Microbiology SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Dharwad, 580009, Karnataka, India.
| |
Collapse
|
6
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
7
|
Kissmann AK, Bolotnikov G, Li R, Müller F, Xing H, Krämer M, Gottschalk KE, Andersson J, Weil T, Rosenau F. IMPATIENT-qPCR: monitoring SELEX success during in vitro aptamer evolution. Appl Microbiol Biotechnol 2024; 108:284. [PMID: 38573322 PMCID: PMC10995058 DOI: 10.1007/s00253-024-13085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 04/05/2024]
Abstract
SELEX (Systematic Evolution of Ligands by Exponential enrichment) processes aim on the evolution of high-affinity aptamers as binding entities in diagnostics and biosensing. Aptamers can represent game-changers as constituents of diagnostic assays for the management of instantly occurring infectious diseases or other health threats. Without in-process quality control measures SELEX suffers from low overall success rates. We present a quantitative PCR method for fast and easy quantification of aptamers bound to their targets. Simultaneous determination of melting temperatures (Tm) of each SELEX round delivers information on the evolutionary success via the correlation of increasing GC content and Tm alone with a round-wise increase of aptamer affinity to the respective target. Based on nine successful and published previous SELEX processes, in which the evolution/selection of aptamer affinity/specificity was demonstrated, we here show the functionality of the IMPATIENT-qPCR for polyclonal aptamer libraries and resulting individual aptamers. Based on the ease of this new evolution quality control, we hope to introduce it as a valuable tool to accelerate SELEX processes in general. IMPATIENT-qPCR SELEX success monitoring. Selection and evolution of high-affinity aptamers using SELEX technology with direct aptamer evolution monitoring using melting curve shifting analyses to higher Tm by quantitative PCR with fluorescence dye SYBR Green I. KEY POINTS: • Fast and easy analysis. • Universal applicability shown for a series of real successful projects.
Collapse
Affiliation(s)
- Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128, Mainz, Germany
| | - Grigory Bolotnikov
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Runliu Li
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Franziska Müller
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Hu Xing
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Markus Krämer
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kay-E Gottschalk
- Institute of Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jakob Andersson
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210, Vienna, Austria
| | - Tanja Weil
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128, Mainz, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
8
|
Odom TL, LeBroc HD, Callmann CE. Biomacromolecule-tagged nanoscale constructs for crossing the blood-brain barrier. NANOSCALE 2024; 16:3969-3976. [PMID: 38305381 DOI: 10.1039/d3nr06154j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Access to the brain is restricted by the low permeability of the blood-brain barrier (BBB), greatly hampering modern drug delivery efforts. A promising approach to overcome this boundary is to utilize biomacromolecules (peptides, nucleic acids, carbohydrates) as targeting ligands on nanoscale delivery vehicles to shuttle cargo across the BBB. In this mini-review, we highlight the most recent approaches for crossing the BBB using synthetic nanoscale constructs decorated with members of these general classes of biomacromolecules to safely and selectively deliver therapeutic materials to the brain.
Collapse
Affiliation(s)
- Tyler L Odom
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| | - Hayden D LeBroc
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| | - Cassandra E Callmann
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th St, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Berzal-Herranz A, Romero-López C. Aptamers' Potential to Fill Therapeutic and Diagnostic Gaps. Pharmaceuticals (Basel) 2024; 17:105. [PMID: 38256938 PMCID: PMC10818422 DOI: 10.3390/ph17010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
More than 30 years ago, in 1990, three independent research groups published several papers demonstrating that genetics could be performed in vitro in the absence of living organisms or cells [...].
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| |
Collapse
|
10
|
Gupta A, Mathew R, Anand A, Bhardwaj T, Singh A, Singh K, Kumar A, Mishra PR, Sharma TK. A DNA aptamer-based assay for the detection of soluble ST2, a prognostic biomarker for monitoring heart failure. Int J Biol Macromol 2024; 256:128295. [PMID: 37992929 DOI: 10.1016/j.ijbiomac.2023.128295] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Heart failure (HF) is emerging as a leading cause of death worldwide. Estimation of BNP levels is a routine diagnosis in these patients. However, in patients having high body-mass index (BMI), renal disease or in geriatric patients, BNP level is reported to be noisy and leads to incongruous conclusion. Thus, for better risk stratification among heart failure patients, it is imperative to look for a superior biomarker. In recent times, sST2 has shown promise as a biomarker. Identifying such biomarkers in peripheral blood of HF patients, need an affine and selective molecular recognition element. Thus, in the current study an aptamer (sS9_P) against sST2 was identified from an aptamer library. Systematic Evolution of Ligands through Exponential enrichment (SELEX) derived aptamer evinced role of its primer binding domains in maintaining its selectivity. This aptamer candidate demonstrated dissociation constant (Kd) in low nanomolar range, and the Limit of Detection (LOD) was ~4 ng. Circular dichroism confirms the formation of complex stem-loop like structure. The well characterized sS9_P aptamer was used in an Aptamer Linked Immobilized Sorbent Assay (ALISA) to detect sST2 level in patients' serum (n = 99). Aptamer sS9_P has shown significant discrimination to differentiate HF patients and healthy volunteers with a reasonable specificity (~83 %) with a modest sensitivity of ~64 %. While sST-2 antibody has shown poor specificity of ~44% but good sensitivity (~87%). The insight obtained from this study indicates that a combination of aptamer and antibody-based assay can be used to design a point-of-care assay for the rapid detection of HF patients in emergency settings.
Collapse
Affiliation(s)
- Ankit Gupta
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Roshan Mathew
- All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi 110029, India
| | - Anjali Anand
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Tanu Bhardwaj
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; Department of Medical Biotechnology, Gujarat Biotechnology University, GIFT-City, Gandhinagar, Gujarat 382355, India
| | - Aakriti Singh
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India
| | - Krishna Singh
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India
| | | | - Tarun Kumar Sharma
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; Department of Medical Biotechnology, Gujarat Biotechnology University, GIFT-City, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
11
|
Ji D, Feng H, Liew SW, Kwok CK. Modified nucleic acid aptamers: development, characterization, and biological applications. Trends Biotechnol 2023; 41:1360-1384. [PMID: 37302912 DOI: 10.1016/j.tibtech.2023.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Aptamers are single-stranded oligonucleotides that bind to their targets via specific structural interactions. To improve the properties and performance of aptamers, modified nucleotides are incorporated during or after a selection process such as systematic evolution of ligands by exponential enrichment (SELEX). We summarize the latest modified nucleotides and strategies used in modified (mod)-SELEX and post-SELEX to develop modified aptamers, highlight the methods used to characterize aptamer-target interactions, and present recent progress in modified aptamers that recognize different targets. We discuss the challenges and perspectives in further advancing the methodologies and toolsets to accelerate the discovery of modified aptamers, improve the throughput of aptamer-target characterization, and expand the functional diversity and complexity of modified aptamers.
Collapse
Affiliation(s)
- Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Hengxin Feng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Shiau Wei Liew
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
12
|
Ma W, Yang Y, Liu Z, Zhao R, Wan Q, Chen X, Tang B, Zhou Y, Lin Y. Self-Assembled Multivalent Aptamer Drug Conjugates: Enhanced Targeting and Cytotoxicity for HER2-Positive Gastric Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43359-43373. [PMID: 37670592 DOI: 10.1021/acsami.3c07344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Antibody drug conjugates (ADCs) have shown promise to be the mainstream chemotherapeutics for advanced HER2-positive cancers, yet the issues of poor drug delivery efficiency, limited chemotherapeutic effects, severe immune responses, and drug resistance remain to be addressed before the clinical applications of ADCs. The DNA aptamer-guided drug conjugates (ApDCs) are receiving growing attention for specific tumors due to their excellent tumor affinity and low cost. Therefore, developing a multivalent ApDC nanomedicine by combining anti-HER2 aptamer (HApt), tetrahedral framework nucleic acid (tFNA), and deruxtecan (Dxd) together to form HApt-tFNA@Dxd might help to address these concerns. In this study, the HER2-targeted DNA aptamer modified DNA tetrahedron (HApt-tFNA) was employed as a system for drug delivery, and the adoption of tFNA could effectively enlarge the drug-loading rate compared to aptamer-guided ApDCs previously reported. Compared with free Dxd and tFNA@Dxd, HApt-tFNA@Dxd showed better structural stability, excellent targeted cytotoxicity to HER2-positive gastric cancer, and increased tissue aggregation ability in tumors. These features and superiorities make HApt-tFNA@Dxd a promising chemotherapeutic medicine for HER2-positive tumors. Our work developed a new targeting nanomedicine by combining DNA nanomaterials and chemotherapeutic agents, which represents a critical advance toward developing novel DNA-based nanomaterials and promoting their potential applications for HER2-positive cancer therapy.
Collapse
Affiliation(s)
- Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yuting Yang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Rui Zhao
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Qianyi Wan
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xingyu Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yong Zhou
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
13
|
Bethu R, Mittal HG, Sharma TK, Shulania A, Sharma N, Rangarajan S, Jain P. Rapid diagnosis of TB using Aptamer-based assays for Mycobacterium tuberculosis antigens in children and adolescents. Lung India 2023; 40:434-439. [PMID: 37787357 PMCID: PMC10553784 DOI: 10.4103/lungindia.lungindia_295_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 10/04/2023] Open
Abstract
Background Despite advances establishing microbiological evidence of tuberculosis (TB) is still a concern in children due to the limitation of availability of sample and predominance of extrapulmonary TB, there is unmet need for diagnostic tests which are low cost, rapid and sensitive and specific. Methods This study evaluated the utility of aptamer-based assay for detecting mycobacterium tuberculosis antigens HspX and MPT 64 in rapid diagnosis of TB in children up to 18 years of age in a tertiary medical college. A total of 100 children were sequentially enrolled with presumptive pulmonary (n = 52 and extrapulmonary n = 48) TB based on clinico-radiological characteristics. The samples were evaluated with ALISA technique for TB antigens and compared with the results of ZN microscopy, GeneXpert and mycobacterial culture MGIT. Results The enrolled children had mean age (11.7 + 4.4 years) with both pulmonary (n = 52) and extrapulmonary TB (n = 48). Our study results concluded poor results of smears (11% positivity, sensitivity: 17.7%, NPV: 42.7%) and better of GeneXpert (positivity: 42%, sensitivity of 67.4%, NPV: 65.5%) and culture (positivity 57%, sensitivity 91.9%, NPV 88.3%). HspX antigen by ALISA had comparable results (positivity: 49%, sensitivity: 62.9%; NPV: 54.9%). MPT 64 antigen by ALISA also had similar results (positivity: 45%, sensitivity: 58% and NPV 52, 3%). Sensitivity and specificity were higher in pulmonary TB compared to EPTB for both antigens. HspX antigen assay by ALISA and MPT 64 ALISA over existing microbiological diagnostic methods had additional of 13%. Conclusion ALISA technique for mycobacterium antigens HspX and MPT 64 was rapid, low-cost test (1-3$/test) high sensitivity and specificity and comparable to currently available methods.
Collapse
Affiliation(s)
- Rajesh Bethu
- Department of Pediatrics, Division of Pediatric Pulmonology, ABVIMS and RMLH, New Delhi, India
| | - Hema Gupta Mittal
- Department of Pediatrics, Division of Pediatric Pulmonology, ABVIMS and RMLH, New Delhi, India
| | - Tarun K. Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | - Anuradha Shulania
- Department of Microbiology, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - Neera Sharma
- Department of Biochemistry, ABVIMS and Dr. RML Hospital, New Delhi, India
| | - Shmitha Rangarajan
- Department of Pediatrics, Division of Pediatric Pulmonology, ABVIMS and RMLH, New Delhi, India
| | - Prerna Jain
- Department of Pediatrics, Division of Pediatric Pulmonology, ABVIMS and RMLH, New Delhi, India
| |
Collapse
|
14
|
Hu Z, Li Y, Figueroa-Miranda G, Musal S, Li H, Martínez-Roque MA, Hu Q, Feng L, Mayer D, Offenhäusser A. Aptamer based biosensor platforms for neurotransmitters analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
15
|
Kimoto M, Tan HP, Tan YS, Mislan NABM, Hirao I. Success probability of high-affinity DNA aptamer generation by genetic alphabet expansion. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220031. [PMID: 36633272 PMCID: PMC9835594 DOI: 10.1098/rstb.2022.0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/18/2022] [Indexed: 01/13/2023] Open
Abstract
Nucleic acid aptamers as antibody alternatives bind specifically to target molecules. These aptamers are generated by isolating candidates from libraries with random sequence fragments, through an evolutionary engineering system. We recently reported a high-affinity DNA aptamer generation method that introduces unnatural bases (UBs) as a fifth letter into the library, by genetic alphabet expansion. By incorporating hydrophobic UBs, the affinities of DNA aptamers to target proteins are increased over 100-fold, as compared with those of conventional aptamers with only the natural four letters. However, there is still plenty of room for improvement of the methods for routinely generating high-affinity UB-containing DNA (UB-DNA) aptamers. The success probabilities of the high-affinity aptamer generation depend on the existence of the aptamer candidate sequences in the initial library. We estimated the success probabilities by analysing several UB-DNA aptamers that we generated, as examples. In addition, we investigated the possible improvement of conventional aptamer affinities by introducing one UB at specific positions. Our data revealed that UB-DNA aptamers adopt specific tertiary structures, in which many bases including UBs interact with target proteins for high affinity, suggesting the importance of the UB-DNA library design. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Michiko Kimoto
- Xenolis Pte Ltd, 79 Science Park Drive, #06-01/08, Cintech IV, Singapore 118264, Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technologyand Research (A*STAR), 31 Biopolis Way, #07-01 Nanos, Singapore 138669, Singapore
| | - Hui Pen Tan
- Xenolis Pte Ltd, 79 Science Park Drive, #06-01/08, Cintech IV, Singapore 118264, Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technologyand Research (A*STAR), 31 Biopolis Way, #07-01 Nanos, Singapore 138669, Singapore
| | - Yaw Sing Tan
- Xenolis Pte Ltd, 79 Science Park Drive, #06-01/08, Cintech IV, Singapore 118264, Singapore
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Nur Afiqah Binte Mohd Mislan
- Xenolis Pte Ltd, 79 Science Park Drive, #06-01/08, Cintech IV, Singapore 118264, Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technologyand Research (A*STAR), 31 Biopolis Way, #07-01 Nanos, Singapore 138669, Singapore
| | - Ichiro Hirao
- Xenolis Pte Ltd, 79 Science Park Drive, #06-01/08, Cintech IV, Singapore 118264, Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technologyand Research (A*STAR), 31 Biopolis Way, #07-01 Nanos, Singapore 138669, Singapore
| |
Collapse
|
16
|
Chauhan NK, Anand A, Sharma A, Dhiman K, Gosain TP, Singh P, Singh P, Khan E, Chattopadhyay G, Kumar A, Sharma D, Ashish, Sharma TK, Singh R. Structural and Functional Characterization of Rv0792c from Mycobacterium tuberculosis: Identifying Small Molecule Inhibitor against HutC Protein. Microbiol Spectr 2023; 11:e0197322. [PMID: 36507689 PMCID: PMC9927256 DOI: 10.1128/spectrum.01973-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In order to adapt in host tissues, microbial pathogens regulate their gene expression through a variety of transcription factors. Here, we have functionally characterized Rv0792c, a HutC homolog from Mycobacterium tuberculosis. In comparison to the parental strain, a strain of M. tuberculosis with a Rv0792c mutant was compromised for survival upon exposure to oxidative stress and infection in guinea pigs. RNA sequencing analysis revealed that Rv0792c regulates the expression of genes involved in stress adaptation and virulence of M. tuberculosis. Solution small-angle X-ray scattering (SAXS) data-steered model building confirmed that the C-terminal region plays a pivotal role in dimer formation. Systematic evolution of ligands by exponential enrichment (SELEX) resulted in the identification of single-strand DNA (ssDNA) aptamers that can be used as a tool to identify small-molecule inhibitors targeting Rv0792c. Using SELEX and SAXS data-based modeling, we identified residues essential for Rv0792c's aptamer binding activity. In this study, we also identified I-OMe-Tyrphostin as an inhibitor of Rv0792c's aptamer and DNA binding activity. The identified small molecule reduced the growth of intracellular M. tuberculosis in macrophages. The present study thus provides a detailed shape-function characterization of a HutC family of transcription factor from M. tuberculosis. IMPORTANCE Prokaryotes encode a large number of GntR family transcription factors that are involved in various fundamental biological processes, including stress adaptation and pathogenesis. Here, we investigated the structural and functional role of Rv0792c, a HutC homolog from M. tuberculosis. We demonstrated that Rv0792c is essential for M. tuberculosis to adapt to oxidative stress and establish disease in guinea pigs. Using a systematic evolution of ligands by exponential enrichment (SELEX) approach, we identified ssDNA aptamers from a random ssDNA library that bound to Rv0792c protein. These aptamers were thoroughly characterized using biochemical and biophysical assays. Using SAXS, we determined the structural model of Rv0792c in both the presence and absence of the aptamers. Further, using a combination of SELEX and SAXS methodologies, we identified I-OMe-Tyrphostin as a potential inhibitor of Rv0792c. Here we provide a detailed functional characterization of a transcription factor belonging to the HutC family from M. tuberculosis.
Collapse
Affiliation(s)
- Neeraj Kumar Chauhan
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Anjali Anand
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Arun Sharma
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Kanika Dhiman
- Institute of Microbial Technologygrid.417641.1, Council of Scientific and Industrial Research, Chandigarh, India
| | - Tannu Priya Gosain
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Prashant Singh
- Institute of Microbial Technologygrid.417641.1, Council of Scientific and Industrial Research, Chandigarh, India
| | - Padam Singh
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Eshan Khan
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indoregrid.450280.b, Indore, India
| | | | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indoregrid.450280.b, Indore, India
| | - Deepak Sharma
- Institute of Microbial Technologygrid.417641.1, Council of Scientific and Industrial Research, Chandigarh, India
| | - Ashish
- Institute of Microbial Technologygrid.417641.1, Council of Scientific and Industrial Research, Chandigarh, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institutegrid.464764.3, Faridabad, Haryana, India
| |
Collapse
|
17
|
A review: Construction of aptamer screening methods based on improving the screening rate of key steps. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Shao Y, Tian R, Duan J, Wang M, Cao J, Cao Z, Li G, Jin F, Abd El-Aty AM, She Y. A Novel Fluorescent Sensor Based on Aptamer and qPCR for Determination of Glyphosate in Tap Water. SENSORS (BASEL, SWITZERLAND) 2023; 23:649. [PMID: 36679445 PMCID: PMC9863111 DOI: 10.3390/s23020649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Glyphosate (GLYP) is a broad-spectrum, nonselective, organic phosphine postemergence herbicide registered for many food and nonfood fields. Herein, we developed a biosensor (Mbs@dsDNA) based on carboxylated modified magnetic beads incubated with NH2-polyA and then hybridized with polyT-glyphosate aptamer and complementary DNA. Afterwards, a quantitative detection method based on qPCR was established. When the glyphosate aptamer on Mbs@dsDNA specifically recognizes glyphosate, complementary DNA is released and then enters the qPCR signal amplification process. The linear range of the method was 0.6 μmol/L−30 mmol/L and the detection limit was set at 0.6 μmol/L. The recoveries in tap water ranged from 103.4 to 104.9% and the relative standard deviations (RSDs) were <1%. The aptamer proposed in this study has good potential for recognizing glyphosate. The detection method combined with qPCR might have good application prospects in detecting and supervising other pesticide residues.
Collapse
Affiliation(s)
- Yong Shao
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| | - Run Tian
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| | - Jiaqi Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Miao Wang
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| | - Jing Cao
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| | - Zhen Cao
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fen Jin
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250353, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Yongxin She
- Institute of Quality Standardization & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture and Rural Areas, Beijing 100081, China
| |
Collapse
|
19
|
Li D, Fang C, Li H, Tu Y. Fluorescence/electrochemiluminescence approach for instant detection of glycated hemoglobin index. Anal Biochem 2022; 659:114958. [PMID: 36273622 DOI: 10.1016/j.ab.2022.114958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
The percentage of glycated hemoglobin (HbA1c) in total hemoglobin (Hb) is an important index for the diagnosis of Type II diabetes (T2D) because it reflects the long-term glucose level in blood. Herein, employing a one-pot co-reduction approach using glutathione (GSH) as structure-directing agent, a cluster-like AuAg nanoparticle (AuAg NPs) material was synthesized, therefore an electrochemiluminescence (ECL) aptamer-sensor for HbA1c detection was developed based on functionalized electrode with this material. Meanwhile, the quantitative determination of total Hb was realized based on the quenching effect of Hb on the fluorescence (FL) of luminol. Under compatible conditions, the results of both indexes can be satisfactorily acquired. This multimodal detection system has a good linear response toward Hb from 0.1 to 2.5 μM and HbA1c from 0.005 to 0.5 μM. The blood test proves this strategy is capable of accurate Hb and HbA1c detection, thus to obtain the percentage of HbA1c in total Hb (HbA1c%), which has the potential application for clinical diagnosis of diabetes mellitus.
Collapse
Affiliation(s)
- Dongning Li
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China
| | - Chen Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Huiling Li
- The First Affiliated Hospital, Nursing College, Soochow University, Suzhou, 215006, PR China.
| | - Yifeng Tu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
20
|
Dong S, He K, Yang J, Shi Q, Guan L, Chen Z, Feng J. A simple mesoporous silica Nanoparticle-based aptamers SERS sensor for the detection of acetamiprid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121725. [PMID: 35985229 DOI: 10.1016/j.saa.2022.121725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, we developed a novel, rapid, simple, and sensitive nano sensor based on the controlled release of 4-Aminothiophenol (4-ATP) signal molecules from aptamers (Apts) modified aminated mesoporous silica nanoparticles (MSNs-NH2) for the quantitative detection of acetamiprid (ACE). Firstly, we synthesized the positively charged MSNs-NH2 by one-pot method, then loaded 4-ATP signal molecules into the pore, and finally electrostatically adsorbed the Apts onto the MSNs-NH2, which acts as a gate to control the release of signal molecules. When ACE is added to the system, ACE preferentially and specifically binds to Apts, so the gate opens and 4-ATP signal molecules are released from the pore. Meanwhile, the silver-loaded mesoporous silica nanoparticles (Ag@SiO2) were prepared by one-pot method as surface-enhanced Raman spectroscopy (SERS) substrate to amplify the signal. The intensity of 4-ATP signal molecules at 1433 cm-1 position was observed to has a linear relationship with the concentration of ACE by SERS detection. Under the optimized detection conditions, a linear correlation was observed in the range of 5-60 ng/mL (R2 = 0.99749), and the limit of detection (LOD) was 2.66 ng/mL. The method has high sensitivity, good selectivity and reproducibility, and can be used for actual sample analysis with the recovery rate of 96.24-103.6 %. This study provides a reference for the rapid and convenient detection of ACE in agricultural products.
Collapse
Affiliation(s)
- Sa Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Kangli He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qiuyun Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lingjun Guan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
21
|
Chauhan P, Datta I, Dhiman A, Shankar U, Kumar A, Vashist A, Sharma TK, Tyagi JS. DNA Aptamer Targets Mycobacterium tuberculosis DevR/DosR Response Regulator Function by Inhibiting Its Dimerization and DNA Binding Activity. ACS Infect Dis 2022; 8:2540-2551. [PMID: 36332135 DOI: 10.1021/acsinfecdis.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tuberculosis is recognized as one of the major public health threats worldwide. The DevR-DevS (DosR/DosS) two-component system is considered a novel drug target in Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, owing to its central role in bacterial adaptation and long-term persistence. An increase in DevR levels and the decreased permeability of the mycobacterial cell wall during hypoxia-associated dormancy pose formidable challenges to the development of anti-DevR compounds. Using an in vitro evolution approach of Systematic Evolution of Ligands by EXponential enrichment (SELEX), we developed a panel of single-stranded DNA aptamers that interacted with Mtb DevR protein in solid-phase binding assays. The best-performing aptamer, APT-6, forms a G-quadruplex structure and inhibits DevR-dependent transcription in Mycobacterium smegmatis. Mechanistic studies indicate that APT-6 functions by inhibiting the dimerization and DNA binding activity of DevR protein. In silico studies reveal that APT-6 interacts majorly with C-terminal domain residues that participate in DNA binding and formation of active dimer species of DevR. To the best of our knowledge, this is the first report of a DNA aptamer that inhibits the function of a cytosolic bacterial response regulator. By inhibiting the dimerization of DevR, APT-6 targets an essential step in the DevR activation mechanism, and therefore, it has the potential to universally block the expression of DevR-regulated genes for intercepting dormancy pathways in mycobacteria. These findings also pave the way for exploring aptamer-based approaches to design and develop potent inhibitors against intracellular proteins of various bacterial pathogens of global concern.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Ishara Datta
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Uma Shankar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore453552, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana121001, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| |
Collapse
|
22
|
He K, Yang J, Shi Q, Guan L, Sun L, Chen Z, Feng J, Dong S. Fluorescent aptamer-modified mesoporous silica nanoparticles for quantitative acetamiprid detection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88182-88192. [PMID: 35831655 DOI: 10.1007/s11356-022-21970-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Acetamiprid (ACE) is widely used to control aphids, brown planthoppers, and other pests in agricultural production. However, ACE is difficult to degrade in the environment, resulting in excessive residue, which causes acute and chronic toxicity to human beings and non-target organisms. Therefore, the development of a rapid, convenient, and highly sensitive method to quantify ACE is essential. In this study, aminated mesoporous silica nanoparticles (MSNs-NH2) were synthesized by one-pot method, and 6-carboxyl fluorescein modified aptamers (FAM-Apt) of ACE were adsorbed on the surface of MSNs-NH2 by electrostatic interaction. Finally, a simple and sensitive fluorescence analysis method for the rapid detection of ACE was established. In the absence of ACE, the negatively charged FAM-Apt was electrostatically bound to the positively charged MSNs-NH2, followed by centrifugation to precipitate MSNs-NH2@FAM-Apt, and no fluorescent signal was detected in the supernatant. In the presence of ACE, the specific combination of FAM-Apt with ACE was greater than its electrostatic interaction with MSNs-NH2, so that FAM-Apt was separated from MSNs-NH2, and the supernatant had strong fluorescence signal after centrifugation. For ACE detection, the linear concentration range was 50-1100 ng/mL, and the detection limit (LOD) was 30.26 ng/mL. The method exhibited high sensitivity, selectivity and reproducibility, which is suitable for practical sample analysis and provides guidance for rapid detection of pesticide residues.
Collapse
Affiliation(s)
- Kangli He
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Qiuyun Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Lingjun Guan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Li Sun
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Sa Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
23
|
Mollica L, Cupaioli FA, Rossetti G, Chiappori F. An overview of structural approaches to study therapeutic RNAs. Front Mol Biosci 2022; 9:1044126. [PMID: 36387283 PMCID: PMC9649582 DOI: 10.3389/fmolb.2022.1044126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2023] Open
Abstract
RNAs provide considerable opportunities as therapeutic agent to expand the plethora of classical therapeutic targets, from extracellular and surface proteins to intracellular nucleic acids and its regulators, in a wide range of diseases. RNA versatility can be exploited to recognize cell types, perform cell therapy, and develop new vaccine classes. Therapeutic RNAs (aptamers, antisense nucleotides, siRNA, miRNA, mRNA and CRISPR-Cas9) can modulate or induce protein expression, inhibit molecular interactions, achieve genome editing as well as exon-skipping. A common RNA thread, which makes it very promising for therapeutic applications, is its structure, flexibility, and binding specificity. Moreover, RNA displays peculiar structural plasticity compared to proteins as well as to DNA. Here we summarize the recent advances and applications of therapeutic RNAs, and the experimental and computational methods to analyze their structure, by biophysical techniques (liquid-state NMR, scattering, reactivity, and computational simulations), with a focus on dynamic and flexibility aspects and to binding analysis. This will provide insights on the currently available RNA therapeutic applications and on the best techniques to evaluate its dynamics and reactivity.
Collapse
Affiliation(s)
- Luca Mollica
- Department of Medical Biotechnologies and Translational Medicine, L.I.T.A/University of Milan, Milan, Italy
| | | | | | - Federica Chiappori
- National Research Council—Institute for Biomedical Technologies, Milan, Italy
| |
Collapse
|
24
|
Kohlberger M, Gadermaier G. SELEX: Critical factors and optimization strategies for successful aptamer selection. Biotechnol Appl Biochem 2022; 69:1771-1792. [PMID: 34427974 PMCID: PMC9788027 DOI: 10.1002/bab.2244] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/22/2021] [Indexed: 12/30/2022]
Abstract
Within the last decade, the application range of aptamers in biochemistry and medicine has expanded rapidly. More than just a replacement for antibodies, these intrinsically structured RNA- or DNA-oligonucleotides show great potential for utilization in diagnostics, specific drug delivery, and treatment of certain medical conditions. However, what is analyzed less frequently is the process of aptamer identification known as systematic evolution of ligands by exponential enrichment (SELEX) and the functional mechanisms that lie at its core. SELEX involves numerous singular processes, each of which contributes to the success or failure of aptamer generation. In this review, critical steps during aptamer selection are discussed in-depth, and specific problems are presented along with potential solutions. The discussed aspects include the size and molecule type of the selected target, the nature and stringency of the selection process, the amplification step with its possible PCR bias, the efficient regeneration of RNA or single-stranded DNA, and the different sequencing procedures and screening assays currently available. Finally, useful quality control steps and their role within SELEX are presented. By understanding the mechanisms through which aptamer selection is influenced, the design of more efficient SELEX procedures leading to a higher success rate in aptamer identification is enabled.
Collapse
Affiliation(s)
- Michael Kohlberger
- Department of BiosciencesParis Lodron University SalzburgSalzburgAustria,Christian Doppler Laboratory for Biosimilar CharacterizationParis Lodron University SalzburgSalzburgAustria
| | - Gabriele Gadermaier
- Department of BiosciencesParis Lodron University SalzburgSalzburgAustria,Christian Doppler Laboratory for Biosimilar CharacterizationParis Lodron University SalzburgSalzburgAustria
| |
Collapse
|
25
|
Onaş AM, Dascălu C, Raicopol MD, Pilan L. Critical Design Factors for Electrochemical Aptasensors Based on Target-Induced Conformational Changes: The Case of Small-Molecule Targets. BIOSENSORS 2022; 12:816. [PMID: 36290952 PMCID: PMC9599214 DOI: 10.3390/bios12100816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nucleic-acid aptamers consisting in single-stranded DNA oligonucleotides emerged as very promising biorecognition elements for electrochemical biosensors applied in various fields such as medicine, environmental, and food safety. Despite their outstanding features, such as high-binding affinity for a broad range of targets, high stability, low cost and ease of modification, numerous challenges had to be overcome from the aptamer selection process on the design of functioning biosensing devices. Moreover, in the case of small molecules such as metabolites, toxins, drugs, etc., obtaining efficient binding aptamer sequences proved a challenging task given their small molecular surface and limited interactions between their functional groups and aptamer sequences. Thus, establishing consistent evaluation standards for aptamer affinity is crucial for the success of these aptamers in biosensing applications. In this context, this article will give an overview on the thermodynamic and structural aspects of the aptamer-target interaction, its specificity and selectivity, and will also highlight the current methods employed for determining the aptamer-binding affinity and the structural characterization of the aptamer-target complex. The critical aspects regarding the generation of aptamer-modified electrodes suitable for electrochemical sensing, such as appropriate bioreceptor immobilization strategy and experimental conditions which facilitate a convenient anchoring and stability of the aptamer, are also discussed. The review also summarizes some effective small molecule aptasensing platforms from the recent literature.
Collapse
Affiliation(s)
- Andra Mihaela Onaş
- Advanced Polymer Materials Group, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Constanţa Dascălu
- Faculty of Applied Sciences, University ‘Politehnica’ of Bucharest, 313 Splaiul Independenţei, District 6, 060042 Bucharest, Romania
| | - Matei D. Raicopol
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| | - Luisa Pilan
- Faculty of Chemical Engineering and Biotechnologies, University ‘Politehnica’ of Bucharest, 1-7 Gheorghe Polizu, District 1, 011061 Bucharest, Romania
| |
Collapse
|
26
|
Takao J, Nagai R, Endo T, Hisamoto H, Sueyoshi K. Aptamer Selection Based on Microscale Electrophoretic Filtration Using a Hydrogel-Plugged Capillary Device. Molecules 2022; 27:molecules27185818. [PMID: 36144553 PMCID: PMC9505737 DOI: 10.3390/molecules27185818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
This study reports a novel aptamer selection method based on microscale electrophoretic filtration. Aptamers are versatile materials that recognize specific targets and are attractive for their applications in biosensors, diagnosis, and therapy. However, their practical applications remain scarce due to issues with conventional selection methods, such as complicated operations, low-efficiency separation, and expensive apparatus. To overcome these drawbacks, a selection method based on microscale electrophoretic filtration using a capillary partially filled with hydrogel was developed. The electrophoretic filtration of model target proteins (immunoglobulin E (IgE)) using hydrogel, the electrokinetic injection of DNAs to interact with the trapped proteins, the elimination of DNAs with weak interactions, and the selective acquisition of aptamer candidates with strong interactions were successfully demonstrated, revealing the validity of the proposed concept. Two aptamer candidates for IgE were obtained after three selection cycles, and their affinity for the target was confirmed to be less than 1 nM based on their dissociation constant (KD) values. Therefore, the proposed method allows for the selection of aptamers with simple operations, highly effective separation based on electrophoresis and filtration, and a relatively cheap apparatus with disposable devices.
Collapse
Affiliation(s)
- Junku Takao
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 545-0051, Japan
| | - Reina Nagai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 545-0051, Japan
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 545-0051, Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 545-0051, Japan
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, Osaka 545-0051, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Correspondence:
| |
Collapse
|
27
|
Kneißle K, Krämer M, Kissmann AK, Xing H, Müller F, Amann V, Noschka R, Gottschalk KE, Bozdogan A, Andersson J, Weil T, Spellerberg B, Stenger S, Rosenau F. A Polyclonal SELEX Aptamer Library Allows Differentiation of Candida albicans, C. auris and C. parapsilosis Cells from Human Dermal Fibroblasts. J Fungi (Basel) 2022; 8:jof8080856. [PMID: 36012844 PMCID: PMC9410195 DOI: 10.3390/jof8080856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Easy and reliable identification of pathogenic species such as yeasts, emerging as problematic microbes originating from the genus Candida, is a task in the management and treatment of infections, especially in hospitals and other healthcare environments. Aptamers are seizing an already indispensable role in different sensing applications as binding entities with almost arbitrarily tunable specificities and optimizable affinities. Here, we describe a polyclonal SELEX library that not only can specifically recognize and fluorescently label Candida cells, but is also capable to differentiate C. albicans, C. auris and C. parapsilosis cells in flow-cytometry, fluorometric microtiter plate assays and fluorescence microscopy from human cells, exemplified here by human dermal fibroblasts. This offers the opportunity to develop diagnostic tools based on this library. Moreover, these specific and robust affinity molecules could also serve in the future as potent binding entities on biomaterials and as constituents of technical devices and will thus open avenues for the development of cost-effective and easily accessible next generations of electronic biosensors in clinical diagnostics and novel materials for the specific removal of pathogenic cells from human bio-samples.
Collapse
Affiliation(s)
- Katharina Kneißle
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Markus Krämer
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
- Correspondence: (A.-K.K.); (F.R.)
| | - Hu Xing
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Franziska Müller
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Valerie Amann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Reiner Noschka
- Institute of Medical Microbiology and Hygiene, University Clinic of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Kay-Eberhard Gottschalk
- Institute of Experimental Physics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Anil Bozdogan
- Center for Electrochemical Surface Technology (CEST), Austrian Institute of Technology, 3420 Tulln, Austria
- AIT Austrian Institute of Technology, Biosensor Technologies, Giefinggasse 4, 1210 Vienna, Austria
| | - Jakob Andersson
- AIT Austrian Institute of Technology, Biosensor Technologies, Giefinggasse 4, 1210 Vienna, Austria
| | - Tanja Weil
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Clinic of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, University Clinic of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany
- Correspondence: (A.-K.K.); (F.R.)
| |
Collapse
|
28
|
Fabrication of Silicon Nanowire Sensors for Highly Sensitive pH and DNA Hybridization Detection. NANOMATERIALS 2022; 12:nano12152652. [PMID: 35957087 PMCID: PMC9370444 DOI: 10.3390/nano12152652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
A highly sensitive silicon nanowire (SiNW)-based sensor device was developed using electron beam lithography integrated with complementary metal oxide semiconductor (CMOS) technology. The top-down fabrication approach enables the rapid fabrication of device miniaturization with uniform and strictly controlled geometric and surface properties. This study demonstrates that SiNW devices are well-aligned with different widths and numbers for pH sensing. The device consists of a single nanowire with 60 nm width, exhibiting an ideal pH responsivity (18.26 × 106 Ω/pH), with a good linear relation between the electrical response and a pH level range of 4–10. The optimized SiNW device is employed to detect specific single-stranded deoxyribonucleic acid (ssDNA) molecules. To use the sensing area, the sensor surface was chemically modified using (3-aminopropyl) triethoxysilane and glutaraldehyde, yielding covalently linked nanowire ssDNA adducts. Detection of hybridized DNA works by detecting the changes in the electrical current of the ssDNA-functionalized SiNW sensor, interacting with the targeted ssDNA in a label-free way. The developed biosensor shows selectivity for the complementary target ssDNA with linear detection ranging from 1.0 × 10−12 M to 1.0 × 10−7 M and an attained detection limit of 4.131 × 10−13 M. This indicates that the use of SiNW devices is a promising approach for the applications of ion detection and biomolecules sensing and could serve as a novel biosensor for future biomedical diagnosis.
Collapse
|
29
|
Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. In vitro selection and characterization of a DNA aptamer targeted to Prorocentrum minimum-A common harmful algae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154771. [PMID: 35339548 DOI: 10.1016/j.scitotenv.2022.154771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Prorocentrum minimum is a common diarrhetic shellfish toxins-producing marine microalga that may seriously endanger marine resources and cause great economic losses. The development of a novel rapid detection technique is of great importance for the prevention and control of the damage caused by P. minimum. In this study, the aptamer against P. minimum was for the first time generated from an artificially synthesized single-stranded DNA library by systematic evolution of ligand by exponential enrichment (SELEX), using P. minimum and P. minimum-related species, including Prorocentrum donghaiense, Prorocentrum lima and Prorocentrum micans as target and counter-screening species, respectively. The aptamer library was successfully obtained at the end of 18 rounds of SELEX-screening by continuously monitoring the binding ratio of the resultant ssDNA from each round. Three sequences (Apt 1, Apt 2 and Apt 3) with the highest frequency in the aptamer library resulted from high-throughput sequencing were first selected as candidate aptamers. The secondary structure of these sequences was predicted and analyzed. In addition, the specificity and affinity of these candidate aptamers were determined by flow cytometry analysis. The results indicated that these aptamers had high specificity and affinity, with a KD of (224.6 ± 8.8) nM (Apt 1), (286.6 ± 13.9) nM (Apt 2) and (388.5 ± 44.6) nM (Apt 3), respectively. Apt 1 was therefore chosen as the best aptamer against P. minimum. Finally, the fluorescence microscopic examination further confirmed that Apt 1 can well bind to P. minimum. In summary, Apt 1 may be promising for being used as a novel molecular recognition element for P. minimum.
Collapse
Affiliation(s)
- Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Jinju Ma
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| |
Collapse
|
30
|
Davydova A, Vorobyeva M. Aptamer-Based Biosensors for the Colorimetric Detection of Blood Biomarkers: Paving the Way to Clinical Laboratory Testing. Biomedicines 2022; 10:biomedicines10071606. [PMID: 35884911 PMCID: PMC9313021 DOI: 10.3390/biomedicines10071606] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical diagnostics for human diseases rely largely on enzyme immunoassays for the detection of blood biomarkers. Nevertheless, antibody-based test systems have a number of shortcomings that have stimulated a search for alternative diagnostic assays. Oligonucleotide aptamers are now considered as promising molecular recognizing elements for biosensors (aptasensors) due to their high affinity and specificity of target binding. At the moment, a huge variety of aptasensors have been engineered for the detection of various analytes, especially disease biomarkers. However, despite their great potential and excellent characteristics in model systems, only a few of these aptamer-based assays have been translated into practice as diagnostic kits. Here, we will review the current progress in the engineering of aptamer-based colorimetric assays as the most suitable format for clinical lab diagnostics. In particular, we will focus on aptasensors for the detection of blood biomarkers of cardiovascular, malignant, and neurodegenerative diseases along with common inflammation biomarkers. We will also analyze the main obstacles that have to be overcome before aptamer test systems can become tantamount to ELISA for clinical diagnosis purposes.
Collapse
|
31
|
Kissmann AK, Andersson J, Bozdogan A, Amann V, Krämer M, Xing H, Raber HF, Kubiczek DH, Aspermair P, Knoll W, Rosenau F. Polyclonal aptamer libraries as binding entities on a graphene FET based biosensor for the discrimination of apo- and holo-retinol binding protein 4. NANOSCALE HORIZONS 2022; 7:770-778. [PMID: 35695183 DOI: 10.1039/d1nh00605c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oligonucleotide DNA aptamers represent an emergently important class of binding entities towards as different analytes as small molecules or even whole cells. Without requiring the canonical isolation of individual aptamers following the SELEX process, the focused polyclonal libraries prepared by this in vitro evolution and selection can directly be used to label their dedicated targets and to serve as binding molecules on surfaces. Here we report the first instance of a sensor able to discriminate between loaded and unloaded retinol-binding protein 4 (RBP4), an important biomarker for the prediction of diabetes and kidney disease. The sensor relies on two aptamer libraries tuned such that they discriminate between the protein isoforms, requiring no further sample labelling to detect RBP4 in both states. The evolution, binding properties of the libraries and the functionalization of graphene FET sensor chips are presented as well as the functionality of the resulting biosensor.
Collapse
Affiliation(s)
- Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Jakob Andersson
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria.
| | - Anil Bozdogan
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria.
- CEST Kompetenzzentrum für Elektrochemische Oberflächentechnologie GmbH, Viktor Kaplan Straße 2, Wiener Neustadt, Austria
| | - Valerie Amann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Markus Krämer
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Hu Xing
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Heinz Fabian Raber
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Dennis H Kubiczek
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Patrik Aspermair
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria.
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria.
- Danube Private University, Steiner Landstraße 124, 3500 Krems an der Donau, Austria
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
32
|
El-Husseini DM, Sayour AE, Melzer F, Mohamed MF, Neubauer H, Tammam RH. Generation and Selection of Specific Aptamers Targeting Brucella Species through an Enhanced Cell-SELEX Methodology. Int J Mol Sci 2022; 23:ijms23116131. [PMID: 35682807 PMCID: PMC9180945 DOI: 10.3390/ijms23116131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
Brucellae are Gram-negative, aerobic, non-motile coccobacilli causing brucellosis in man and animals. The disease is one of the most significant yet neglected global zoonoses. Especially in developing countries, brucellosis is causing public health problems and economic losses to private animal owners and national revenues. Composed of oligonucleotides, aptamers are chemical analogues of antibodies that are promising components for developing aptamer-based rapid, sensitive, and specific tests to identify the Brucella group of bacteria. For this purpose, aptamers were generated and selected by an enhanced protocol of cell systematic evolution of ligands by exponential enrichment (cell-SELEX). This enhanced cell-SELEX procedure involved the combination of both conventional and toggle cell-SELEX to boost the specificity and binding affinity to whole Brucella cells. This procedure, combined with high-throughput sequencing of the resulting aptamer pools, comprehensive bioinformatics analysis, and wet lab validation assays, led to the selection of a highly sensitive and specific aptamer for those Brucella species known to circulate in Egypt. The isolated candidate aptamer showed dissociation constant (KD) values of 43.5 ± 11, 61.5 ± 8, and 56 ± 10.8 nM for B. melitensis, B. abortus, and B. suis, respectively. This is the first development of a Brucella-specific aptamer using an enhanced combination of conventional and toggle cell-SELEX to the authors’ best knowledge.
Collapse
Affiliation(s)
- Dalia M. El-Husseini
- Biotechnology Department, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Correspondence: (D.M.E.-H.); (F.M.)
| | - Ashraf E. Sayour
- Molecular Biomimetics Research Group, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt;
| | - Falk Melzer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Correspondence: (D.M.E.-H.); (F.M.)
| | - Magda F. Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.F.M.); (R.H.T.)
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
| | - Reham H. Tammam
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.F.M.); (R.H.T.)
| |
Collapse
|
33
|
Modelling aptamers with nucleic acid mimics (NAM): From sequence to three-dimensional docking. PLoS One 2022; 17:e0264701. [PMID: 35320268 PMCID: PMC8942228 DOI: 10.1371/journal.pone.0264701] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded oligonucleotides, formerly evolved by Systematic Evolution of Ligands by EXponential enrichment (SELEX), that fold into functional three-dimensional structures. Such conformation is crucial for aptamers' ability to bind to a target with high affinity and specificity. Unnatural nucleotides have been used to develop nucleic acid mimic (NAM) aptamers with increased performance, such as biological stability. Prior knowledge of aptamer-target interactions is critical for applying post-SELEX modifications with unnatural nucleotides since it can affect aptamers' structure and performance. Here, we describe an easy-to-apply in silico workflow using free available software / web servers to predict the tertiary conformation of NAM, DNA and RNA aptamers, as well as the docking with the target molecule. Representative 2'-O-methyl (2'OMe), locked nucleic acid (LNA), DNA and RNA aptamers, with experimental data deposited in Protein Data Bank, were selected to validate the workflow. All aptamers' tertiary structure and docking models were successfully predicted with good structural similarity to the experimental data. Thus, this workflow will boost the development of aptamers, particularly NAM aptamers, by assisting in the rational modification of specific nucleotides and avoiding trial-and-error approaches.
Collapse
|
34
|
|
35
|
Kumari P, Dhiman A, Lavania S, Sharma P, Rath D, Anthwal D, Gupta RK, Kochar A, Sharma N, Gadpayle A, Taneja R, Sharma L, Haldar S, Sharma TK, Tyagi JS. Assessment of DNA aptamers targeting GlcB and HspX antigens for application in the diagnosis of abdominal tuberculosis. Tuberculosis (Edinb) 2022; 134:102206. [DOI: 10.1016/j.tube.2022.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/07/2023]
|
36
|
Ramana LN, Mathapati SS, Salvi N, Khadilkar MV, Malhotra A, Santra V, Sharma TK. A paper microfluidic device based colorimetric sensor for the detection and discrimination of elapid versus viper envenomation. Analyst 2022; 147:685-694. [PMID: 35072182 DOI: 10.1039/d1an01698a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Snake bites are a neglected tropical disease, causing mortality and severe damage to various vital organs like the nervous system, kidneys and heart. There is increasing interest in designing new antivenom treatments that are more specific to particular groups (either taxonomic or regional) of species, given the increasing evidence that current polyvalent Indian antivenom is ineffective in many situations. Under these circumstances, being able to detect the species, or a group of species, responsible for the envenomation becomes important. Unfortunately, no such diagnostic tool is available in the Indian market. Such a tool will need to be rapid, sensitive and affordable. To address this need, we have combined the power of nanotechnology and paper microfluidics and herein report a device that has the ability to detect and differentiate viper venom from elapid and scorpion venom. In principle, this assay is based on the release of the dye from the stimuli-responsive glutaraldehyde cross-linked methylene blue-loaded gelatin (GMG) nanoparticles in the presence of snake venom metalloproteases and serine proteases. The developed equipment-free assay can detect and discriminate viper venom from that of elapids and scorpions. The low-end detection limit of the sensor is ∼3.0 ng for the saw-scaled viper Echis carinatus, while the same for Russell's viper Daboia russelii is ∼6.0 ng. The performance of the sensor remains unaltered for different batches of GMG nanoparticles. Altogether, this finding establishes the role of nanotechnology and paper microfluidics in the rapid and accurate detection of viper venom.
Collapse
Affiliation(s)
- Lakshmi Narashimhan Ramana
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India.
| | - Santosh S Mathapati
- Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - Nitin Salvi
- Premium Serums and Vaccines Pvt. Ltd, Maharashtra, 410504, India
| | - M V Khadilkar
- Premium Serums and Vaccines Pvt. Ltd, Maharashtra, 410504, India
| | - Anita Malhotra
- School of Natural sciences, College of Environment sciences and Engineering, Bangor University, Bangor LL57 2UW, UK
| | - Vishal Santra
- Society for Nature Conservation, Research and Community Engagement (CONCERN), Nalikul, Hooghly, 712407, West Bengal, India
- Captive and Field Herpetology, 13 Hirfron, Anglesey, LL65 1YU, Wales, UK
| | - Tarun Kumar Sharma
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India.
| |
Collapse
|
37
|
Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, García-Hernández M, Martín ME, García-Sacristán A, González VM, Herrero-Martínez JM. Selection and characterization of DNA aptamers for highly selective recognition of the major allergen of olive pollen Ole e 1. Anal Chim Acta 2022; 1192:339334. [PMID: 35057930 DOI: 10.1016/j.aca.2021.339334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023]
Abstract
In this study, single-stranded DNA aptamers with binding affinity to Ole e 1, the major allergen of olive pollen, were selected using systematic evolution of ligands by exponential enrichment (SELEX) method. Binding of the aptamers was firstly established by enzyme-linked oligonucleotide assay (ELONA) and aptaprecipitation assays. Additionally, aptamer-modified monolithic capillary chromatography was used in order to evaluate the recognition of this allergenic protein against other non-target proteins. The results indicated that AptOle1#6 was the aptamer that provided the highest affinity for Ole e 1. The selected aptamer showed good selective recognition of this protein, being not able to retain other non-target proteins (HSA, cyt c, and other pollen protein such as Ole e 9). The feasibility of the affinity monolithic column was demonstrated by selective recognition of Ole e 1 in an allergy skin test. The stability and reproducibility of this monolithic column was suitable, with relative standard deviations (RSDs) in retention times and peak area values of 7.8 and 9.3%, respectively (column-to-column reproducibility). This is the first study that describes the design of an efficient DNA aptamer for this relevant allergen.
Collapse
Affiliation(s)
- María Vergara-Barberán
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain
| | - María Jesús Lerma-García
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain
| | - Ernesto F Simó-Alfonso
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain
| | - Marta García-Hernández
- Grupo de Aptámeros. Departamento de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal (IRYCIS), Carretera de Colmenar Viejo Km.9.100, CP-28034, Madrid, Spain
| | - M Elena Martín
- Grupo de Aptámeros. Departamento de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal (IRYCIS), Carretera de Colmenar Viejo Km.9.100, CP-28034, Madrid, Spain
| | | | - Víctor M González
- Grupo de Aptámeros. Departamento de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal (IRYCIS), Carretera de Colmenar Viejo Km.9.100, CP-28034, Madrid, Spain; Aptus Biotech SL, Av. Cardenal Herrera Oria 298, CP-28035, Madrid, Spain
| | - José Manuel Herrero-Martínez
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain.
| |
Collapse
|
38
|
Chen XF, Zhao X, Yang Z. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases. J Med Chem 2021; 64:17601-17626. [PMID: 34854680 DOI: 10.1021/acs.jmedchem.1c01567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules selected in vitro that can bind to a broad range of targets with high affinity and specificity. As promising alternatives to conventional anti-infective agents, aptamers have gradually revealed their potential in the combat against infectious diseases. This article provides an overview on the state-of-art of aptamer-based antibacterial and antiviral therapeutic strategies. Diverse aptamers targeting pathogen-related components or whole pathogenic cells are summarized according to the species of microorganisms. These aptamers exhibited remarkable in vitro and/or in vivo inhibitory effect for pathogenic invasion, enzymatic activities, or viral replication, even for some highly drug-resistant strains and biofilms. Aptamer-mediated drug delivery and controlled drug release strategies are also included herein. Critical technical barriers of therapeutic aptamers are briefly discussed, followed by some future perspectives for their implementation into clinical utility.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China.,Guangzhou Laboratory, Guangzhou 510320, PR China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou 510005, PR China
| |
Collapse
|
39
|
Gupta A, Anand A, Jain N, Goswami S, Anantharaj A, Patil S, Singh R, Kumar A, Shrivastava T, Bhatnagar S, Medigeshi GR, Sharma TK. A novel G-quadruplex aptamer-based spike trimeric antigen test for the detection of SARS-CoV-2. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:321-332. [PMID: 34188971 PMCID: PMC8223116 DOI: 10.1016/j.omtn.2021.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
The recent SARS-CoV-2 outbreak has been declared a global health emergency. It will take years to vaccinate the whole population to protect them from this deadly virus, hence the management of SARS-CoV-2 largely depends on the widespread availability of an accurate diagnostic test. Toward addressing the unmet need of a reliable diagnostic test in the current work by utilizing the power of Systematic Evolution of Ligands by EXponential enrichment, a 44-mer G-quadruplex-forming DNA aptamer against spike trimer antigen of SARS-CoV-2 was identified. The lead aptamer candidate (S14) was characterized thoroughly for its binding, selectivity, affinity, structure, and batch-to-batch variability by utilizing various biochemical, biophysical, and in silico techniques. S14 has demonstrated a low nanomolar KD, confirming its tight binding to a spike antigen of SARS-CoV-2. S14 can detect as low as 2 nM of antigen. The clinical evaluation of S14 aptamer on nasopharyngeal swab specimens (n = 232) has displayed a highly discriminatory response between SARS-CoV-2 infected individuals from the non-infected one with a sensitivity and specificity of ∼91% and 98%, respectively. Importantly, S14 aptamer-based test has evinced a comparable performance with that of RT-PCR-based assay. Altogether, this study established the utility of aptamer technology for the detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Ankit Gupta
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Anjali Anand
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India
| | - Sandeep Goswami
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Anbalagan Anantharaj
- Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Sharanabasava Patil
- Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - Rahul Singh
- Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India
| | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India
| | - Tripti Shrivastava
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shinjini Bhatnagar
- Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | | | - Tarun Kumar Sharma
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
| | - DBT India Consortium for COVID-19 Research
- Aptamer Technology and Diagnostics Laboratory, Multidisciplinary Clinical and Translational Research, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Madhya Pradesh 453552, India
- Infection and Immunology, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
- Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India
- Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India
| |
Collapse
|
40
|
A highly specific aptamer probe targeting PD-L1 in tumor tissue sections: Mutation favors specificity. Anal Chim Acta 2021; 1185:339066. [PMID: 34711320 DOI: 10.1016/j.aca.2021.339066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
Although DNA aptamers can show comparable affinity to antibodies and have the advantage of having high batch-to-batch consistency, they often suffer from unsatisfied specificity for complex samples. The limited library size used for aptamer in vitro isolation (SELEX) has been recognized as one of the major reasons. Programmed cell death-ligand 1 (PD-L1) is both a key protein in cancer diagnostics and also immunotherapy. We report here a DNA aptamer that highly specifically binds PD-L1 expressed on the surface of various cancer cells and multiple types of tissue sections. The aptamers were selected from a DNA library containing a type II restriction endonuclease Alu I recognition site in the middle of the 40-nt random sequences, against recombinant PD-L1 rather than the whole cell or tissue section. The library enrichment was achieved by Alu I mediated-SELEX, named as REase-SELEX, in which Alu I cut off the non-binders at the recognition site and, more importantly, induced library mutations to substantially increase the library diversity. 8-60, a representative aptamer with high affinity (KD = 1.4 nM determined by SPR) successfully detected four types of cancer cells with PD-L1 expression levels from low to high by flow cytometry, normal human tonsil (gold standard for PD-L1 antibody evaluation), clinical non-small cell lung cancer (high PD-L1 expression level), and malignant melanoma (low PD-L1 expression level) tissue sections by fluorescence microscopy imaging, showing unprecedented high specificity. The results demonstrate that 8-60 is an advanced probe for PD-L1 cancer diagnostics and mutations in SELEX greatly favor aptamer specificity.
Collapse
|
41
|
Oliveira R, Pinho E, Sousa AL, DeStefano JJ, Azevedo NF, Almeida C. Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches. Trends Biotechnol 2021; 40:549-563. [PMID: 34756455 DOI: 10.1016/j.tibtech.2021.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Aptamers are structural single-stranded oligonucleotides generated in vitro to bind to a specific target molecule. Aptamers' versatility can be enhanced with nucleic acid mimics (NAMs) during or after a selection process, also known as systematic evolution of ligands by exponential enrichment (SELEX). We address advantages and limitations of the technologies used to generate NAM aptamers, especially the applicability of existing engineered polymerases to replicate NAMs and methodologies to improve aptamers after SELEX. We also discuss the limitations of existing methods for sequencing NAM sequences and bioinformatic tools to predict NAM aptamer structures. As a conclusion, we suggest that NAM aptamers might successfully compete with molecular tools based on proteins such as antibodies for future application.
Collapse
Affiliation(s)
- Ricardo Oliveira
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eva Pinho
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal
| | - Ana Luísa Sousa
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jeffrey J DeStefano
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carina Almeida
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
42
|
|
43
|
Electrochemical detection of cortisol on graphene quantum dots modified electrodes using a rationally truncated high affinity aptamer. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02086-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Nanostructure Materials: Efficient Strategies for Circulating Tumor Cells Capture, Release, and Detection. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Jing L, Qin M, Zhang X, Song Y, Zhang J, Xia X, Gao K, Han Q. A novel borax-specific ssDNA aptamer screened by high-throughput SELEX and its colorimetric assay with aggregation of AuNPs. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Complex target SELEX-based identification of DNA aptamers against Bungarus caeruleus venom for the detection of envenomation using a paper-based device. Biosens Bioelectron 2021; 193:113523. [PMID: 34333364 DOI: 10.1016/j.bios.2021.113523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/30/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022]
Abstract
Complex target SELEX always have been an intriguing approach to the scientific community, as it offers the potential discovery of novel biomarkers. We herein successfully performed SELEX on Bungarus caeruleus venom to develop a panel of highly affine aptamers that specifically recognizes the B. caeruleus (common krait) venom and was able to discriminate the B. caeruleus venom from Cobra, Russell's, and Saw-scaled viper's venom. The aptamers generated against the crude venom also lead to the identification of the specific component of the venom, which is β-Bungarotoxin, a toxin uniquely present in the B. caeruleus venom. The best performing aptamer candidates were used as a molecular recognition element in a paper-based device and were able to detect as low as 2 ng krait venom in human serum background. The developed aptamer-based paper device can be used for potential point-of-care venom detection applications due to its simplicity and affordability.
Collapse
|
47
|
Raicopol M, Pilan L. The Role of Aryldiazonium Chemistry in Designing Electrochemical Aptasensors for the Detection of Food Contaminants. MATERIALS 2021; 14:ma14143857. [PMID: 34300776 PMCID: PMC8303706 DOI: 10.3390/ma14143857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 01/19/2023]
Abstract
Food safety monitoring assays based on synthetic recognition structures such as aptamers are receiving considerable attention due to their remarkable advantages in terms of their ability to bind to a wide range of target analytes, strong binding affinity, facile manufacturing, and cost-effectiveness. Although aptasensors for food monitoring are still in the development stage, the use of an electrochemical detection route, combined with the wide range of materials available as transducers and the proper immobilization strategy of the aptamer at the transducer surface, can lead to powerful analytical tools. In such a context, employing aryldiazonium salts for the surface derivatization of transducer electrodes serves as a simple, versatile and robust strategy to fine-tune the interface properties and to facilitate the convenient anchoring and stability of the aptamer. By summarizing the most important results disclosed in the last years, this article provides a comprehensive review that emphasizes the contribution of aryldiazonium chemistry in developing electrochemical aptasensors for food safety monitoring.
Collapse
Affiliation(s)
- Matei Raicopol
- Costin Nenitzescu, Department of Organic Chemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania;
| | - Luisa Pilan
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3977
| |
Collapse
|
48
|
He J, Wang J, Zhang M, Shi G. Selection of a Structure-Switching Aptamer for the Specific Methotrexate Detection. ACS Sens 2021; 6:2436-2441. [PMID: 34132539 DOI: 10.1021/acssensors.1c00749] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Methotrexate (MTX), a folate antagonist drug, has been widely used for treating various cancers. Since high-dose MTX treatment can cause unwanted serious side effects, tracking the blood concentration of MTX is essential for safe medication. However, available methods are often complex, time-consuming, and expensive. In this study, a highly selective DNA aptamer was selected for recognizing MTX based on a capture-systematic evolution of ligands by an exponential enrichment (C-SELEX) approach. Taking advantage of our selected MTX aptamer, we further unveil a novel structure-switching fluorescent sensor for the specific and rapid monitoring of MTX with good analytical performances (i.e., a linear detection range of 0.1-2 μM with a low detection limit (LOD) of 0.03 μM in buffer and a linear detection range of 0.5-10 μM with an LOD of 0.18 μM in 50% serum). Compared with conventional methods, this assay has great potential for detecting the blood concentration of MTX in clinical use. By coupling with other sensory techniques, our presented aptamer will potentially inspire the development of various sensors toward the monitoring of MTX.
Collapse
Affiliation(s)
- Junqing He
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Junyan Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
49
|
G-Quadruplex Structures in Bacteria: Biological Relevance and Potential as an Antimicrobial Target. J Bacteriol 2021; 203:e0057720. [PMID: 33649149 DOI: 10.1128/jb.00577-20] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA strands consisting of multiple runs of guanines can adopt a noncanonical, four-stranded DNA secondary structure known as G-quadruplex or G4 DNA. G4 DNA is thought to play an important role in transcriptional and translational regulation of genes, DNA replication, genome stability, and oncogene expression in eukaryotic genomes. In other organisms, including several bacterial pathogens and some plant species, the biological roles of G4 DNA and G4 RNA are starting to be explored. Recent investigations showed that G4 DNA and G4 RNA are generally conserved across plant species. In silico analyses of several bacterial genomes identified putative guanine-rich, G4 DNA-forming sequences in promoter regions. The sequences were particularly abundant in certain gene classes, suggesting that these highly diverse structures can be employed to regulate the expression of genes involved in secondary metabolite synthesis and signal transduction. Furthermore, in the pathogen Mycobacterium tuberculosis, the distribution of G4 motifs and their potential role in the regulation of gene transcription advocate for the use of G4 ligands to develop novel antitubercular therapies. In this review, we discuss the various roles of G4 structures in bacterial DNA and the application of G4 DNA as inhibitors or therapeutic agents to address bacterial pathogens.
Collapse
|
50
|
Singhal C, Bruno JG, Kaushal A, Sharma TK. Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections. ACS APPLIED BIO MATERIALS 2021; 4:3962-3984. [PMID: 35006817 DOI: 10.1021/acsabm.0c01358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present review is intended to describe bloodstream infections (BSIs), the major pathogens responsible for BSIs, conventional tests and their limitations, commercially available methods used, and the aptamer and nanomaterials-based approaches developed so far for the detection of BSIs. The advantages associated with aptamers and the aptamer-based sensors, the comparison between the aptamers and the antibodies, and the various types of aptasensors developed so far for the detection of bloodstream infections have been described in detail in the present review. Also, the future outlook and roadmap toward aptamer-based sensors and the challenges associated with the aptamer development have also been concluded in this review.
Collapse
Affiliation(s)
- Chaitali Singhal
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - John G Bruno
- Nanohmics, Inc., Austin, Texas 78741, United States
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram, Haryana 122413, India
| | - Tarun K Sharma
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| |
Collapse
|