1
|
Zhang R, Luo X, Li D, Gao Y, Chen X, Xi Z, Zheng Z. Increased thermal stability and catalytic efficiency of 3-ketosteroid Δ 1-dehydrogenase5 from Arthrobacter simplex significantly reduces enzyme dosage in prednisone acetate biosynthesis. Int J Biol Macromol 2024; 283:137855. [PMID: 39566767 DOI: 10.1016/j.ijbiomac.2024.137855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
The 3-ketosteroid-Δ1-dehydrogenase5 (KsdD5) from Arthrobacter simplex converts cortisone acetate to prednisone acetate, an important step in steroid catabolism. To achieve sustainable and efficient enzyme production, we employed computer-aided screening, structural analysis, and combinatorial experiments to identify engineered KsdD5 variants (M1 and M3) with dual advantages of stability and active sites. M1 had a 8.2-fold longer half-life (19.6 h at 30 °C) than KsdD5-WT, an 11.8 °C higher half-inactivation temperature (T5015min), and a 10.6 °C higher melting temperature (Tm). M3 had 3.82-fold higher catalytic activity than WT, a 3.9-fold longer half-life at 30 °C, and higher T5015min and Tm by 14 °C and 6.9 °C, respectively. Furthermore, kinetic and microscale thermophoresis analyses revealed M3 exhibited higher catalytic efficiency due to its larger enzymatic channel. Molecular dynamics simulations showed M1 promoted tighter secondary structure packing, reduced residue flexibility, and increased hydrogen bond formation, ensuring enzyme stability and activity at elevated temperatures. Under industrial conditions, M1 converted >96 % cortisone acetate within 12 h at 30 °C with a 60 g·L-1 substrate dosage and 6 g·L-1 cell mass, whereas the M3 conversion rate was 95 %. This study demonstrates a robust strategy for developing efficient enzyme mutants, facilitating sustainable industrial production of prednisone acetate with a minimal enzyme dosage.
Collapse
Affiliation(s)
- Rong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xinran Luo
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Danni Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yating Gao
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xizi Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zubin Xi
- Hubei Goto Biopharm Co., Ltd., 33th Floor of Building #1, IFC, South jiangshan Rd, Wolong Ave, Fancheng District, Xiangyang, Hubei 441057, China
| | - Zhongliang Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Chen X, Zhang B, Jiang X, Liu Z, Zheng Y. Improving the bioconversion of phytosterols to 9α-hydroxy-4-androstene-3,17-dione by disruption of acyltransferase SucT and TmaT associated with the mycobacterial cell wall synthesis. World J Microbiol Biotechnol 2024; 40:350. [PMID: 39404941 DOI: 10.1007/s11274-024-04165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The bioconversion of low value-added phytosterols into high value-added 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) in Mycolicibacterium neoaurum is a representative step in the steroid pharmaceutical industry. However, the complex mycobacterial cell walls with extremely low permeability and flowability greatly decrease the overall conversion efficiency. Herein, we preliminarily identified two key acyltransferases encoded by Mn_TmaT and Mn_SucT required for the proper synthesis of cell wall in mycobacteria and achieved a significant increase in cell permeability by disrupting them without affecting the cell wall structural stability. At length, the destruction of Mn_TmaT and Mn_SucT alone increased the conversion rate of 9-OHAD from 45.3% (6.67 ± 0.39 g/L) to 62.4% (9.19 ± 0.58 g/L) and 67.9% (10.02 ± 0.62 g/L) while the continuous destruction of Mn_TmaT and Mn_SucT did not further improve the conversion efficiency of 9-OHAD. Notably, it was investigated that the continuous destruction of Mn_TmaT and Mn_SucT led to alterations in both the covalent and non-covalent binding layers of the cell wall, resulting in excessive changes in cell morphology and structure, which ultimately decreased 9-OHAD production. Therefore, this study deciphered a pivotal biosynthetic path of cell wall and provided an efficient and feasible construction strategy of 9-OHAD synthesis in mycobacteria.
Collapse
Affiliation(s)
- Xinxin Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiaohan Jiang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
3
|
Wang X, Ke X, Dong H, Liu Z, Zheng Y. High-efficiency bioconversion of phytosterol to bisnoralcohol by metabolically engineered Mycobacterium neoaurum in a micro-emulsion system. Biotechnol J 2024; 19:e2400387. [PMID: 39295572 DOI: 10.1002/biot.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024]
Abstract
21-Hydroxy-20-methylpregn-4-en-3-one (4-HBC, bisnoralcohol) is a crucial intermediate for the synthesis of steroidal drugs. Significant challenges including by-products formation and poor substrate solubility were still confronted in its main synthetic route by microbial conversion from phytosterol. Construction of a direct bioconversion pathway to 4-HBC and an efficient substrate emulsion system is therefore urgently required. In this study, three novel isoenzymes of 3-ketosteroid-Δ1-dehydrogenase (KstD) and 3-ketosteroid 9α-hydroxylase (KsH) in Mycobacterium neoaurum were excavated and identified as KstD4, KstD5, and KsHA3. A strain capable of fully directing the synthesis of 4-HBC was metabolically engineered via serial genetic deletion combined with enhanced expression of cholesterol oxidase (ChOx2) and enoyl-CoA hydratase (EchA19). Moreover, a micro-emulsion system combined with soybean oil and hydroxypropyl-β-cyclodextrin improved substrate solubility and bioavailability. In batch fermentation, molar yield of 96.7% with 39.5 g L-1 4-HBC was obtained from 50 g L-1 phytosterol. Our findings demonstrate the potential for industrial-scale biosynthesis of 4-HBC.
Collapse
Affiliation(s)
- Xinxin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hongduo Dong
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Panek A, Wójcik P, Świzdor A, Szaleniec M, Janeczko T. Biotransformation of Δ 1-Progesterone Using Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products' Bioactivity. Int J Mol Sci 2023; 25:508. [PMID: 38203679 PMCID: PMC10779271 DOI: 10.3390/ijms25010508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
This research aimed at obtaining new derivatives of pregn-1,4-diene-3,20-dione (Δ1-progesterone) (2) through microbiological transformation. For the role of catalysts, we used six strains of entomopathogenic filamentous fungi (Beauveria bassiana KCh J1.5, Beauveria caledonica KCh J3.3, Isaria fumosorosea KCh J2, Isaria farinosa KCh KW1.1, Isaria tenuipes MU35, and Metarhizium robertsii MU4). The substrate (2) was obtained by carrying out an enzymatic 1,2-dehydrogenation on an increased scale (3.5 g/L) using a recombinant cholest-4-en-3-one Δ1-dehydrogenase (AcmB) from Sterolibacterium denitrificans. All selected strains were characterized by the high biotransformation capacity for the used substrate. As a result of the biotransformation, six steroid derivatives were obtained: 11α-hydroxypregn-1,4-diene-3,20-dione (3), 6β,11α-dihydroxypregn-1,4-diene-3,20-dione (4), 6β-hydroxypregn-1,4-diene-3,11,20-trione (5), 6β,17α-dihydroxypregn-1,4-diene-3,20-dione (6), 6β,17β-dihydroxyandrost-1,4-diene-3-one (7), and 12β,17α-dihydroxypregn-1,4-diene-3,20-dione (8). The results show evident variability of the biotransformation process between strains of the tested biocatalysts from different species described as entomopathogenic filamentous fungi. The obtained products were tested in silico using cheminformatics tools for their pharmacokinetic and pharmacodynamic properties, proving their potentially high biological activities. This study showed that the obtained compounds may have applications as effective inhibitors of testosterone 17β-dehydrogenase. Most of the obtained products should, also with a high probability, find potential uses as androgen antagonists, a prostate as well as menopausal disorders treatment. They should also demonstrate immunosuppressive, erythropoiesis-stimulating, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Anna Panek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.W.); (M.S.)
| | - Alina Świzdor
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland; (P.W.); (M.S.)
| | - Tomasz Janeczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
5
|
Liu X, He B, Zhang J, Yuan C, Han S, Du G, Shi J, Sun J, Zhang B. Phytosterol conversion into C9 non-hydroxylated derivatives through gene regulation in Mycobacterium fortuitum. Appl Microbiol Biotechnol 2023; 107:7635-7646. [PMID: 37831185 DOI: 10.1007/s00253-023-12812-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Androst-4-ene-3,17-dione (AD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) are important drug intermediates that can be biosynthesized from phytosterols. However, the C9 hydroxylation of steroids via 3-ketosteroid 9α-hydroxylase (KSH) limits AD and 4-HBC accumulation. Five active KshAs, the oxidation component of KSH, were identified in Mycobacterium fortuitum ATCC 35855 for the first time. The deletion of kshAs indicated that the five KshA genes were jointly responsible for C9 hydroxylation during phytosterol biotransformation. MFKDΔkshA, the five KshAs deficient strain, blocked C9 hydroxylation and produced 5.37 g/L AD and 0.55 g/L 4-HBC. The dual function reductase Opccr knockout and 17β-hydroxysteroid dehydrogenase Hsd4A enhancement reduced 4-HBC content from 8.75 to 1.72% and increased AD content from 84.13 to 91.34%, with 8.24 g/L AD being accumulated from 15 g/L phytosterol. In contrast, hsd4A and thioesterase fadA5 knockout resulted in the accumulation of 5.36 g/L 4-HBC from 10 g/L phytosterol. We constructed efficient AD (MFKDΔkshAΔopccr_hsd4A) and 4-HBC (MFKDΔkshAΔhsd4AΔfadA5) producers and provided insights for further metabolic engineering of the M. fortuitum ATCC 35855 strain for steroid productions. KEY POINTS: • Five active KshAs were first identified in M. fortuitum ATCC 35855. • Deactivation of all five KshAs blocks the steroid C9 hydroxylation reaction. • AD or 4-HBC production was improved by Hsd4A, FadA5, and Opccr modification.
Collapse
Affiliation(s)
- Xiangcen Liu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beiru He
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jingxian Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Chenyang Yuan
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Suwan Han
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guilin Du
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Junsong Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Baoguo Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Fufaeva SR, Dovbnya DV, Ivashina TV, Shutov AA, Donova MV. Reconstruction of the Steroid 1(2)-Dehydrogenation System from Nocardioides simplex VKM Ac-2033D in Mycolicibacterium Hosts. Microorganisms 2023; 11:2720. [PMID: 38004731 PMCID: PMC10672877 DOI: 10.3390/microorganisms11112720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Microbial 1(2)-dehydrogenation of 3-ketosteroids is an important basis for the production of many steroid pharmaceuticals and synthons. When using the wild-type strains for whole cell catalysis, the undesirable reduction of the 20-carbonyl group, or 1(2)-hydrogenation, was observed. In this work, the recombinant strains of Mycolicibacterium neoaurum and Mycolicibacterium smegmatis were constructed with blocked endogenous activity of 3-ketosteroid-9α-hydroxylase, 3-ketosteroid-1(2)-dehydrogenase (3-KSD), and expressing 3-KSD encoded by the gene KR76_27125 (kstD2NS) from Nocardioides simplex VKM Ac-2033D. The in vivo activity of the obtained recombinant strains against phytosterol, 6α-methyl-hydrocortisone, and hydrocortisone was studied. When using M. smegmatis as the host strain, the 1(2)-dehydrogenation activity of the constructed recombinant cells towards hydrocortisone was noticeably higher compared to those on the platform of M. neoaurum. A comparison of the strengths of inducible acetamidase and constitutive hsp60 promoters in M. smegmatis provided comparable results. Hydrocortisone biotransformation by M. smegmatis BD/pMhsp_k expressing kstD2NS resulted in 95.4% prednisolone yield, and the selectivity preferred that for N. simplex. Mycolicibacteria showed increased hydrocortisone degradation at 35 °C compared to 30 °C. The presence of endogenous steroid catabolism in Mycolicibacterium hosts does not seem to confer an advantage for the functioning of KstD2NS. The results allow for the evaluation of the prospects for the development of simple technological methods for the selective 1(2)-dehydrogenation of 3-ketosteroids by growing bacterial cells.
Collapse
Affiliation(s)
| | | | | | | | - Marina V. Donova
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia; (S.R.F.); (D.V.D.); (T.V.I.); (A.A.S.)
| |
Collapse
|
7
|
Hou Y, Zhao W, Ding X, Zhang X, Li Z, Tan Z, Zhou J, Wang H, Jia S. Co-production of 7-chloro-tryptophan and indole pyruvic acid based on an efficient FAD/FADH 2 regeneration system. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12619-9. [PMID: 37354265 DOI: 10.1007/s00253-023-12619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/26/2023]
Abstract
Efficient FAD/FADH2 regeneration is vital for enzymatic biocatalysis and metabolic pathway optimization. Here, we constructed an efficient and simple FAD/FADH2 regeneration system through a combination of L-amino acid deaminase (L-AAD) and halogenase (CombiAADHa), which was applied for catalyzing the conversion of an L-amino acid to halide and an α-keto acid. For cell-free biotransformation, the optimal activity ratio of L-AAD and halogenase was set between 1:50 and 1:60. Within 6 h, 170 mg/L of 7-chloro-tryptophan (7-Cl-Trp) and 193 mg/L of indole pyruvic acid (IPA) were synthesized in the selected mono-amino acid system. For whole-cell biotransformation, 7-Cl-Trp and IPA synthesis was enhanced by 15% (from 96 to 110 mg/L) and 12% (from 115 to 129 mg/L), respectively, through expression fine-tuning and the strengthening of FAD/FADH2 supply. Finally, ultrasound treatment was applied to improve membrane permeability and adjust the activity ratio, resulting in 1.6-and 1.4-fold higher 7-Cl-Trp and IPA yields. The products were then purified. This system could also be applied to the synthesis of other halides and α-keto acids. KEY POINTS: • In this study, a whole cell FAD/FADH2 regeneration system co-expressing l-AAD and halogenase was constructed • This study found that the activity and ratio of enzyme and the concentration of cofactors had a significant effect on the catalytic process for the efficient co-production of 7-chlorotryptophan and indole pyruvate.
Collapse
Affiliation(s)
- Ying Hou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Wanying Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xincheng Ding
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xuan Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Zhibin Li
- College of Agronomy and Resources Environment, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Zhilei Tan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Hongxing Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Food Science and Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
8
|
Wójcik P, Glanowski M, Mrugała B, Procner M, Zastawny O, Flejszar M, Kurpiewska K, Niedziałkowska E, Minor W, Oszajca M, Bojarski AJ, Wojtkiewicz AM, Szaleniec M. Structure, Mutagenesis, and QM:MM Modeling of 3-Ketosteroid Δ 1-Dehydrogenase from Sterolibacterium denitrificans─The Role of a New Putative Membrane-Associated Domain and Proton-Relay System in Catalysis. Biochemistry 2023; 62:808-823. [PMID: 36625854 PMCID: PMC9960185 DOI: 10.1021/acs.biochem.2c00576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
3-Ketosteroid Δ1-dehydrogenases (KstD) are important microbial flavin enzymes that initiate the metabolism of steroid ring A and find application in the synthesis of steroid drugs. We present a structure of the KstD from Sterolibacterium denitrificans (AcmB), which contains a previously uncharacterized putative membrane-associated domain and extended proton-relay system. The experimental and theoretical studies show that the steroid Δ1-dehydrogenation proceeds according to the Ping-Pong bi-bi kinetics and a two-step base-assisted elimination (E2cB) mechanism. The mechanism is validated by evaluating the experimental and theoretical kinetic isotope effect for deuterium-substituted substrates. The role of the active-site residues is quantitatively assessed by point mutations, experimental activity assays, and QM/MM MD modeling of the reductive half-reaction (RHR). The pre-steady-state kinetics also reveals that the low pH (6.5) optimum of AcmB is dictated by the oxidative half-reaction (OHR), while the RHR exhibits a slight optimum at the pH usual for the KstD family of 8.5. The modeling confirms the origin of the enantioselectivity of C2-H activation and substrate specificity for Δ4-3-ketosteroids. Finally, the cholest-4-en-3-one turns out to be the best substrate of AcmB in terms of ΔG of binding and predicted rate of dehydrogenation.
Collapse
Affiliation(s)
- Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Michał Glanowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Beata Mrugała
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Magdalena Procner
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
- Jerzy Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343Kraków, Poland
| | - Olga Zastawny
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Monika Flejszar
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959Rzeszów, Poland
| | - Katarzyna Kurpiewska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Kraków, Poland
| | - Ewa Niedziałkowska
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, Virginia22908, United States
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Pinn Hall, Charlottesville, Virginia22908, United States
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387Kraków, Poland
| | - Andrzej J Bojarski
- Jerzy Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343Kraków, Poland
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239Kraków, Poland
| |
Collapse
|
9
|
Donova MV. Current Trends and Perspectives in Microbial Bioconversions of Steroids. Methods Mol Biol 2023; 2704:3-21. [PMID: 37642835 DOI: 10.1007/978-1-0716-3385-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The microbiological transformation of sterols is currently the technological basis for the industrial production of valuable steroid precursors, the so-called synthons, from which a wide range of steroid and indane isoprenoids are obtained by combined chemical and enzymatic routes. These compounds include value-added corticoids, neurosteroids, sex hormones, bile acids, and other terpenoid lipids required by the medicine, pharmaceutical, food, veterinary, and agricultural industries.Progress in understanding the molecular mechanisms of microbial degradation of steroids, and the development and implementation of genetic technologies, opened a new era in steroid biotechnology. Metabolic engineering of microbial producers makes it possible not only to improve the biocatalytic properties of industrial strains by enhancing their target activity and/or suppressing undesirable activities in order to avoid the formation of by-products or degradation of the steroid core, but also to redirect metabolic fluxes in cells towards accumulation of new metabolites that may be useful for practical applications. Along with whole-cell catalysis, the interest of researchers is growing in enzymatic methods that make it possible to carry out selective structural modifications of steroids, such as the introduction of double bonds, the oxidation of steroidal alcohols, or the reduction of steroid carbonyl groups. A promising area of research is strain engineering based on the heterologous expression of foreign steroidogenesis systems (bacterial, fungal, or mammalian) that ensure selective formation of demanded hydroxylated steroids.Here, current trends and progress in microbial steroid biotechnology over the past few years are briefly reviewed, with a particular focus on the application of metabolic engineering and synthetic biology techniques to improve existing and create new whole-cell microbial biocatalysts.
Collapse
Affiliation(s)
- Marina V Donova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| |
Collapse
|
10
|
Wang XX, Ke X, Liu ZQ, Zheng YG. Rational development of mycobacteria cell factory for advancing the steroid biomanufacturing. World J Microbiol Biotechnol 2022; 38:191. [PMID: 35974205 PMCID: PMC9381402 DOI: 10.1007/s11274-022-03369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 12/05/2022]
Abstract
Steroidal resource occupies a vital proportion in the pharmaceutical industry attributing to their important therapeutic effects on fertility, anti-inflammatory and antiviral activities. Currently, microbial transformation from phytosterol has become the dominant strategy of steroidal drug intermediate synthesis that bypasses the traditional chemical route. Mycobacterium sp. serve as the main industrial microbial strains that are capable of introducing selective functional modifications of steroidal intermediate, which has become an indispensable platform for steroid biomanufacturing. By reviewing the progress in past two decades, the present paper concentrates mainly on the microbial rational modification aspects that include metabolic pathway editing, key enzymes engineering, material transport pathway reinforcement, toxic metabolic intermediates removal and byproduct reconciliation. In addition, progress on omics analysis and direct genetic manipulation are summarized and classified that may help reform the industrial hosts with more efficiency. The paper provides an insightful present for steroid biomanufacturing especially on the current trends and prospects of mycobacteria.
Collapse
Affiliation(s)
- Xin-Xin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China. .,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
11
|
Feng J, Wu Q, Zhu D, Ma Y. Biotransformation Enables Innovations Toward Green Synthesis of Steroidal Pharmaceuticals. CHEMSUSCHEM 2022; 15:e202102399. [PMID: 35089653 DOI: 10.1002/cssc.202102399] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Steroids have been widely used in birth-control, prevention, and treatment of various diseases, representing the largest sector after antibiotics in the global pharmaceutical market. The steroidal active pharmaceutical ingredients (APIs) have been produced via partial synthetic processes first mainly from sapogenins, which was converted into 16-dehydropregnenolone by the famous "Marker Degradation". Traditional mutation and screening, and process engineering have resulted in the industrial production of 4-androstene-3,17-dione (AD), androst-1,4-diene-3,17-dione (ADD), 9α-hydroxy-androsta-4-ene-3,17-dione (9α-OH-AD), and so on, which serve as the key intermediates for the synthesis of steroidal APIs. Recently, genetic and metabolic engineering have generated highly efficient microbial strains for the production of these precursors, leading to the replacement of sapogenins with phytosterols as the starting materials. Further advances in synthetic biology hold promise in the design and construction of microbial cell factories for the industrial production of steroidal intermediates and/or APIs from simple carbon sources such as glucose. Integration of biotransformation into the synthesis of steroidal APIs can greatly reduce the number of reaction steps, achieve lower waste discharge and higher production efficiency, thus enabling a greener steroidal pharmaceutical industry.
Collapse
Affiliation(s)
- Jinhui Feng
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Yanhe Ma
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| |
Collapse
|
12
|
Wang Y, Zhang R, Feng J, Wu Q, Zhu D, Ma Y. A New 3-Ketosteroid-Δ1–Dehydrogenase with High Activity and Broad Substrate Scope for Efficient Transformation of Hydrocortisone at High Substrate Concentration. Microorganisms 2022; 10:microorganisms10030508. [PMID: 35336084 PMCID: PMC8950399 DOI: 10.3390/microorganisms10030508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
3-Ketosteroid-Δ1-dehydrogenases (KstDs [EC 1.3.99.4]) catalyze the Δ1-dehydrogenation of steroids and are a class of important enzymes for steroid biotransformations. In this study, nine putative kstD genes from different origins were selected and overexpressed in Escherichia coli BL21(DE3). These recombinant enzymes catalyzed the Δ1-desaturation of a variety of steroidal compounds. Among them, the KstD from Propionibacterium sp. (PrKstD) displayed the highest specific activity and broad substrate spectrum. The detailed catalytic characterization of PrKstD showed that it can convert a wide range of 3-ketosteroid compounds with diverse substituents, ranging from substituents at the C9, C10, C11 and C17 position through substrates without C4-C5 double bond, to previously inactive C6-substituted ones such as 11β,17-dihydroxy-6α-methyl-pregn-4-ene-3,20-dione. Reaction conditions were optimized for the biotransformation of hydrocortisone in terms of pH, temperature, co-solvent and electron acceptor. By using 50 g/L wet resting E. coli cells harboring PrKstD enzyme, the conversion of hydrocortisone was about 92.5% within 6 h at the substrate concentration of 80 g/L, much higher than the previously reported results, demonstrating the application potential of this new KstD.
Collapse
|
13
|
Mao S, Sun J, Wang L, Gao X, Liu X, Lu F, Qin HM. Mining and characterization of 3-ketosteroid-∆1-dehydrogenases from Arthrobacter simplex genome and applications for steroid dehydrogenation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Feller FM, Holert J, Yücel O, Philipp B. Degradation of Bile Acids by Soil and Water Bacteria. Microorganisms 2021; 9:1759. [PMID: 34442838 PMCID: PMC8399759 DOI: 10.3390/microorganisms9081759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Bile acids are surface-active steroid compounds with a C5 carboxylic side chain at the steroid nucleus. They are produced by vertebrates, mainly functioning as emulsifiers for lipophilic nutrients, as signaling compounds, and as an antimicrobial barrier in the duodenum. Upon excretion into soil and water, bile acids serve as carbon- and energy-rich growth substrates for diverse heterotrophic bacteria. Metabolic pathways for the degradation of bile acids are predominantly studied in individual strains of the genera Pseudomonas, Comamonas, Sphingobium, Azoarcus, and Rhodococcus. Bile acid degradation is initiated by oxidative reactions of the steroid skeleton at ring A and degradation of the carboxylic side chain before the steroid nucleus is broken down into central metabolic intermediates for biomass and energy production. This review summarizes the current biochemical and genetic knowledge on aerobic and anaerobic degradation of bile acids by soil and water bacteria. In addition, ecological and applied aspects are addressed, including resistance mechanisms against the toxic effects of bile acids.
Collapse
Affiliation(s)
- Franziska Maria Feller
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Johannes Holert
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Onur Yücel
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| |
Collapse
|
15
|
Wójcik P, Glanowski M, Wojtkiewicz AM, Rohman A, Szaleniec M. Universal capability of 3-ketosteroid Δ 1-dehydrogenases to catalyze Δ 1-dehydrogenation of C17-substituted steroids. Microb Cell Fact 2021; 20:119. [PMID: 34162386 PMCID: PMC8220720 DOI: 10.1186/s12934-021-01611-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 3-Ketosteroid Δ1-dehydrogenases (KSTDs) are the enzymes involved in microbial cholesterol degradation and modification of steroids. They catalyze dehydrogenation between C1 and C2 atoms in ring A of the polycyclic structure of 3-ketosteroids. KSTDs substrate spectrum is broad, even though most of them prefer steroids with small substituents at the C17 atom. The investigation of the KSTD's substrate specificity is hindered by the poor solubility of the hydrophobic steroids in aqueous solutions. In this paper, we used 2-hydroxpropyl-β-cyclodextrin (HBC) as a solubilizing agent in a study of the KSTDs steady-state kinetics and demonstrated that substrate bioavailability has a pivotal impact on enzyme specificity. RESULTS Molecular dynamics simulations on KSTD1 from Rhodococcus erythropolis indicated no difference in ΔGbind between the native substrate, androst-4-en-3,17-dione (AD; - 8.02 kcal/mol), and more complex steroids such as cholest-4-en-3-one (- 8.40 kcal/mol) or diosgenone (- 6.17 kcal/mol). No structural obstacle for binding of the extended substrates was also observed. Following this observation, our kinetic studies conducted in the presence of HBC confirmed KSTD1 activity towards both types of steroids. We have compared the substrate specificity of KSTD1 to the other enzyme known for its activity with cholest-4-en-3-one, KSTD from Sterolibacterium denitrificans (AcmB). The addition of solubilizing agent caused AcmB to exhibit a higher affinity to cholest-4-en-3-one (Ping-Pong bi bi KmA = 23.7 μM) than to AD (KmA = 529.2 μM), a supposedly native substrate of the enzyme. Moreover, we have isolated AcmB isoenzyme (AcmB2) and showed that conversion of AD and cholest-4-en-3-one proceeds at a similar rate. We demonstrated also that the apparent specificity constant of AcmB for cholest-4-en-3-one (kcat/KmA = 9.25∙106 M-1 s-1) is almost 20 times higher than measured for KSTD1 (kcat/KmA = 4.71∙105 M-1 s-1). CONCLUSIONS We confirmed the existence of AcmB preference for a substrate with an undegraded isooctyl chain. However, we showed that KSTD1 which was reported to be inactive with such substrates can catalyze the reaction if the solubility problem is addressed.
Collapse
Affiliation(s)
- Patrycja Wójcik
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland
| | - Michał Glanowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland
| | - Agnieszka M Wojtkiewicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland
| | - Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
- Laboratory of Proteomics, Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga, Surabaya, 60115, Indonesia
- Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30239, Krakow, Poland.
| |
Collapse
|
16
|
Further Studies on the 3-Ketosteroid 9α-Hydroxylase of Rhodococcus ruber Chol-4, a Rieske Oxygenase of the Steroid Degradation Pathway. Microorganisms 2021; 9:microorganisms9061171. [PMID: 34072338 PMCID: PMC8228715 DOI: 10.3390/microorganisms9061171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
The biochemistry and genetics of the bacterial steroid catabolism have been extensively studied during the last years and their findings have been essential to the development of biotechnological applications. For instance, metabolic engineering of the steroid-eater strains has allowed to obtain intermediaries of industrial value. However, there are still some drawbacks that must be overcome, such as the redundancy of the steroid catabolism genes in the genome and a better knowledge of its genetic regulation. KshABs and KstDs are key enzymes involved in the aerobic breakage of the steroid nucleus. Rhodococcus ruber Chol-4 contains three kshAs genes, a single kshB gene and three kstDs genes within its genome. In the present work, the growth of R. ruber ΔkshA strains was evaluated on different steroids substrates; the promoter regions of these genes were analyzed; and their expression was followed by qRT-PCR in both wild type and ksh mutants. Additionally, the transcription level of the kstDs genes was studied in the ksh mutants. The results show that KshA2B and KshA1B are involved in AD metabolism, while KshA3B and KshA1B contribute to the cholesterol metabolism in R. ruber. In the kshA single mutants, expression of the remaining kshA and kstD genes is re-organized to survive on the steroid substrate. These data give insight into the fine regulation of steroid genes when several isoforms are present.
Collapse
|