1
|
Shao Y, Chen S, Tao X, Yang W, Liu T, Wang B, Wang Y, Wang S, Xu D, Guo J, Li J. Simultaneously enhance nutrient removal and sludge settleability through hydrocyclone-based technology in a full-scale high-inert containing activated sludge process. WATER RESEARCH 2025; 280:123531. [PMID: 40138862 DOI: 10.1016/j.watres.2025.123531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Sludge densification technology through hydrocyclone is a promising solution to address the challenge related to increasing loading rate in existing municipal wastewater treatment plants (WWTPs). Although previous studies have investigated the positive effects of hydrocyclone on improving nutrient removal and sludge settleability, little is known if sludge densification technology is still function into the high inert containing activated sludge process in China. This study investigated technical feasibility and revealed underlying mechanisms to simultaneously enhance nitrogen and phosphorus removal and sludge settleability through installing a hydrocyclone-based sludge densification module in a full-scale WWTP with a designed capacity of 4 × 104 m3/d. Compared to the control line without hydrocyclone, the hydrocyclone installation helped improve total nitrogen and total phosphorus removal efficiency by 16.9 % and 29.4 % (p < 0.05), with the effluent concentrations of 4.86 ± 1.08 mg/L and 0.077 ± 0.035 mg/L, respectively. The strategy of "hydrocyclone treating only half of the wasted activated sludge (WAS) to produce densified activated sludge (DAS)" successfully prevented the accumulation of inerts in the mainstream. Meanwhile, sludge settleability after densification was improved, as evidenced by a reduced sludge volume index (SVI30) by 7.6 mL/g (53.2 ± 7.30 mL/g) and an increased settling velocity by 2 m/h (4.04 ± 0.60 m/h) compared to control line. Beyond selecting few large-sized DAS, the hydrocyclone also targeted small, densified flocs containing ballasting inerts (primarily Fe/Al-based hydroxides and phosphates) within high-inert containing activated sludge, further enhancing sludge settleability. The hydraulic shear forces of the hydrocyclone promoted the release of active sites from metal hydroxides, further enhancing phosphorus removal in mainstream. Meanwhile, shear forces lead to the disruption of DAS and ordinary flocs but also promoted the binding of flocs and inerts, forming densified flocs. The anoxic zones formed within DAS enabled denitrifying phosphorus-accumulating organisms (DPAOs) and denitrifiers to preferentially utilize polysaccharides of extracellular polymeric substances (EPS) for nutrient removal, thereby enhancing functional enzyme activity. These findings provide an important basis for the application of sludge densification technology in high-inert containing activated sludge process.
Collapse
Affiliation(s)
- Yanjun Shao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sisi Chen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Xiang Tao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Weilan Yang
- Jiangsu Wuxi Shuiwu Company Limited, Wuxi, 214122, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Binzheng Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yan Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China
| | - Dongdong Xu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China.
| |
Collapse
|
2
|
Kabir Ahmad SF, Kanadasan G, Lee KT, Vadivelu VM. Insight into recent advances in microalgae biogranulation in wastewater treatment. Crit Rev Biotechnol 2024; 44:1594-1609. [PMID: 38485522 DOI: 10.1080/07388551.2024.2317785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 11/20/2024]
Abstract
Microalgae-based technology is widely utilized in wastewater treatment and resource recovery. However, the practical implementation of microalgae-based technology is hampered by the difficulty in separating microalgae from treated water due to the low density of microalgae. This review is designed to find the current status of the development and utilization of microalgae biogranulation technology for better and more cost-effective wastewater treatment. This review reveals that the current trend of research is geared toward developing microalgae-bacterial granules. Most previous works were focused on studying the effect of operating conditions to improve the efficiency of wastewater treatment using microalgae-bacterial granules. Limited studies have been directed toward optimizing operating conditions to induce the secretion of extracellular polymeric substances (EPSs), which promotes the development of denser microalgae granules with enhanced settling ability. Likewise, studies on the understanding of the EPS role and the interaction between microalgae cells in forming granules are scarce. Furthermore, the majority of current research has been on the cultivation of microalgae-bacteria granules, which limits their application only in wastewater treatment. Cultivation of microalgae granules without bacteria has greater potential because it does not require additional purification and can be used for border applications.
Collapse
Affiliation(s)
| | - Gobi Kanadasan
- Department of Petrochemical Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| | - Vel Murugan Vadivelu
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
3
|
Wang C, Qi WK, Zhang SJ, Du TY, Zhang L, Peng YZ. Continuous self-circulating up-flow granular sludge fluidized bed process treating low-strength real municipal wastewater at high hydraulic loads. BIORESOURCE TECHNOLOGY 2024; 414:131618. [PMID: 39396578 DOI: 10.1016/j.biortech.2024.131618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Conditions conducive to aerobic granular sludge (AGS) growth and maintenance are very difficult to realize in continuous-flow biological treatment processes. This study conducted a continuous-flow self-circulating up-flow granular sludge fluidized bed (Zier process) treating real urban wastewater approximately one year. The substantial self-circulating multiple times (RSCMT, 8-15 times) and up-flow velocity (8-15 m/h) generated by aeration, the only power equipment in Zier process, facilitated pollutant removal, particle granulation and stabilization. With hydraulic retention time of 5 h, RSCMT of 9.3-14.4 times and chemical oxygen demand (COD)/total nitrogen (TN) ratio of 5.9 ± 1.0, the effluent COD, ammonia nitrogen and TN were 28.6 ± 7.7, 1.1 ± 1.2, and 13.3 ± 1.7 mg/L, respectively. The median particle size was 150-250 μm and effluent suspended solids concentration was 33.4 ± 14.5 mg/L. It is unnecessary to set up sludge reflux which simplifies the subsequent mud-water separation facilities. The Zier process provides a new process structure for implementation of continuous-flow AGS process.
Collapse
Affiliation(s)
- Cong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; Beijing Drainage Group Co., Ltd., Beijing 100044, PR China
| | - Wei-Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shu-Jun Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; Beijing Drainage Group Co., Ltd., Beijing 100044, PR China
| | - Tian-Yuan Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yong-Zhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
4
|
Cao T, Yang Y, Li X, Liu L, Fei X, Zhao Y, Zhang L, Lu Y, Zhou D. In-situ rapid cultivation of aerobic granular sludge in A/O bioreactor by using Ca(ClO) 2 pretreating sludge. BIORESOURCE TECHNOLOGY 2024; 410:131278. [PMID: 39151572 DOI: 10.1016/j.biortech.2024.131278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The efficient utilization of residual sludge and the rapid cultivation of aerobic granular sludge in continuous-flow engineering applications present significant challenges. In this study, aerobic granular cultivation was fostered in a continuous-flow system using Ca(ClO)2-sludge carbon (Ca-SC). Ca-SC retained the original sludge properties, contributing to granular growth in an A/O bioreactor. By day 40, the granule diameters increased to 0.8 mm with the SVI30 decreased by 2.7 times. Moreover, Ca-SC facilitated protein secretion, reaching 98.06 mg/g VSS and enhanced the hydrophobicity to 68.4 %. The continuous-flow aerobic granular sludge exhibited a nutrient removal rate above 90 %. Furthermore, Tessaracoccus and Nitrospira were enriched to promote granular formation and nitrogen removal. The residual sludge was carbonized and reused in the traditional wastewater treatment process to culture granular sludge in situ, aiming to achieve "self-production and self-consumption" of sludge and promote the innovative model of "treating waste with waste" in urban sewage environmental restoration.
Collapse
Affiliation(s)
- Tingting Cao
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China.
| | - Yue Yang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Xiaomeng Li
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Liang Liu
- Jilin Huatian Environmental Protection Group Co., Ltd., 130000, China
| | - Xiyang Fei
- Jilin Huatian Environmental Protection Group Co., Ltd., 130000, China
| | - Yuanhang Zhao
- Jilin Huatian Environmental Protection Group Co., Ltd., 130000, China
| | - Leilei Zhang
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Ying Lu
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China; School of Environment, Northeast Normal University, Changchun 130117, China; Jilin Engineering Lab for Water Pollution Control and Resources Recovery, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
5
|
Qi WK, Tian RF, Li B, Zhang SJ, Peng YZ, Wang C. Novel separate aeration self-circulating technology for continuous aerobic granular sludge process: Performance evaluation, hydrodynamic simulation and control strategy. WATER RESEARCH 2024; 261:122025. [PMID: 39002418 DOI: 10.1016/j.watres.2024.122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Abstract
The continuous aerobic granular sludge (AGS) process is promising for upgrading existing wastewater treatment facilities. However, this approach is still challenging because of its complicated structure and operation. To address this issue, a novel separate aeration self-circulating technology (abbreviated as Zier) was proposed, which is promising for cultivating AGS by its outstanding upflow velocity and circulation multiplier (more than 30 m/h and 200, respectively). This study elaborated on the Zier reactor's feasibility, optimization, and control strategy through computational fluid dynamics simulations, theoretical calculations, and experiments. An appropriate flow regime for efficient removal of pollutant and granulation of sludge was attained at a superficial gas velocity of 1.3 cm/s. Moreover, optimizing the aeration column diameter to half of the reaction column and increasing the height/diameter ratio to 20 dramatically boosted the nitrogen removal capacity over 1.6 kg N/m3/d. Utilizing a smaller circulation pipe diameter ensured granulation under a consistent flow regime. By judiciously regulating, multiple CSTRs and PFRs seamlessly integrated within the Zier reactor across a broad spectrum of particle sludge. The validity of these findings was further substantiated through experimental and theoretical validations. Drawing from these findings, a multi-scenario control strategy was proposed as Zier's map. With all the superiorities shown by the Zier reactor, this study could offer new insights into an efficient continuous AGS process.
Collapse
Affiliation(s)
- Wei-Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Run-Feng Tian
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Bo Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shu-Jun Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; Beijing Drainage Group Co., Ltd., Beijing 100044, China
| | - Yong-Zhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Cong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; Beijing Drainage Group Co., Ltd., Beijing 100044, China.
| |
Collapse
|
6
|
Wang C, Qi WK, Zhang SJ, Liu LF, Peng YZ. Innovation for continuous aerobic granular sludge process in actual municipal sewage treatment: Self-circulating up-flow fluidized bed process. WATER RESEARCH 2024; 260:121862. [PMID: 38908310 DOI: 10.1016/j.watres.2024.121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Aerobic granular sludge (AGS) capable of nitrogen and phosphorus removal is mainly limited to the applications in sequencing batch reactors. This study introduced an innovative continuous self-circulating up-flow fluidized bed process (Zier process) using separate aeration. The process was composed of an anoxic column (Zier-A), aeration column (Zier-OO) and aerobic column (Zier-O), and was used to treat actual municipal sewage continuously for 170 days. The process achieved self-circulation of 20-32 times and an up-flow velocity within the reactor of 7-16 m/h which were accurately controlled with only separate aeration. The larger proportion of self-circulating multiple times contributed to particle formation and stability, providing hydraulic shear conditions, and screened the precipitation performance of the granular sludge (GS). Meanwhile, the dissolved oxygen (DO) of Zier-O was controlled at 0.1-0.3 mg/L, and the DO of Zier-A input water was zero. The accurate oxygen supply enhanced simultaneous nitrification and denitrification (SND) as well as short-cut nitrification and denitrification in Zier-O and improved the COD utilization rate and the nitrogen removal rate in Zier-A. The COD treatment capacity reached 2.46 kg-COD/(m³·d). With a hydraulic retention time of 10 h, the process consistently ensured that the average concentrations of ammonia nitrogen and total nitrogen in the effluent were maintained below 5 and 15 mg/L, respectively. Moreover, the process maintained the shape and stability of GS, the median diameter of GS ranged between 300-1210 μm, the percentage of mass with particle size distribution < 200 μm at a height of 150 cm within Zier-A and Zier-O accounted for as low as 0.04%-0.05%, and showed good settling performance. The suspended solids in effluent can be maintained at 50-80 mg/L. Overall, the unique structural setting and control method of the Zier process provide another approach for the application of continuous AGS treatment for municipal sewage.
Collapse
Affiliation(s)
- Cong Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; Beijing Drainage Group Co., Ltd., Beijing 100044, China
| | - Wei-Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shu-Jun Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China; Beijing Drainage Group Co., Ltd., Beijing 100044, China
| | - Li-Fang Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yong-Zhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
7
|
Haaksman VA, van Dijk EJH, Al-Zuhairy S, Mulders M, Loosdrecht MCMV, Pronk M. Utilizing anaerobic substrate distribution for growth of aerobic granular sludge in continuous-flow reactors. WATER RESEARCH 2024; 257:121531. [PMID: 38701553 DOI: 10.1016/j.watres.2024.121531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
The development of continuous flow reactors (CFRs) employing aerobic granular sludge (AGS) for the retrofit of existing wastewater treatment plants (WWTPs) using a continuous-flow activated sludge (CFAS) system has garnered increasing interest. This follows the worldwide adoption of AGS technology in sequencing batch reactors (SBRs). The better settleability of AGS compared to AS allows for process intensification of existing wastewater treatment plants without the difficult conversion of often relatively shallow CFRs to deeper AGS-SBRs. To retrofit existing CFAS systems with AGS, achieving both increased hydraulic capacity and enhanced biological nutrient removal necessitates the formation of granular sludge based on the same selective pressures applied in AGS-SBRs. Previous efforts have focussed mainly on the selective wasting of flocculent sludge and retaining granular sludge to drive aerobic granulation. In this study a pilot-scale CFR was developed to best mimic the implementation of the granulation mechanisms of full-scale AGS-SBRs. The pilot-scale reactor was fed with pre-settled municipal wastewater. We established metrics to assess the degree to which the proposed mechanisms were implemented in the pilot-scale CFR and compared them to data from full-scale AGS-SBRs, specifically with respect to the anaerobic distribution of granule forming substrates (GFS). The selective pressures for granular sludge formation were implemented through inclusion of anaerobic upflow selectors with a water depth of 2.5 meters, which yielded a sludge with properties similar to AGS from full-scale SBRs. In comparison to the CFAS system at Harnaschpolder WWTP treating the same pre-settled wastewater, a more than twofold increase in volumetric removal capacity for both phosphorus and nitrogen was achieved. The use of a completely mixed anaerobic selector, as opposed to an anaerobic upflow selector, caused a shift in EBPR activity from the largest towards the smallest size class, while nitrification was majorly unaffected. Anaerobic selective feeding via bottom-feeding is, therefore, favorable for the long-term stability of AGS, especially for less acidified wastewater. The research underlines the potential of AGS for enhancing the hydraulic and biological treatment capacity of existing CFAS systems.
Collapse
Affiliation(s)
- Viktor A Haaksman
- Delfluent Services, Peuldreef 4, Den Hoorn, 2635 BX, The Netherlands.
| | | | - Salah Al-Zuhairy
- Delfluent Services, Peuldreef 4, Den Hoorn, 2635 BX, The Netherlands
| | - Michel Mulders
- Delfluent Services, Peuldreef 4, Den Hoorn, 2635 BX, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands; Royal HaskoningDHV, Laan 1914 35, Amersfoort, 3800 AL, The Netherlands.
| |
Collapse
|
8
|
Park J, Song M, Cho M, Shin YU, Jeong S, Hwang K, Bae H. Iron particle-integrated anammox granules in baffled reactor: Enhanced settling property and nitrogen removal performance. BIORESOURCE TECHNOLOGY 2024; 402:130792. [PMID: 38703962 DOI: 10.1016/j.biortech.2024.130792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
This study evaluates iron particle-integrated anammox granules (IP-IAGs) to enhance wastewater treatment efficiency. The IP-IAGs resulted in notable improvements in settleability and nitrogen removal. The settling velocity of IP-IAGs increased by 17.91 % to 2.92 ± 0.20 cm/s, and the total nitrogen removal efficiency in batch mode improved by 6.82 %. These changes indicate enhanced biological activity for effective treatment. In continuous operation, the IP-IAGs reactor showed no accumulation of nitrite until 40 d, reaching a peak nitrogen removal rate (NRR) of 1.54 kg-N/m3·d and a nitrogen removal efficiency of 82.61 %. Furthermore, a partial nitritation-anammox reactor that treated anaerobic digestion effluent achieved a NRR of 1.41 ± 0.09 kg-N/m3·d, proving the applicability of IP-IAGs in real wastewater conditions. These results underscore the potential of IP-IAGs to enhance the efficiency and stability of anammox-based processes, marking a significant advancement in environmental engineering for wastewater treatment.
Collapse
Affiliation(s)
- Jihye Park
- Department of Civil and Environmental Engineering, Pusan National University, Busandeahak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Minsu Song
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Minkee Cho
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Yong-Uk Shin
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Sanghyun Jeong
- Department of Civil and Environmental Engineering, Pusan National University, Busandeahak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Kwanghyun Hwang
- Environment Business Division, Environment Solution Research Team, GS E&C, GRAN SEOUL, 33 Jong-ro, Jongno-gu, Seoul 03159, Republic of Korea
| | - Hyokwan Bae
- Department of Civil, Urban, Earth and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
9
|
Rosa-Masegosa A, Rodriguez-Sanchez A, Gorrasi S, Fenice M, Gonzalez-Martinez A, Gonzalez-Lopez J, Muñoz-Palazon B. Microbial Ecology of Granular Biofilm Technologies for Wastewater Treatment: A Review. Microorganisms 2024; 12:433. [PMID: 38543484 PMCID: PMC10972187 DOI: 10.3390/microorganisms12030433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 04/02/2025] Open
Abstract
Nowadays, the discharge of wastewater is a global concern due to the damage caused to human and environmental health. Wastewater treatment has progressed to provide environmentally and economically sustainable technologies. The biological treatment of wastewater is one of the fundamental bases of this field, and the employment of new technologies based on granular biofilm systems is demonstrating success in tackling the environmental issues derived from the discharge of wastewater. The granular-conforming microorganisms must be evaluated as functional entities because their activities and functions for removing pollutants are interconnected with the surrounding microbiota. The deep knowledge of microbial communities allows for the improvement in system operation, as the proliferation of microorganisms in charge of metabolic roles could be modified by adjustments to operational conditions. This is why engineering must consider the intrinsic microbiological aspects of biological wastewater treatment systems to obtain the most effective performance. This review provides an extensive view of the microbial ecology of biological wastewater treatment technologies based on granular biofilms for mitigating water pollution.
Collapse
Affiliation(s)
- Aurora Rosa-Masegosa
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Alejandro Rodriguez-Sanchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| | - Alejandro Gonzalez-Martinez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Jesus Gonzalez-Lopez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Barbara Muñoz-Palazon
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| |
Collapse
|
10
|
Sui Y, Cui YW, Huang JL, Xu MJ. Feast/famine ratio regulates the succession of heterotrophic nitrification-aerobic denitrification and autotrophic ammonia oxidizing bacteria in halophilic aerobic granular sludge treating saline wastewater. BIORESOURCE TECHNOLOGY 2024; 393:129995. [PMID: 37951552 DOI: 10.1016/j.biortech.2023.129995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Heterotrophic nitrification-aerobic denitrification (HN-AD) shows innovation potential of wastewater treatment process in a single tank. However, how to enrich HN-AD bacteria in activated sludge to enhance their contribution remained unknown. This study explored the impact of the feast/famine (F/F) ratio on the succession of autotrophic ammonia oxidizing bacteria (AOB) and HN-AD bacteria in a halophilic aerobic granular sludge (HAGS) system. As the F/F ratio decreased from 1/9 to 1/15, the total inorganic nitrogen (TIN) removal performance significantly decreased. The proportion of heterotrophic bacteria was dropped from 79.0 % to 33 %. Accordingly, the relative abundance of Paracoccus decreased from 70.8 % to 25.4 %, and the copy number of the napA gene was reduced from 2.2 × 1010 copies/g HAGS to 8.1 × 109 copies/g HAGS. It found the F/F ratio regulated the population succession of autotrophic AOB and HN-AD bacteria, thereby providing a solution to achieve the enrichment of HN-AD bacteria in HAGS.
Collapse
Affiliation(s)
- Yuan Sui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Ji-Lin Huang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Meng-Jiao Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
11
|
Hu X, Yang H, Fang X, Liu X, Bai Y, Su B, Chang J. High efficiency and stable partial nitration achieved via gel immobilization. BIORESOURCE TECHNOLOGY 2024; 394:130262. [PMID: 38184090 DOI: 10.1016/j.biortech.2023.130262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/08/2024]
Abstract
Long-term high efficiency and stable partial nitrification (PN) performance was achieved using gel-immobilized partial nitrifying bacteria. The PN characteristics of the filler under high and low ammonia nitrogen concentrations and low temperature were comprehensively studied and the rapid reactivation was achieved after reactor breakdown or long stagnation period. The results showed that the maximum ammonia oxidation rate was 66.8 mg•(L•h)-1 and the nitrite accumulation rate was above 95 % for the filler. Efficient and stable PN performance depends on the high abundance of ammonia-oxidizing bacteria (AOB) inside the filler and dynamically microbial community. In addition, the oxygen-limited zone and competition between the microorganisms inside the filler effectively inhibited the growth of nitrite oxidizing bacteria, and the sludge outside the filler assisted in this process, which supported the dominant position of AOB in fillers. This study provides a reliable technology for the practical application of the PN nitrogen removal process.
Collapse
Affiliation(s)
- Xin Hu
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoyue Fang
- Beijing General Municipal Engineering Design & Research Institute Co., Ltd, Beijing 100044, China
| | - Xuyan Liu
- Hebei GEO University, Shijiazhuang 050031, China
| | - Yongsheng Bai
- Beijing Drainage Group Co. Ltd, Beijing 100022, China
| | - Bojun Su
- Beijing Drainage Group Co. Ltd, Beijing 100022, China
| | - Jiang Chang
- Beijing Drainage Group Co. Ltd, Beijing 100022, China
| |
Collapse
|
12
|
Guo T, Pan K, Chen Y, Tian Y, Deng J, Li J. When aerobic granular sludge faces emerging contaminants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167792. [PMID: 37838059 DOI: 10.1016/j.scitotenv.2023.167792] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
The evolution of emerging contaminants (ECs) has caused greater requirements and challenges to the current biological wastewater treatment technology. As one of the most promising biological treatment technologies, the aerobic granular sludge (AGS) process also faces the challenge of ECs. This study summarizes the recent progress and characteristics of several representative ECs (persistent organic pollutants, endocrine disrupting chemicals, antibiotics, and microplastics) in AGS systems that have garnered widespread attention. Additionally, the biodegradation and adsorption mechanisms of ECs were discussed, and the interactions between various ECs and AGS was elucidated. The importance of extracellular polymeric substances for the stabilization of AGS and the removal of ECs is also discussed. Knowledge gaps and future research directions that may enable the practical application of AGS are highlighted. Overall, AGS processes show great application potential and this review provides guidance for the future implementation of AGS technology as well as elucidating the mechanism of its interaction with ECs.
Collapse
Affiliation(s)
- Tao Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Kuan Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yunxin Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yajun Tian
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jing Deng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
13
|
Yu C, Wang K, Zhang K, Liu R, Zheng P. Full-scale upgrade activated sludge to continuous-flow aerobic granular sludge: Implementing microaerobic-aerobic configuration with internal separators. WATER RESEARCH 2024; 248:120870. [PMID: 38007885 DOI: 10.1016/j.watres.2023.120870] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/28/2023]
Abstract
Aerobic granular sludge (AGS) has been successfully used in sequencing batch reactors. However, their application to existing continuous-flow systems remains challenging. In this study, a novel microaerobic-aerobic configuration with internal separators was implemented in a full-scale municipal wastewater treatment facility with a nominal capacity of 2.5 × 104 m3 d-1. Sludge characteristics, pollutant removal and associated pathways, shifts in the microbial community, and underlying granulation mechanisms were investigated. Following a two-month operation period, the transition from flocculent-activated sludge to well-defined AGS with distinct boundaries and compact structures was successfully achieved. The average size of sludge increased from 31.9 to 138.5 μm, with granules larger than 200 μm constituting 28.9 % of the total sludge and SVI30 averaging 51.4 ± 8.2 mL g-1. The 95th percentile effluent COD, NH4+-N, and TN concentrations were 35.0, 1.2, and 13.3 mg L-1, respectively. The primary pathways for pollutant removal were identified as simultaneous nitrification, denitrification, and phosphorus removal within the microaerobic tanks. The enrichment of denitrifying phosphorus-accumulating organisms, including Hydrogenophaga, Accumulibacter, Azospira, Dechloromonas, and Pseudomonas, provides an essential microbial foundation. Furthermore, computational fluid dynamics modeling revealed that the incorporation of internal separators in aerobic tanks induced shifts in the flow pattern, transitioning from a single-circulation cell to multiple vortical cells. This alteration amplified the local velocity gradients, generating the required shear forces to drive granulation. Moreover, mass balance analysis revealed that the microaerobic and aerobic tanks operated under feast and famine conditions, respectively, creating a microbial selection pressure that favored granulation. This process eliminates the need for external clarifiers, resulting in a footprint reduction of 38.2 % and one-third energy savings for sludge reflux. This study offers valuable insights into the application of continuous-flow AGS to upgrade existing activated sludge systems with limited retrofitting requirements.
Collapse
Affiliation(s)
- Cheng Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Kaiyuan Zhang
- Beijing Huayide Environmental Technology Co. Ltd., Beijing 100084, PR China
| | - Ruiyang Liu
- Beijing Huayide Environmental Technology Co. Ltd., Beijing 100084, PR China
| | - Pingping Zheng
- Beijing Huayide Environmental Technology Co. Ltd., Beijing 100084, PR China
| |
Collapse
|
14
|
Mills S, Trego AC, Prevedello M, De Vrieze J, O’Flaherty V, Lens PN, Collins G. Unifying concepts in methanogenic, aerobic, and anammox sludge granulation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100310. [PMID: 37705860 PMCID: PMC10495608 DOI: 10.1016/j.ese.2023.100310] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/17/2023] [Accepted: 08/05/2023] [Indexed: 09/15/2023]
Abstract
The retention of dense and well-functioning microbial biomass is crucial for effective pollutant removal in several biological wastewater treatment technologies. High solids retention is often achieved through aggregation of microbial communities into dense, spherical aggregates known as granules, which were initially discovered in the 1980s. These granules have since been widely applied in upflow anaerobic digesters for waste-to-energy conversions. Furthermore, granular biomass has been applied in aerobic wastewater treatment and anaerobic ammonium oxidation (anammox) technologies. The mechanisms underpinning the formation of methanogenic, aerobic, and anammox granules are the subject of ongoing research. Although each granule type has been extensively studied in isolation, there has been a lack of comparative studies among these granulation processes. It is likely that there are some unifying concepts that are shared by all three sludge types. Identifying these unifying concepts could allow a unified theory of granulation to be formed. Here, we review the granulation mechanisms of methanogenic, aerobic, and anammox granular sludge, highlighting several common concepts, such as the role of extracellular polymeric substances, cations, and operational parameters like upflow velocity and shear force. We have then identified some unique features of each granule type, such as different internal structures, microbial compositions, and quorum sensing systems. Finally, we propose that future research should prioritize aspects of microbial ecology, such as community assembly or interspecies interactions in individual granules during their formation and growth.
Collapse
Affiliation(s)
- Simon Mills
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Anna Christine Trego
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Marco Prevedello
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N.L. Lens
- University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
15
|
Pelevina A, Gruzdev E, Berestovskaya Y, Dorofeev A, Nikolaev Y, Kallistova A, Beletsky A, Ravin N, Pimenov N, Mardanov A. New insight into the granule formation in the reactor for enhanced biological phosphorus removal. Front Microbiol 2023; 14:1297694. [PMID: 38163067 PMCID: PMC10755871 DOI: 10.3389/fmicb.2023.1297694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
While granulated activated sludge exhibits high productivity, the processes of granule formation are incompletely studied. The processes of granule formation and succession of communities were investigated in a laboratory sequencing batch reactor (SBR) under conditions for enhanced biological phosphorus removal (EBPR) using microbiological and molecular techniques. Active consumption of acetate, primarily by the phosphate-accumulating organisms (PAO), commenced at day 150 of cultivation. This was indicated by the high ratio of molar P-released/acetate uptake (0.73-0.77 P-mol/C-mol), characteristic of PAO. During this period, two types of granule-like aggregates formed spontaneously out of the activated sludge flocs. The aggregates differed in morphology and microbial taxonomic composition. While both aggregate types contained phosphorus-enriched bacterial cells, PAO prevailed in those of morphotype I, and glycogen-accumulating organisms (GAOs) were predominant in the aggregates of morphotype II. After 250 days, the elimination of the morphotype II aggregates from the reactor was observed. The subsequent selection of the community was associated with the development of the morphotype I aggregates, in which the relative abundance of PAO increased significantly, resulting in higher efficiency of phosphorus removal. Metagenomic analysis revealed a predominance of the organisms closely related to Candidatus Accumulibacter IС and IIС and of Ca. Accumulibacter IIB among the PAO. Based on the content of the genes of the key metabolic pathways, the genomes of potential PAO belonging to the genera Amaricoccus, Azonexus, Thauera, Zoogloea, Pinisolibacter, and Siculibacillus were selected. The patterns of physicochemical processes and the microbiome structure associated with granule formation and succession of the microbial communities were revealed.
Collapse
Affiliation(s)
- Anna Pelevina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny Gruzdev
- K.G. Skryabin Institute of Bioengineering, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Yulia Berestovskaya
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Dorofeev
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Yury Nikolaev
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kallistova
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Beletsky
- K.G. Skryabin Institute of Bioengineering, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Ravin
- K.G. Skryabin Institute of Bioengineering, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Pimenov
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Mardanov
- K.G. Skryabin Institute of Bioengineering, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Miyake M, Hasebe Y, Furusawa K, Shiomi H, Inoue D, Ike M. Enhancement of nutrient removal in an activated sludge process using aerobic granular sludge augmentation strategy with ammonium-based aeration control. CHEMOSPHERE 2023; 340:139826. [PMID: 37586487 DOI: 10.1016/j.chemosphere.2023.139826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
To enhance nutrient removal from low-strength municipal wastewater in a continuous-flow activated sludge (CFAS) process using aerobic granular sludge (AGS) augmentation strategy, a pilot-scale demonstration was configured with a mainstream reactor (anaerobic/aerobic process) and a sidestream sequencing batch reactor for AGS production. The aeration of the mainstream reactor was controlled based on dissolved oxygen (DO) and ammonium concentrations during Phases I and II-III, respectively. During Phase III, an anoxic zone was created in the mainstream aerobic tank. Throughout the demonstration period, excellent sludge settleability in the mainstream reactor (SVI30 ≤ 80 mL g-1) under long sludge retention time conditions (≥12 d) allowed the maintenance of a high mixed liquor suspended solids concentration (≥3000 mg L-1). The total nitrogen (TN) removal ratio improved significantly during Phases II and III (49.3 ± 4.1% and 50.1 ± 10.2%, respectively) compared to Phase I (43.2 ± 5.5%). Low DO concentration (< 0.5 mg L-1) by the ammonium-based aeration tended to increase the simultaneous nitrification and denitrification efficiency (> 40%), enhancing TN removal (> 50%). The reduction of DO and nitrate concentrations in the returning sludge liquor can stabilize phosphorus removal (approximately 80% of the 25th percentile). In addition, the aeration efficiency during Phase III decreased by 26-29% compared to Phase I. These results suggest that the introduction of ammonium-based aeration control to the CFAS using the AGS augmentation strategy could contribute to superior sewerage treatment, including nutrient removal and a low carbon footprint.
Collapse
Affiliation(s)
- Masaki Miyake
- R&D Center, Organo Corporation, 4-4-1 Nishionuma, Minami-ku, Sagamihara, Kanagawa 252-0332, Japan; Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yoshiaki Hasebe
- R&D Center, Organo Corporation, 4-4-1 Nishionuma, Minami-ku, Sagamihara, Kanagawa 252-0332, Japan
| | - Kazuki Furusawa
- Bureau of Sewerage, Tokyo Metropolitan Government, 2-8-1 Nishishinjuku, Shinjuku-ku, Tokyo 163-8001, Japan
| | - Hiroshi Shiomi
- Bureau of Sewerage, Tokyo Metropolitan Government, 2-8-1 Nishishinjuku, Shinjuku-ku, Tokyo 163-8001, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Qian G, Shao J, Hu P, Tang W, Xiao Y, Hao T. From micro to macro: The role of seawater in maintaining structural integrity and bioactivity of granules in treating antibiotic-laden mariculture wastewater. WATER RESEARCH 2023; 246:120702. [PMID: 37837903 DOI: 10.1016/j.watres.2023.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Granular sludge (GS) has superior antibiotic removal ability to flocs, due to GS's layered structure and rich extracellular polymeric substances. However, prolonged exposure to antibiotics degrades the performance and stability of GS. This study investigated how a seawater matrix might help maintain the structural integrity and bioactivity of granules. The results demonstrated that GS had better sulfadiazine (SDZ) removal efficiency in a seawater matrix (85.6 %) than in a freshwater matrix (57.6 %); the multiple ions in seawater enhanced boundary layer diffusion (kiR1 = 0.0805 mg·g-1·min-1/2 and kiR2 = 0.1112 mg·g-1·min-1/2) and improved adsorption performance by 15 % (0.123 mg/g-SS freshwater vs. 0.141 mg/g-SS seawater). Moreover, multiple hydrogen bonds (1-3) formed between each SDZ and lipid bilayer fortified the adsorption. Beyond S-N and S-C bond hydrolyses that took place in freshwater systems, there was an additional biodegradation pathway for GS to be cultivated in a saltwater system that involved sulfur dioxide extrusion. This additional pathway was attributable to the greater microbial diversity and larger presence of sulfadiazine-degrading bacteria containing SadAC genes, such as Leucobacter and Arthrobacter, in saltwater wastewater. The findings of this study elucidate how seawater influences GS properties and antibiotic removal ability.
Collapse
Affiliation(s)
- Guangsheng Qian
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Jingyi Shao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Peng Hu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Wentao Tang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yihang Xiao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China.
| |
Collapse
|
18
|
Gomeiz AT, Sun Y, Newborn A, Wang ZW, Angelotti B, Van Aken B. Metagenomic Analysis of a Continuous-Flow Aerobic Granulation System for Wastewater Treatment. Microorganisms 2023; 11:2328. [PMID: 37764172 PMCID: PMC10535324 DOI: 10.3390/microorganisms11092328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Aerobic granulation is an emerging process in wastewater treatment that has the potential to accelerate sedimentation of the microbial biomass during secondary treatment. Aerobic granulation has been difficult to achieve in the continuous flow reactors (CFRs) used in modern wastewater treatment plants. Recent research has demonstrated that the alternation of nutrient-abundant (feast) and nutrient-limiting (famine) conditions is able to promote aerobic granulation in a CFR. In this study, we conducted a metagenomic analysis with the objective of characterizing the bacterial composition of the granular biomass developed in three simulated plug flow reactors (PFRs) with different feast-to-famine ratios. Phylogenetic analyses revealed a clear distinction between the bacterial composition of aerobic granules in the pilot simulated PFRs as compared with conventional activated sludge. Larger and denser granules, showing improved sedimentation properties, were observed in the PFR with the longest famine time and were characterized by a greater proportion of bacteria producing abundant extracellular polymeric substances (EPS). Functional metagenomic analysis based on KEGG pathways indicated that the large and dense aerobic granules in the PFR with the longest famine time showed increased functionalities related to secretion systems and quorum sensing, which are characteristics of bacteria in biofilms and aerobic granules. This study contributes to a further understanding of the relationship between aerobic granule morphology and the bacterial composition of the granular biomass.
Collapse
Affiliation(s)
- Alison T. Gomeiz
- School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA;
| | - Yewei Sun
- Hazen and Sawyer, 4035 Ridge Top Road, Fairfax, VA 22030, USA;
| | - Aaron Newborn
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA;
| | - Zhi-Wu Wang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24061, USA;
| | - Bob Angelotti
- Upper Occoquan Service Authority, 14631 Compton Rd, Centreville, VA 20121, USA;
| | - Benoit Van Aken
- Department of Chemistry and Biochemistry, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA;
| |
Collapse
|
19
|
Daigger GT, Kuo J, Derlon N, Houweling D, Jimenez JA, Johnson BR, McQuarrie JP, Murthy S, Regmi P, Roche C, Sturm B, Wett B, Winkler M, Boltz JP. Biological and physical selectors for mobile biofilms, aerobic granules, and densified-biological flocs in continuously flowing wastewater treatment processes: A state-of-the-art review. WATER RESEARCH 2023; 242:120245. [PMID: 37356157 DOI: 10.1016/j.watres.2023.120245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
There have been significant advances in the use of biological and physical selectors for the intensification of continuously flowing biological wastewater treatment (WWT) processes. Biological selection allows for the development of large biological aggregates (e.g., mobile biofilm, aerobic granules, and densified biological flocs). Physical selection controls the solids residence times of large biological aggregates and ordinary biological flocs, and is usually accomplished using screens or hydrocyclones. Large biological aggregates can facilitate different biological transformations in a single reactor and enhance liquid and solids separation. Continuous-flow WWT processes incorporating biological and physical selectors offer benefits that can include reduced footprint, lower costs, and improved WWT process performance. Thus, it is expected that both interest in and application of these processes will increase significantly in the future. This review provides a comprehensive summary of biological and physical selectors and their design and operation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Joshua P Boltz
- Woodard & Curran, 3907 Langley Ave., Foley, AL 36535, USA.
| |
Collapse
|
20
|
Li D, Yan S, Yong X, Zhang X, Zhou J. Ball-milled magnetic sludge biochar enables fast aerobic granulation in anoxic/oxic process for the treatment of coal chemical wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163241. [PMID: 37011673 DOI: 10.1016/j.scitotenv.2023.163241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023]
Abstract
Coal chemical wastewater (CCW) containing toxic and hazardous matters requires to be treated prior to discharge. Promoting the in-situ formation of magnetic aerobic granular sludge (mAGS) in continuous flow reactor process has a great potential for CCW remediation. However, long granulation time and low stability limit the application of AGS technology. In this study, Fe3O4/sludge biochar (Fe3O4/SC) with biochar matrix derived from coal chemical sludge were applied to facilitate the aerobic granulation in two-stage continuous flow reactors, containing separated anoxic and oxic reaction units (abbreviated as A/O process). The performance of A/O process was evaluated at various hydraulic retention times (HRTs) (42 h, 27 h, and 15 h). Magnetic Fe3O4/SC with porous structures, high specific surface area (BET = 96.69 m2/g), and abundant functional groups was successfully prepared by ball-milled method. Adding magnetic Fe3O4/SC to A/O process could promote aerobic granulation (85 days) and the removal of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total nitrogen (TN) from CCW at all tested HRTs. Since the formed mAGS had high biomass, good settling ability, and high electrochemical activities, mAGS-based A/O process had high tolerance to the decrease of HRT from 42 h to 15 h for CCW treatment. The optimized HRT for A/O process was 27 h, at which Fe3O4/SC addition can result in the increase of COD, NH4+-N and TN removal efficiencies by 2.5 %, 4.7 % and 10.5 %, respectively. Based on 16S rRNA genes sequencing, the relative abundances of genus Nitrosomonas, Hyphomicrobium/Hydrogenophaga and Gaiella in mAGS accounting for nitrification, denitrification as well as COD removal were increased during aerobic granulation. Overall, this study proved that adding Fe3O4/SC to A/O process was effective for facilitating aerobic granulation and CCW treatment.
Collapse
Affiliation(s)
- Dan Li
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Su Yan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaoyu Yong
- Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xueying Zhang
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| | - Jun Zhou
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; Bioenergy Research Institute, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.
| |
Collapse
|
21
|
Li Y, Liu S, Lu L, Wang J, Huang G, Chen F, Zuo JE. Non-uniform dissolved oxygen distribution and high sludge concentration enhance simultaneous nitrification and denitrification in a novel air-lifting reactor for municipal wastewater treatment: A pilot-scale study. BIORESOURCE TECHNOLOGY 2023:129306. [PMID: 37328012 DOI: 10.1016/j.biortech.2023.129306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Achieving simultaneous carbon and nitrogen removal with sludge-liquid separation in a single reactor offers a solution to land shortages and improves treatment efficiency in municipal wastewater treatment plants of megacities. This study proposes a novel air-lifting continuous-flow reactor configuration with an alternative-aeration strategy that creates multi-functional zones for anoxic, oxic, and settlement processes. The optimal operational conditions for the reactor include a long anoxic hydraulic retention time, low dissolved oxygen (DO) in the oxic zone, and no specific reflux for external nitrifying liquid, which exhibit a high nitrogen removal efficiency of over 90% in treating real sewage with C/N < 4 in the pilot-scale study. Results show that a high sludge concentration and a low DO concentration facilitate simultaneous nitrification and denitrification, and a well mixing of sludge and substrate in different reaction zones promotes nitrogen removal. The long-term operation enriches functional microbes for carbon storage and nutrient removal.
Collapse
Affiliation(s)
- Yun Li
- Qingyan Environmental Technology Co. Ltd, Shenzhen 51800, China; Research Centre of Environmental Microbial Resource Development and Application Engineering, Research Institute of Tsinghua University in Shenzhen, Guangdong 518000, China.
| | - Shujie Liu
- Qingyan Environmental Technology Co. Ltd, Shenzhen 51800, China; State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Lanlan Lu
- Qingyan Environmental Technology Co. Ltd, Shenzhen 51800, China
| | - Jinghou Wang
- Qingyan Environmental Technology Co. Ltd, Shenzhen 51800, China
| | - Guangrong Huang
- Qingyan Environmental Technology Co. Ltd, Shenzhen 51800, China
| | - Fuming Chen
- Qingyan Environmental Technology Co. Ltd, Shenzhen 51800, China
| | - Jian-E Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| |
Collapse
|
22
|
Stein N, Goswami A, Goel R. Anoxic granular activated sludge process for simultaneous removal of hazardous perchlorate and nitrate. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131809. [PMID: 37343405 DOI: 10.1016/j.jhazmat.2023.131809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
An airtight, anoxic bubble-column sequencing batch reactor (SBR) was developed for the rapid cultivation of perchlorate (ClO4-) and nitrate (NO3-) reducing granular sludge (GS) in this study. Feast/famine conditions and shear force selection pressures in tandem with a short settling time (2-min) as a hydraulic section pressure resulted in the accelerated formation of anoxic granular activated sludge (AxGS). ClO4- and NO3- were efficiently (>99.9%) reduced over long-term (>500-d) steady-state operation. Specific NO3- reduction, ClO4- reduction, chloride production, and non-purgeable dissolved organic carbon (DOC) oxidation rates of 5.77 ± 0.54 mg NO3--N/g VSS·h, 8.13 ± 0.74 mg ClO4-/g VSS·h, 2.40 ± 0.40 mg Cl-/g VSS·h, and 16.0 ± 0.06 mg DOC/g VSS·h were recorded within the reactor under steady-state conditions, respectively. The AxGS biomass cultivated in this study exhibited faster specific ClO4- reduction, NO3- reduction, and DOC oxidation rates than flocculated biomass cultivated under similar conditions and AxGS biomass operated in an up-flow anaerobic sludge blank (UASB) bioreactor receiving the same influent loading. EPS peptide identification revealed a suite of extracellular catabolic enzymes. Dechloromonas species were present in high abundance throughout the entirety of this study. This is one of the initial studies on anoxic granulation to simultaneously treat hazardous chemicals and adds to the science of the granular activated sludge process.
Collapse
Affiliation(s)
- Nathan Stein
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Anjan Goswami
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
23
|
Samaei SHA, Chen J, Xue J. Current progress of continuous-flow aerobic granular sludge: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162633. [PMID: 36889385 DOI: 10.1016/j.scitotenv.2023.162633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Aerobic granular sludge (AGS) is promising for water resource recovery. Despite the mature granulation strategies in sequencing batch reactor (SBR), the application of AGS-SBR in wastewater treatment is usually costly as it requires extensive infrastructure conversion (e.g., from continuous-flow reactor to SBR). In contrast, continuous-flow AGS (CAGS) that does not require such infrastructure conversion is a more cost-effective strategy to retrofit existing wastewater treatment plants (WWTPs). Formation of aerobic granules in both batch and continuous-flow mode depends on many factors, including selection pressure, feast/famine conditions, extracellular polymeric substances (EPS), and environmental conditions. Compared with AGS in SBR, creating proper conditions to facilitate granulation in continuous-flow mode is challenging. Researchers have been seeking to tackle this bottleneck by studying the impacts of selection pressure, feast/famine conditions, and operating parameters on granulation and granule stability in CAGS. This review paper summarizes the state-of-the-art knowledge regarding CAGS for wastewater treatment. Firstly, we discuss the CAGS granulation process and effective parameters (i.e., selection pressure, feast/famine conditions, hydrodynamic shear force, reactor configuration, the role of EPS, and other operating factors). Then, we evaluate CAGS performance in removing COD, nitrogen, phosphorus, emerging pollutants, and heavy metals from wastewater. Finally, the applicability of the hybrid CAGS systems is presented. At last, we suggest that integrating CAGS with other treatment methods such as membrane bioreactor (MBR) or advanced oxidation processes (AOP) can benefit the performance and stability of granules. However, future research should address unknowns including the relationship between feast/famine ratio and stability of the granules, the effectiveness of applying particle size-based selection pressure, and the CAGS performance at low temperatures.
Collapse
Affiliation(s)
- Seyed Hesam-Aldin Samaei
- Cold-Region Water Resource Recovery Laboratory, Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jianfei Chen
- Cold-Region Water Resource Recovery Laboratory, Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Jinkai Xue
- Cold-Region Water Resource Recovery Laboratory, Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
24
|
Han JC, Ahmad M, Yousaf M, Rahman SU, Sharif HMA, Zhou Y, Yang B, Huang Y. Strategic analysis on development of simultaneous adsorption and catalytic biodegradation over advanced bio-carriers for zero-liquid discharge of industrial wastewater. CHEMOSPHERE 2023; 332:138871. [PMID: 37172628 DOI: 10.1016/j.chemosphere.2023.138871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
With rapid industrial development, millions of tons of industrial wastewater are produced that contain highly toxic, carcinogenic, mutagenic compounds. These compounds may consist of high concentration of refractory organics with plentiful carbon and nitrogen. To date, a substantial proportion of industrial wastewater is discharged directly to precious water bodies due to the high operational costs associated with selective treatment methods. For example, many existing treatment processes rely on activated sludge-based treatments that only target readily available carbon using conventional microbes, with limited capacity for nitrogen and other nutrient removal. Therefore, an additional set-up is often required in the treatment chain to address residual nitrogen, but even after treatment, refractory organics persist in the effluents due to their low biodegradability. With the advancements in nanotechnology and biotechnology, novel processes such as adsorption and biodegradation have been developed, and one promising approach is integration of adsorption and biodegradation over porous substrates (bio-carriers). Regardless of recent focus in a few applied researches, the process assessment and critical analysis of this approach is still missing, and it highlights the urgency and importance of this review. This review paper discussed the development of the simultaneous adsorption and catalytic biodegradation (SACB) over a bio-carrier for the sustainable treatment of refractory organics. It provides insights into the physico-chemical characteristics of the bio-carrier, the development mechanism of SACB, stabilization techniques, and process optimization strategies. Furthermore, the most efficient treatment chain is proposed, and its technical aspects are critically analysed based on updated research. It is anticipated that this review will contribute to the knowledge of academia and industrialist for sustainable upgradation of existing industrial wastewater treatment plants.
Collapse
Affiliation(s)
- Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Ahmad
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Maryam Yousaf
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China; School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| |
Collapse
|
25
|
An Z, Wang J, Zhang X, Bott CB, Angelotti B, Brooks M, Wang ZW. Coupling physical selection with biological selection for the startup of a pilot-scale, continuous flow, aerobic granular sludge reactor without treatment interruption. WATER RESEARCH X 2023; 19:100186. [PMID: 37332326 PMCID: PMC10276156 DOI: 10.1016/j.wroa.2023.100186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
This study removes two technical constraints for transitioning full-scale activated sludge infrastructure to continuous flow, aerobic granular sludge (AGS) facilities. The first of these is the loss of treatment capacity as a result of the rapid washout of flocculent sludge inventory and in turn the potential loss of nitrification during initial AGS reactor startup. The second is the physical selector design which currently is limited to either the complex sequencing batch reactor selection or sidestream hydrocyclones. Briefly, real wastewater data collected from this study suggested that by increasing the surface overflow rate (SOR) of an upflow clarifier to 10 m h - 1, the clarifier can be taken advantage of as a physical selector to separate flocculant sludge from AGS. Redirecting the physical selector underflow and overflow sludge to the feast and famine zones of a treatment train, respectively, can create a biological selection that not only promotes AGS formation but also safeguards the effluent quality throughout the AGS reactor startup period. This study provides a novel concept for economically implementing continuous flow AGS within existing full-scale, continuous flow treatment trains.
Collapse
Affiliation(s)
- Zhaohui An
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24061, USA
| | - Jiefu Wang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24061, USA
| | - Xueyao Zhang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24061, USA
| | - Charles B. Bott
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA 23455, USA
| | - Bob Angelotti
- Upper Occoquan Service Authority, 14631 Compton Rd, Centreville, VA 20121, USA
| | - Matt Brooks
- Upper Occoquan Service Authority, 14631 Compton Rd, Centreville, VA 20121, USA
| | - Zhi-Wu Wang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24061, USA
| |
Collapse
|
26
|
Haaksman VA, Schouteren M, van Loosdrecht MCM, Pronk M. Impact of the anaerobic feeding mode on substrate distribution in aerobic granular sludge. WATER RESEARCH 2023; 233:119803. [PMID: 36870106 DOI: 10.1016/j.watres.2023.119803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
There is a growing interest to implement aerobic granular sludge (AGS) in existing conventional activated sludge (CAS) systems with a continuous flow-through configuration. The mode of anaerobic contact of raw sewage with the sludge is an important aspect in the adaptation of CAS systems to accommodate AGS. It remains unclear how the distribution of substrate over the sludge by a conventional anaerobic selector compares to the distribution via bottom-feeding applied in sequencing batch reactors (SBRs). This study investigated the effect of the anaerobic contact mode on the substrate (and storage) distribution by operating two lab-scale SBRs; one with the traditional bottom-feeding through a settled sludge bed similar to full-scale AGS systems, and one where the synthetic wastewater was fed as a pulse at the start of the anaerobic phase while the reactor was mixed through sparging of nitrogen gas (mimicking a plug-flow anaerobic selector in continuous flow-through systems). The distribution of the substrate over the sludge particle population was quantified via PHA analysis, combined with the obtained granule size distribution. Bottom-feeding was found to primarily direct substrate towards the large granular size classes (i.e. large volume and close to the bottom), while completely mixed pulse-feeding gives a more equal distribution of substrate over all granule sizes (i.e. surface area dependant). The anaerobic contact mode directly controls the substrate distribution over the different granule sizes, irrespective of the solids retention time of a granule as an entity. Preferential feeding of the larger granules will enhance and stabilise the granulation compared to pulse-feeding, certainly under less advantageous conditions imposed by real sewage.
Collapse
Affiliation(s)
- V A Haaksman
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands.
| | - M Schouteren
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - M C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - M Pronk
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands; Royal HaskoningDHV, Laan 1914 35, Amersfoort, 3800 AL, The Netherlands
| |
Collapse
|
27
|
Hao T, Shao J, Hu P, Varjani S, Qian G. Achieving tetracycline removal enhancement with granules in marine matrices: Performance, adaptation, and mechanism studies. BIORESOURCE TECHNOLOGY 2023; 371:128590. [PMID: 36627084 DOI: 10.1016/j.biortech.2023.128590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Using the aerobic granular sludge (AGS) to improve tetracycline (TET) removal in the treatment of mariculture wastewater was investigated in the present study. The AGS rapidly adapted to and was sustained in seawater matrices with a robust granule strength (k = 0.0014) and a more stable sludge yield than the activated sludge (AS) (0.14 vs 0.11 g-VSS/g-CODrem). The compact structure provided the AGS with an anoxic environment, which favored the growth of N (37.3 %) and P removal bacteria (30.4 %) and the expression of functional genes (nos, nor, and nar), resulting in more than 62 % TN and TP removals, respectively. Similar abundances of aromatic compound-degrading bacteria (∼34 %) in both reactors (AGS and AS) led to comparable TET biodegradation efficiencies (∼0.045 mg/g-VSS). The greater size and surface area of the AGS expanded the boundary layer diffusion region, leading to 16 % increases in the granule's TET adsorption capacity.
Collapse
Affiliation(s)
- Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Jingyi Shao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Peng Hu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Guangsheng Qian
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China.
| |
Collapse
|
28
|
Performance and Bacterial Characteristics of Aerobic Granular Sludge in Treatment of Ultra-Hypersaline Mustard Tuber Wastewater. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Mustard tuber wastewater (MTW) is an ultra-hypersaline high-strength acid organic wastewater. Aerobic granular sludge (AGS) has been demonstrated to have high tolerance to high organic loading rate (OLR), high salinity, and broad pH ranges. However, most studies were conducted under single stress, and the performance of AGS under multiple stresses (high salinity, high OLR, and low pH) was still unclear. Herein, mature AGS was used to try to treat the real MTW at 9% salinity, pH of 4.1–6.7, and OLR of 1.8–7.2 kg COD/m3·d. The OLR was increased, and the results showed that the upper OLR boundary of AGS was 5.4 kg COD/m3·d (pH of 4.2) with relatively compact structure and high removal of TOC (~93.1%), NH4+-N (~88.2%), and TP (~50.6%). Under 7.2 kg COD/m3·d (pH of 4.1), most of the AGS was fragmented, primarily due to the multiple stresses. 16S rRNA sequencing indicated that Halomonas dominated the reactor during the whole process with the presence of unclassified-f-Flavobacteriaceae, Aequorivita, Paracoccus, Bradymonas, and Cryomorpha, which played key roles in the removal of TOC, nitrogen, and phosphorus. This study investigated the performance of AGS under multiple stresses, and also brought a new route for highly-efficient simultaneous nitrification–denitrifying phosphorus removal of real MTW.
Collapse
|
29
|
Liu W, Song J, Wang J, Ji X, Shen Y, Yang D. Achieving robust nitritation in a modified continuous-flow reactor: From micro-granule cultivation to nitrite-oxidizing bacteria elimination. J Environ Sci (China) 2023; 124:117-129. [PMID: 36182122 DOI: 10.1016/j.jes.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 06/16/2023]
Abstract
In this study, a modified continuous-flow nitrifying reactor was successfully operated for rapid cultivation of micro-granules and achieving robust nitritation. Results showed that sludge granulation with mean size of ca. 100 µm was achieved within three weeks by gradually increasing settling velocity-based selection pressure from 0.48 to 0.9 m/hr. Though Nitrospira like nitrite-oxidizing bacteria (NOB) were enriched in the micro-granules with a ratio between ammonia-oxidizing bacteria (AOB) and NOB of 5.7%/6.5% on day 21, fast nitritation was achieved within one-week by gradually increasing of influent ammonium concentration (from 50 to 200 mg/L). Maintaining ammonium in-excess was the key for repressing NOB in the micro-granules. Interestingly, when the influent ammonium concentration switched back to 50 mg/L still with the residual ammonium of 15-25 mg/L, the nitrite accumulation efficiency increased from 90% to 98%. Experimental results suggested that the NOB repression was intensified by both oxygen and nitrite unavailability in the inner layers of micro-granules. Unexpectedly, continuous operation with ammonium in excess resulted in overproduction of extracellular polysaccharides and overgrowth of some bacteria (e.g., Nitrosomonas, Arenimonas, and Flavobacterium), which deteriorated the micro-granule stability and drove the micro-granules aggregation into larger ones with irregular morphology. However, efficient nitritation was stably maintained with extremely high ammonium oxidation potential (> 50 mg/g VSS/hr) and nearly complete washout of NOB was obtained. This suggested that smooth and spherical granule was not a prerequisite for achieving NOB wash-out and maintaining effective nitritation in the granular reactor. Overall, the micro-granules exhibited a great practical potential for high-rate nitritation.
Collapse
Affiliation(s)
- Wenru Liu
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jiajun Song
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jianfang Wang
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaoliang Shen
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
30
|
Li YS, Li BB, Tian T, Yu HQ. Quorum sensing unveils the sludge floccule-assisted stabilization of aerobic granules in granule-dominated sequencing batch reactors. Biotechnol Bioeng 2023; 120:444-455. [PMID: 36303067 DOI: 10.1002/bit.28275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 01/13/2023]
Abstract
Floccules are another major form of microbial aggregates in aerobic granular sludge systems. Previous studies mainly attributed the persistence of floccules to their relatively faster nutrient uptake and higher growth rate over aerobic granules; however, they failed to unravel the underlying mechanism of the long-term coexistence of these two aggregates. In this work, the existence and function of the floccules in an aerobic granule-dominated sequencing batch reactor were investigated from the view of quorum sensing (QS) and quorum quenching (QQ). The results showed that though the floccules were closely associated with the granules in terms of similar community structures (including the QS- and QQ-related ones), they exhibited a relatively higher QQ-related activity but a lower QS-related activity. A compatible proportion of floccules might be helpful to maintain the QS-related activity and keep the granules stable. In addition, the structure difference was demonstrated to diversify the QS- and QQ-related activities of the floccules and the aerobic granules. These findings could broaden our understanding of the interactions between the coexistent floccules and granules in aerobic granule-dominated systems and would be instructive for the development of the aerobic granular sludge process.
Collapse
Affiliation(s)
- Yu-Sheng Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Bing-Bing Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| | - Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China.,Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, China
| |
Collapse
|
31
|
Liang Y, Pan Z, Guo T, Feng H, Yan A, Ni Y, Li J. Filamentous Bacteria and Stalked Ciliates for the Stable Structure of Aerobic Granular Sludge Treating Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15747. [PMID: 36497821 PMCID: PMC9735926 DOI: 10.3390/ijerph192315747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Aerobic granular sludge (AGS) is a promising technology for wastewater treatment. AGS formation belongs to microbial self-aggregation. Investigation of the formation and stability of AGS is widely paid attention to, in particular the structure stability of large size granules. Two types of AGS were developed in two sequencing batch reactors fed by two different wastewaters, respectively. Through confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM), the structure and composition of granules were analyzed. Filamentous bacteria were observed in granules from synthetic wastewater reactor, while filamentous bacteria and stalked ciliates (Epistylis sp.) were simultaneously found in granules from domestic wastewater reactor. The analytic results show that filamentous bacteria and stalked ciliates acting as skeletons play important roles in the formation and stability of granules. With the bonding of extracellular polymeric substances (EPS), the filamentous bacteria and stalked ciliates could build bridges and frames to promote the aggregation of bacteria; these microorganisms could create a space grid structure around the surface layer of granules to enhance the strength of granules, and the remnants of the stalks could serve as supports to fix the steadiness of granules.
Collapse
|
32
|
Gemza N, Janiak K, Zięba B, Przyszlak J, Kuśnierz M. Long-term effects of hydrocyclone operation on activated sludge morphology and full-scale secondary settling tank wet-weather operation in long sludge age WWTP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157224. [PMID: 35835188 DOI: 10.1016/j.scitotenv.2022.157224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
This paper presents the study concerning long-term effects of a full scale hydrocyclone unit implemented in a continuous flow long sludge age system, on sedimentation, treatment efficiency and sludge morphology. The research concentrates on identifying the mechanisms of sludge behaviour within the system. The gravimetric selection of activated sludge via a hydrocyclone is a recent development for enhancing sludge separation, where heavier flocs are retained in the system, and lighter ones are discarded as waste sludge. The effects of implementing hydroclyclones were analysed with the use of SEM imagining and fractal dimensioning through the frequent assessment of sludge settling capabilities, effluent quality, and floc properties. Over the course of 60 weeks of hydrocyclone operation, sedimentation efficiency varied significantly. Sludge volume index values of 40 mL/g, achieved during the warm season, were not sustained when the temperature decreased and an overgrowth of filamentous bacteria occurred. Good settling efficiency was also observed in batch tests, where settling velocity of experimental sludge was app. 1 m/h higher than for the reference train at the same concentrations. This was confirmed during wet weather, as the experimental train sustained safe sludge blanket height in secondary clarifiers. SEM imaging and fractal dimension analysis revealed that the underflow that returned to the system had a more compact and spherical shape, which led to an increased content of granule-like particles in the reactor. The presence of flocs with a diameter exceeding 900 μm in the underflow, which is not observed in the feed, indicated agglomeration within the hydrocyclone. This is contradictory to most of the literature data coming from laboratory experiments. This phenomenon was attributed to differences in the size and geometry of the used hydrocyclones, and the potential process mechanism was presented.
Collapse
Affiliation(s)
- Natalia Gemza
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; Wroclaw Municipal Water and Sewage Company, Na Grobli 19, 50-421 Wroclaw, Poland.
| | - Kamil Janiak
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; Wroclaw Municipal Water and Sewage Company, Na Grobli 19, 50-421 Wroclaw, Poland
| | - Bartosz Zięba
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Jacek Przyszlak
- Wroclaw Municipal Water and Sewage Company, Na Grobli 19, 50-421 Wroclaw, Poland
| | - Magdalena Kuśnierz
- The Faculty of Environmental Engineering and Geodesy, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| |
Collapse
|
33
|
Jiang X, Li H, Zhao Q, Yang P, Zeng M, Guo D, Fu Z, Hao L, Wu N. Comparison and Optimization of Continuous Flow Reactors for Aerobic Granule Sludge Cultivation from the Perspective of Hydrodynamic Behavior. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148306. [PMID: 35886165 PMCID: PMC9320295 DOI: 10.3390/ijerph19148306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
Improving treatment efficiency and reducing investment and operating costs make aerobic granular sludge technology (AGS) a promising technology for treating aquaculture wastewater. The development of continuous flow reactors (CFRs) has become a new direction in the research of AGS. This study clarifies the granulation effect, hydrodynamic behavior and particle separation of three different CFRs (R1 to R3). The established CFD model was able to explain the hydrodynamic behavior in all three CFRs; in particular, R3 performed the best from the perspective of hydrodynamic behavior due to its abundant turbulence. In addition, the optimal baffle distance and baffle angle of R3 were simulated to be 40 mm and 60°, respectively, due to them providing the best turbulent flow and particle separation effect. However, an overlarge baffle angle could weaken the turbulent pattern in the reactor. The retention time distribution further confirmed the reasonability of these optimal parameters with the highest effective volume ratio of 0.82. In short, this study gives an instruction for exploring the rapid formation mechanism of AGS in a CFR to promote its engineering application.
Collapse
Affiliation(s)
- Xinye Jiang
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, Tianjin 300457, China; (X.J.); (H.L.); (Q.Z.); (D.G.); (L.H.)
| | - Hongli Li
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, Tianjin 300457, China; (X.J.); (H.L.); (Q.Z.); (D.G.); (L.H.)
| | - Qingyu Zhao
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, Tianjin 300457, China; (X.J.); (H.L.); (Q.Z.); (D.G.); (L.H.)
| | - Peng Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China
- Correspondence: (P.Y.); (M.Z.)
| | - Ming Zeng
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, Tianjin 300457, China; (X.J.); (H.L.); (Q.Z.); (D.G.); (L.H.)
- Correspondence: (P.Y.); (M.Z.)
| | - Du Guo
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, Tianjin 300457, China; (X.J.); (H.L.); (Q.Z.); (D.G.); (L.H.)
| | - Zhiqiang Fu
- School of Light Industry Science and Engineering, Tianjin University of Science &Technology, Tianjin 300457, China;
| | - Linlin Hao
- College of Marine and Environmental Sciences, Tianjin University of Science &Technology, Tianjin 300457, China; (X.J.); (H.L.); (Q.Z.); (D.G.); (L.H.)
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384, China;
| |
Collapse
|
34
|
Wágner DS, Peces M, Nierychlo M, Mielczarek AT, Thornberg D, Nielsen PH. Seasonal microbial community dynamics complicates the evaluation of filamentous bulking mitigation strategies in full-scale WRRFs. WATER RESEARCH 2022; 216:118340. [PMID: 35364352 DOI: 10.1016/j.watres.2022.118340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The activated sludge wastewater treatment process has been thoroughly researched in more than 100 years, yet there are still operational challenges that have not been fully resolved. Such a challenge is the control of filamentous bulking caused by the overgrowth of certain filamentous bacteria. In this study, we tested different mitigation strategies to reduce filamentous bulking, caused by two common filamentous genera found in full-scale water resource recovery facilities (WRRF), Candidatus Microthrix and Candidatus Amarolinea. PAX dosing, ozone addition, hydrocyclone implementation, and the addition of nano-coagulants were tested as mitigation strategies in four parallel treatment lines in a full-scale WRRF over three consecutive years. Unexpectedly, the activated sludge settleability was not affected by any of the mitigation strategies. Some of the strategies appeared to have a strong mitigating effect on the two filamentous species. However, detailed analyses of the microbial communities revealed strong recurrent seasonal variations in all four lines, including the control line which masked the real effect. After removing the effect of the seasonal variation by using a time-series decomposition approach, it was clear that the filamentous bacteria were mostly unaffected by the mitigation strategies. Only PAX dosing had some effect on Ca. Microthrix, but only on one species, Ca. Microthrix subdominans, and not on the most common Ca. Microthrix parvicella. Overall, our study shows the importance of long-term monitoring of microbial communities at species level to understand the normal seasonal pattern to effectively plan and execute full-scale experiments. Moreover, the results highlight the importance of using parallel reference treatment lines when evaluating the effect of mitigation strategies in full-scale treatment plants.
Collapse
Affiliation(s)
- Dorottya S Wágner
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark; Biofos, Copenhagen, Denmark
| | - Miriam Peces
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | | | | | - Per H Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
35
|
Di Capua F, de Sario S, Ferraro A, Petrella A, Race M, Pirozzi F, Fratino U, Spasiano D. Phosphorous removal and recovery from urban wastewater: Current practices and new directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153750. [PMID: 35149060 DOI: 10.1016/j.scitotenv.2022.153750] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Phosphate rocks are an irreplaceable resource to produce fertilizers, but their availability will not be enough to meet the increasing demands of agriculture for food production. At the same time, the accumulation of phosphorous discharged by municipal wastewater treatment plants (WWTPs) is one of the main causes of eutrophication. In a perspective of circular economy, WWTPs play a key role in phosphorous management. Indeed, phosphorus removal and recovery from WWTPs can both reduce the occurrence of eutrophication and contribute to meeting the demand for phosphorus-based fertilizers. Phosphorous removal and recovery are interconnected phases in WWTP with the former generally involved in the mainstream treatment, while the latter on the side streams. Indeed, by reducing phosphorus concentration in the WWTP side streams, a further improvement of the overall phosphorus removal from the WWTP influent can be obtained. Many studies and patents have been recently focused on treatments and processes aimed at the removal and recovery of phosphorous from wastewater and sewage sludge. Notably, new advances on biological and material sciences are constantly put at the service of conventional or unconventional wastewater treatments to increase the phosphorous removal efficiency and/or reduce the treatment costs. Similarly, many studies have been devoted to the development of processes aimed at the recovery of phosphorus from wastewaters and sludge to produce fertilizers, and a wide range of recovery percentages is reported as a function of the different technologies applied (from 10-25% up to 70-90% of the phosphorous in the WWTP influent). In view of forthcoming and inevitable regulations on phosphorous removal and recovery from WWTP streams, this review summarizes the main recent advances in this field to provide the scientific and technical community with an updated and useful tool for choosing the best strategy to adopt during the design or upgrading of WWTPs.
Collapse
Affiliation(s)
- Francesco Di Capua
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - Simona de Sario
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - Alberto Ferraro
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy.
| | - Andrea Petrella
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, Cassino, 03043, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, Naples, 80125, Italy
| | - Umberto Fratino
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| | - Danilo Spasiano
- Department of Civil, Environmental, Land, Building Engineering and Chemistry, Polytechnic University of Bari, Via E. Orabona 4, Bari, 70125, Italy
| |
Collapse
|
36
|
Miyake M, Hasebe Y, Furusawa K, Shiomi H, Inoue D, Ike M. Efficient aerobic granular sludge production in simultaneous feeding and drawing sequencing batch reactors fed with low-strength municipal wastewater under high organic loading rate conditions. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
37
|
Efficacy of Continuous Flow Reactors for Biological Treatment of 1,4-Dioxane Contaminated Textile Wastewater Using a Mixed Culture. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8040143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The goal of this study was to evaluate the biodegradation of 1,4–dioxane using a mixed biological culture grown in textile wastewater sludge with 1,4–dioxane as the sole carbon source. The conditions for the long-term evaluation of 1,4–dioxane degradation were determined and optimized by batch scale analysis. Moreover, Monod’s model was used to determine the biomass decay rate and unknown parameters. The soluble chemical oxygen demand (sCOD) was used to determine the concentration of 1,4–dioxane in the batch test, and gas chromatography/mass spectrometry (GC/MS) was used to measure the concentrations via long-term wastewater analysis. Two types of reactors (continuous stirred reactor (CSTR) and plug flow reactor (PFR)) for the treatment of 1,4–dioxane from textile wastewater were operated for more than 120 days under optimized conditions. These used the mixed microbial culture grown in textile wastewater sludge and 1,4–dioxane as the sole carbon source. The results indicated efficient degradation of 1,4–dioxane by the mixed culture in the presence of a competitive inhibitor, with an increase in degradation time from 13.37 h to 55 h. A specific substrate utilization rate of 0.0096 mg 1,4–dioxane/mg MLVSS/h was observed at a hydraulic retention time of 20 h for 20 days of operation in a biomass concentration of 3000 mg/L produced by the mixed microbial culturing process. In the long-term analysis, effluent concentrations of 3 mg/L and <1 mg/L of 1,4–dioxane were observed for CSTR and PFR, respectively. The higher removal efficacy of PFR was due to the production of more MLVSS at 4000 mg/L compared to the outcome of 3000 mg/L in CSTR in a competitive environment.
Collapse
|
38
|
Yang S, Song P, Zhuang B, Zhang S, Han X, Peng Y, Li J, Zhang L. Distinct granulation pathways of anammox granular sludge under biofilm enhancement. BIORESOURCE TECHNOLOGY 2022; 345:126569. [PMID: 34921922 DOI: 10.1016/j.biortech.2021.126569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The simultaneous partial nitrification and anammox (PN/A) granular sludge process in a plug-flow reactor has been difficult to achieve. This study provides a novel way to enhance granulation using biofilm detachment. In a plug-flow reactor, a fixed carrier was added to the activated sludge, and a PN/A biofilm gradually formed during the operation. Mature biofilm detachment appeared and caused the emergence of micro-granule. Then the fixed carriers were removed from the reactor, but the nitrogen removal rate (NRR) of the reactor was barely affected. This result suggests granular sludge is a feasible replacement for biofilm. Moreover, the particle size of the granule increased from 212 to 425 μm, and the NRR was 1.63 kg N/(m3·d), with a maximum nitrogen removal efficiency of 86.5%. Overall, this study implies that it is feasible to maintain granular sludge in a plug-flow PN/A reactor, and biofilm detachment significantly favors the granulation process.
Collapse
Affiliation(s)
- Shenhua Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Peiyuan Song
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Baoyu Zhuang
- Shanghai Municipal Engineering Design Institute (Group) CO., LTD, Shanghai 200092, PR China
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, PR China
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
39
|
Roche C, Donnaz S, Murthy S, Wett B. Biological process architecture in continuous-flow activated sludge by gravimetry: Controlling densified biomass form and function in a hybrid granule-floc process at Dijon WRRF, France. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e1664. [PMID: 34806253 DOI: 10.1002/wer.1664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Full-scale demonstration of activated sludge conversion into a granule-floc hybrid process was implemented in Dijon (France) water resource recovery facility (WRRF). Biomass densification was achieved based on external gravimetric selection using hydrocyclones within continuous-flow anaerobic-anoxic-oxic (A2 O) biological nutrient removal (BNR) bioreactor. The goal was to optimize settleability of biological sludge by lowering and stabilizing sludge volume index (SVI) to improve process robustness and resiliency. Process proved to stabilize operation and to uncouple the total solids residence time (SRT) between floc and granule morphologies. The densified biomass initially produced stable SVI < 100 ml/g for a period of 4 months and thereafter a steady state year-round SVI below 50 ml/g, including the winter period during which the control train SVI expansion >200 ml/g. The densified biomass successfully broke the vicious cycle of interannual bulking. Form and function interrelationship is proposed for the densified biomass (hybrid floc-granule). The concept of biological architecture is proposed as the purposeful control of granule and floc proportions, with a proposed "form factor" ratio of 1:2 granule to floc, that produce a "SRT uncoupling function factor" ratio of 4:1 granule to floc, further resulting in very stable settling and effluent functionalities. PRACTITIONER POINTS: Controlling granule-floc proportions allows for sludge volume index (SVI) operational adjustment, which further allows for increased clarified design accuracy. One-third aggregates dramatically improved settling characteristics: 20% and 35% of AGS ensures SVIs below 100 and 50 ml/g, respectively. Densified biomass enables new SRT and clarifier flux rates approaches for engineering and operation practices: Doubling typical surface loading rates from 6.0-8.5 to 15-20 kg m-2 h-1 and surface overflow rates from 0.6-0.8 to 1.5-2.4 m/h SRT uncoupling of 1:4 is achieved between floc and granule, enabling specific niche environment for fast and slow growing organisms.
Collapse
|
40
|
Anaerobic granulation of single culture Clostridium beijerinckii. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
An Z, Zhang X, Zheng Y, Wang ZW. Aerobic granulation of single culture protist. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Yu C, Wang K, Tian C, Yuan Q. Aerobic granular sludge treating low-strength municipal wastewater: Efficient carbon, nitrogen and phosphorus removal with hydrolysis-acidification pretreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148297. [PMID: 34153768 DOI: 10.1016/j.scitotenv.2021.148297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Low organic load while high fraction of particulates still challenging the application of aerobic granular sludge process in low-strength municipal wastewater treatment. The feasibility of adopting short cycle length to increase organic load and hydrolysis-acidification pretreatment to enhance anaerobic COD uptake was evaluated. As the cycle length decreased from 4 h to 2 h, the organic loading rate increased from 0.98 to 1.3 g L-1 d-1 and granulation appeared after two weeks. Moreover, with the hydrolysis-acidification pretreatment, the average effluent TN and TP concentrations decreased respectively from 17.8 to 13.7 mg L-1 and 0.76 to 0.41 mg L-1, meeting the Grade IA of the effluent standards in China. Furthermore, cycle tests were conducted to reveal the underlying mechanism of the pretreatment effects. The results showed that the hydrolysis-acidification pretreatment enhanced the COD storage and phosphorus release in anaerobic phase, and improved the simultaneous nitrification-denitrification process, as well as the phosphorus uptake in aeration phase.
Collapse
Affiliation(s)
- Cheng Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Chen Tian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Quan Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
43
|
Baeten JE, Walgraeve C, Granja RC, van Loosdrecht MCM, Volcke EIP. Unaerated feeding alters the fate of dissolved methane during aerobic wastewater treatment. WATER RESEARCH 2021; 204:117619. [PMID: 34509867 DOI: 10.1016/j.watres.2021.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
In municipal wastewater treatment plants, some dissolved methane can enter the aerobic bioreactors. This greenhouse gas originates from sewers and return flows from anaerobic sludge treatment. In well-mixed conventional activated sludge reactors, methane emissions are largely avoided because methane oxidizing bacteria consume a large fraction, even without optimizing for this purpose. In this work, the fate of dissolved methane is studied in aerobic granular sludge reactors, as they become increasingly popular. The influence of the characteristic design and operating conditions of these reactors are studied with a mathematical model with apparent conversion kinetics and stripping: the separation of feeding and aeration in time, a higher substrate transport resistance, a high retention time of granular biomass and a taller water column. Even for a best-case scenario combining an unrealistically low intragranule substrate transport resistance, a high retention time, a tall reactor, an extremely high influent methane concentration and no oxygen limitation, the methane conversion efficiency was only 12% when feeding and aeration were separated in time, which is lower than for continuous activated sludge reactors under typical conditions. A more rigorous model was used to confirm the limited conversion, considering the multi-species and multi-substrate biofilm kinetics, anoxic methane consumers and the high substrate concentration at the bottom during upward plug flow feeding. The observed limited methane conversion is mainly due to the high concentration that accumulates during unaerated feeding phases, which favours stripping more than conversion in the subsequent aeration phase. Based on these findings, strategies were proposed to mitigate methane emissions from wastewater treatment plants with sequentially operated reactors.
Collapse
Affiliation(s)
- Janis E Baeten
- Department of Green chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Christophe Walgraeve
- Department of Green chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Rafael Cesar Granja
- Department of Green chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands
| | - Eveline I P Volcke
- Department of Green chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| |
Collapse
|
44
|
Wei SP, Stensel HD, Ziels RM, Herrera S, Lee PH, Winkler MKH. Partitioning of nutrient removal contribution between granules and flocs in a hybrid granular activated sludge system. WATER RESEARCH 2021; 203:117514. [PMID: 34407486 DOI: 10.1016/j.watres.2021.117514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Sludge granulation in continuous-flow systems is an emerging technology to intensify existing activated sludge infrastructure for nutrient removal. In these systems, the nutrient removal contributions and partitioning of microbial functions between granules and flocs can offer insights into process implementations. To this end, a reactor system that simulates the continuous-flow environment using an equal amount of initial granule and floc biomass was investigated. The two operational strategies for maintaining granule growth in the continuous-flow system were (a) the higher solids retention time (SRT) for the granules versus flocs, as well as (b) selective feeding of carbon to the granules. The SRT of the large granule fractions (>425 µm, LG) and floc/small granule fractions (<425 µm, FSG) were controlled at 20 and 2.7-6.0 days, respectively. Long term operation of the hybrid granule/floc system achieved high PO43- and NH4+ removal efficiencies. Higher polyphosphate-accumulating organisms (PAO) activity was observed in the FSG than LG, while ammonia-oxidizing bacteria (AOB) activities were similar in the two biomass fractions. Nitrite shunt was observed in the FSG, possibly due to out-competition by the high NOB activity in LG. More importantly, washing out the FSG caused a reduction in LG's AOB and PAO activity, indicating a possible dependency of LG on FSG for maintaining its nutrient removal capacity. Our findings highlighted the partitioning and potential competition/cooperation of key microbial functional groups between LG and FSG, facilitating nutrient removal in a hybrid granular activated sludge system, as well as implications for practical application of the treatment platform.
Collapse
Affiliation(s)
- Stephany P Wei
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - H David Stensel
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA.
| | - Ryan M Ziels
- University of British Columbia, Department of Civil Engineering, Vancouver BC V6T 1Z4, Canada.
| | - Stephanie Herrera
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA
| | - Po-Heng Lee
- Imperial College London, Department of Civil and Environmental Engineering, Skempton Building, South Kensington Campus, London SW7 2AZ, United Kingdom.
| | - Mari-K H Winkler
- University of Washington, Department of Civil & Environmental Engineering, Seattle, WA 98195, USA.
| |
Collapse
|
45
|
Baeten JE, van Dijk EJH, Pronk M, van Loosdrecht MCM, Volcke EIP. Potential of off-gas analyses for sequentially operated reactors demonstrated on full-scale aerobic granular sludge technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147651. [PMID: 34000528 DOI: 10.1016/j.scitotenv.2021.147651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
This work shows how more variables can be monitored with a single off-gas sampler on sequentially operated than on continuously fed and aerated reactors and applies the methods to data from a full-scale aerobic granular sludge reactor as a demonstration and to obtain insight in this technology. First, liquid-gas transfer rates were calculated. Oxygen (O2) absorption and carbon dioxide (CO2) emission rates showed comparable cyclic trends due to the coupling of O2 consumption and CO2 production. Methane (CH4) emissions showed a stripping profile and nitrous oxide (N2O) emissions showed two peaks each cycle, which were attributed to different production pathways. Secondly, aeration characteristics were calculated, of which the gradual improvement within cycles was explained by surfactants degradation. Thirdly, liquid phase concentrations were estimated from off-gas measurements via a novel calculation procedure. As such, an average influent CH4 concentration of 0.7 g·m-3 was found. Fourthly, reaction rates could be estimated from off-gas data because no feeding or discharge occurred during reaction phases. The O2 consumption rate increased with increasing dissolved oxygen and decreased once nitrification was complete. Fifthly, greenhouse gas emissions could be derived, indicating a 0.06% N2O emission factor. Sixthly, off-gas gave an indication of influent characteristics. The CO2 emitted per kg COD catabolized corresponded with the TOC/COD ratio of typical wastewater organics in cycles with balanced nitrification and denitrification. High nitrogen removal efficiencies were associated with high catabolized COD/N ratios as estimated from the O2 absorption. Finally, mass balances could be closed using off-gas O2 data. As such, an observed yield of 0.27 g COD/g COD was found. All these variables could be estimated with a single sampler because aeration without feeding creates a more homogeneous off-gas composition and simplifies liquid-phase mass balances. Therefore, off-gas analyzers may have a broader application potential for sequentially operated reactors than currently acknowledged.
Collapse
Affiliation(s)
- Janis E Baeten
- BioCo Research Group, Department of Green Chemistry and Technology, Coupure Links 653, 9000 Gent, Ghent University, Belgium.
| | - Edward J H van Dijk
- Environmental Biotechnology, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; Royal HaskoningDHV, Laan 1914 35, Amersfoort 3800, AL, the Netherlands.
| | - Mario Pronk
- Environmental Biotechnology, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands; Royal HaskoningDHV, Laan 1914 35, Amersfoort 3800, AL, the Netherlands.
| | - Mark C M van Loosdrecht
- Environmental Biotechnology, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands.
| | - Eveline I P Volcke
- BioCo Research Group, Department of Green Chemistry and Technology, Coupure Links 653, 9000 Gent, Ghent University, Belgium.
| |
Collapse
|
46
|
Li D, Yang J, Li Y, Zhang J. Research on rapid cultivation of aerobic granular sludge (AGS) with different feast-famine strategies in continuous flow reactor and achieving high-level denitrification via utilization of soluble microbial product (SMP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147237. [PMID: 33964764 DOI: 10.1016/j.scitotenv.2021.147237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The mixture of partial AGS and flocculent sludge in continuous flow reactors were operated with periodic famine (PF) strategy and continuous feast (CF) strategy to reveal the impact of the feast-famine strategies on cultivation of AGS and the dynamics of microbial communities. The experimental results showed that the mature AGS were cultivated with PF and CF strategy on the 31st and the 71st days respectively, which was the result of good extracellular polymeric substance (EPS) secretion with PF strategy. It could accelerate the formation of microbial aggregates due to the conditions of periodic famine. High-level denitrification with PF strategy via utilization of SMP was examined by EEM-PARAFAC on cycle test. The high-throughput pyrosequencing showed that the dominant bacteria with PF strategy involved functional bacteria of nutrient removal and EPS secreting bacteria, while the dominant bacteria were fast-growing heterotrophic organisms with CF strategy.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Jingwei Yang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Yue Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
47
|
Liu W, Wang Q, Shen Y, Yang D. Enhancing the in-situ enrichment of anammox bacteria in aerobic granules to achieve high-rate CANON at low temperatures. CHEMOSPHERE 2021; 278:130395. [PMID: 33819889 DOI: 10.1016/j.chemosphere.2021.130395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
In this study, a high-rate CANON (Complete Autotrophic Nitrogen-removal Over Nitrite) process was started up successfully by enhancing the in-situ enrichment of anammox bacteria in aerobic granules at conditions relevant for mainstream wastewater treatment. Firstly, to provide nitrite for anammox bacteria growth efficient nitrite-oxidizing bacteria (NOB) repression was rapidly achieved and stably maintained. Both low dissolved oxygen (DO) and ammonium concentrations ratio (DO/NH4+ <0.15) and selective washing-out of NOB-preferred smaller particles at short hydraulic retention time (HRT, 25-15 min) contributed to the NOB repression. Then the stepwise down-regulating DO concentrations from 2.8 to 1.2 mg/L enhanced the enrichment of anammox bacteria in the aerobic granules. The enriched anammox species was dominated by Ca. Brocadia sapporoensis with the estimated growth rate of 0.008-0.013 d-1 at 15 °C. Chloroflexi and Chlorobi-affiliated bacteria were also significantly enriched in the granules, which may benefit the anammox bacteria activity and growth. At the end of this study, the average total nitrogen removal rate and efficiency of the granular CANON process respectively reached 1.26 kg N·m-3·d-1 and 68% treating low-strength ammonium (∼50 mg N·L-1) wastewater under such aggressive conditions (DO = 0.8-1.5 mg/L, HRT< 1.0 h, and T = 15 °C). Overall, the aerobic granules provided a habitable niche for the proliferation and almost complete retention of the anammox bacteria. This study provides a roadmap for in-situ starting up of high-rate CANON process for mainstream wastewater treatment with aerobic granules as inoculum.
Collapse
Affiliation(s)
- Wenru Liu
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Qian Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yaoliang Shen
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| |
Collapse
|
48
|
Santorio S, Couto AT, Amorim CL, Val Del Rio A, Arregui L, Mosquera-Corral A, Castro PML. Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents. WATER RESEARCH 2021; 201:117293. [PMID: 34146761 DOI: 10.1016/j.watres.2021.117293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Ammonium and nitrite levels in water are crucial for fish health preservation and growth maintenance in freshwater aquaculture farms, limiting water recirculation. The aim of the present work was the evaluation and comparison of two granular sludge reactors which were operated to treat freshwater aquaculture streams at laboratory-scale: an Aerobic Granular Sludge - Sequencing Batch Reactor (AGS-SBR) and a Continuous Flow Granular Reactor (CFGR). Both units were fed with a synthetic medium mimicking an aquaculture recycling water (1.9-2.9 mg N/L), with low carbon content, and operational temperature varied between 17 and 25 °C. The AGS-SBR, inoculated with mature granules from a full-scale wastewater treatment plant, achieved high carbon and ammonium removal during the 157 operational days. Even at low hydraulic retention time (HRT), varying from 474 to 237 min, ammonium removal efficiencies of approximately 87-100% were observed, with an ammonium removal rate of approximately 14.5 mg NH4+-N/(L⋅d). Partial biomass washout occurred due to the extremely low carbon and nitrogen concentrations in the feeding, which could only support the growth of a small portion of bacteria, but no major changes on the reactor removal performance were observed. The CFGR was inoculated with activated sludge and operated for 98 days. Biomass granulation occurred in 7 days, improving the settling properties due to a high up-flow velocity of 11 m/h and an applied HRT of 5 min. The reactor presented mature granules after 32 days, achieving an average diameter of 1.9 mm at day 63. The CFGR ammonium removal efficiencies were of approximately 10-20%, with ammonium removal rates of 90.0 mg NH4+-N/(L⋅d). The main biological processes taking place in the AGS-SBR were nitrification and heterotrophic growth, while in the CFGR the ammonium removal occurred only by heterotrophic assimilation, with the reactor also presenting complete and partial denitrification, which caused nitrite production. Comparing both systems, the CFGR achieved 6 times higher ammonium removal rates than the AGS-SBR, being suitable for treating extremely high flows. On the other hand, the AGS-SBR removed almost 100% of ammonium content in the wastewater, discharging a better quality effluent, less toxic for the fish but treated lower flows.
Collapse
Affiliation(s)
- Sergio Santorio
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, E-15705 Santiago de Compostela, Spain.
| | - Ana T Couto
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Catarina L Amorim
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Angeles Val Del Rio
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, E-15705 Santiago de Compostela, Spain
| | - Luz Arregui
- Grupo Tres Mares, S.L. Lires s/n, E-15270 Cee, A Coruña, Spain
| | - Anuska Mosquera-Corral
- CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, E-15705 Santiago de Compostela, Spain
| | - Paula M L Castro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
49
|
Support Vector Regression Modelling of an Aerobic Granular Sludge in Sequential Batch Reactor. MEMBRANES 2021; 11:membranes11080554. [PMID: 34436317 PMCID: PMC8400290 DOI: 10.3390/membranes11080554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
Support vector regression (SVR) models have been designed to predict the concentration of chemical oxygen demand in sequential batch reactors under high temperatures. The complex internal interaction between the sludge characteristics and their influent were used to develop the models. The prediction becomes harder when dealing with a limited dataset due to the limitation of the experimental works. A radial basis function algorithm with selected kernel parameters of cost and gamma was used to developed SVR models. The kernel parameters were selected by using a grid search method and were further optimized by using particle swarm optimization and genetic algorithm. The SVR models were then compared with an artificial neural network. The prediction results R2 were within >90% for all predicted concentration of COD. The results showed the potential of SVR for simulating the complex aerobic granulation process and providing an excellent tool to help predict the behaviour in aerobic granular reactors of wastewater treatment.
Collapse
|
50
|
Avila I, Freedman D, Johnston J, Wisdom B, McQuarrie J. Inducing granulation within a full-scale activated sludge system to improve settling. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:302-313. [PMID: 34312338 DOI: 10.2166/wst.2021.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most cold-climate biological nutrient removal facilities experience poor settling mixed liquor during winter, resulting in treatment capacity throughput limitations. The Metro Wastewater Reclamation District in Denver, Colorado, operated two full-scale secondary treatment trains to compare the existing biological nutrient removal configuration (Control) to one that was modified to operate with an anaerobic selector and with hydrocyclone selective wasting (Test) to induce granulation. Results from this evaluation showed that the Test achieved significantly better settling behaviour than the Control. The difference in the mean diluted SVI30 between the Test and Control were statistically significant (P < 0.05), with values of 77 ± 17 and 135 ± 25 mL/g observed for the Test and Control respectively. These settling results were accompanied by differences in the particle size distribution, with notably higher settling velocities commensurate with increasing particle size. The degree of granulation observed in the Test train was between 32 and 56% of the mass greater than ≥250 μm in particle size whereas 16% of the mixed liquor in the Control was ≥250 μm over the entire study period. The improved settling behaviour of the Test configuration may translate into an increase of secondary treatment capacity during winter by 32%.
Collapse
Affiliation(s)
- Isaac Avila
- Metro Wastewater Reclamation District, 6450 York St., Denver, Colorado 80229, United States
| | - Dan Freedman
- Metro Wastewater Reclamation District, 6450 York St., Denver, Colorado 80229, United States
| | - Joel Johnston
- City of Springfield Southwest Wastewater Treatment Plant, 3301 S. State Hwy FF, Springfield, MO 65807, United States
| | - Blair Wisdom
- Metro Wastewater Reclamation District, 6450 York St., Denver, Colorado 80229, United States
| | - James McQuarrie
- Tetra Tech, 1560 Broadway, Ste. 1400 & 1450, Denver, CO 80202, United States
| |
Collapse
|