1
|
Xiao Z, Zhao Y, Wang Y, Tan X, Wang L, Mao J, Zhang S, Lu Q, Hu F, Zuo S, Liu J, Shan Y. Sucrose-driven carbon redox rebalancing eliminates the Crabtree effect and boosts energy metabolism in yeast. Nat Commun 2025; 16:5211. [PMID: 40473667 PMCID: PMC12141580 DOI: 10.1038/s41467-025-60578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 05/28/2025] [Indexed: 06/11/2025] Open
Abstract
Saccharomyces cerevisiae primarily generates energy through glycolysis and respiration. However, the manifestation of the Crabtree effect results in substantial carbon loss and energy inefficiency, which significantly diminishes product yield and escalates substrate costs in microbial cell factories. To address this challenge, we introduce the sucrose phosphorolysis pathway and delete the phosphoglucose isomerase gene PGI1, effectively decoupling glycolysis from respiration and facilitating the metabolic transition of yeast to a Crabtree-negative state. Additionally, a synthetic energy system is engineered to regulate the NADH/NAD+ ratio, ensuring sufficient ATP supply and maintaining redox balance for optimal growth. The reprogrammed yeast strain exhibits significantly higher yields of various non-ethanol compounds, with lactic acid and 3-hydroxypropionic acid production increasing by 8- to 11-fold comparing to the conventional Crabtree-positive strain. This study describes an approach for overcoming the Crabtree effect in yeast, substantially improving energy metabolism, carbon recovery, and product yields.
Collapse
Affiliation(s)
- Zhiqiang Xiao
- Longping Agricultural College, Hunan University, Changsha, 410125, China
- Hunan Institute of Agricultural Product Processing and Quality Safety, DongTing Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, 410125, China
| | - Yifei Zhao
- Longping Agricultural College, Hunan University, Changsha, 410125, China
- Hunan Institute of Agricultural Product Processing and Quality Safety, DongTing Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, 410125, China
| | - Yongtong Wang
- Longping Agricultural College, Hunan University, Changsha, 410125, China
- Hunan Institute of Agricultural Product Processing and Quality Safety, DongTing Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, 410125, China
| | - Xinjia Tan
- Longping Agricultural College, Hunan University, Changsha, 410125, China
- Hunan Institute of Agricultural Product Processing and Quality Safety, DongTing Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, 410125, China
| | - Lian Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Siqi Zhang
- Longping Agricultural College, Hunan University, Changsha, 410125, China
- Hunan Institute of Agricultural Product Processing and Quality Safety, DongTing Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, 410125, China
| | - Qiyuan Lu
- Longping Agricultural College, Hunan University, Changsha, 410125, China
- Hunan Institute of Agricultural Product Processing and Quality Safety, DongTing Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, 410125, China
| | - Fanglin Hu
- Longping Agricultural College, Hunan University, Changsha, 410125, China
- Hunan Institute of Agricultural Product Processing and Quality Safety, DongTing Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, 410125, China
| | - Shasha Zuo
- Longping Agricultural College, Hunan University, Changsha, 410125, China
- Hunan Institute of Agricultural Product Processing and Quality Safety, DongTing Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, 410125, China
| | - Juan Liu
- Hunan Institute of Agricultural Product Processing and Quality Safety, DongTing Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, 410125, China.
| | - Yang Shan
- Longping Agricultural College, Hunan University, Changsha, 410125, China.
- Hunan Institute of Agricultural Product Processing and Quality Safety, DongTing Laboratory, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha, 410125, China.
| |
Collapse
|
2
|
Zhang H, Liu H, Wu Y, Li S, Jiao Q, Fan L, Li G, Agathokleous E, Chen Y, Wang Y, Liu S, Jiang Y. Integrated ultrastructural, physiological and transcriptomic analyses uncover alterations in photosynthetic biomacromolecule structures by cadmium and cerium co-exposure and their regulation by hormone signaling and antioxidant pathways in maize. Int J Biol Macromol 2025; 309:142472. [PMID: 40164270 DOI: 10.1016/j.ijbiomac.2025.142472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
Co-contamination of soil by cadmium (Cd) and cerium (Ce) has become increasingly prevalent and poses a significant threat to agricultural productivity. To investigate the effects of this joint pollution on plant growth, we investigated the ultrastructural, transcriptomic, and molecular responses of maize seedlings to Cd, Ce, and their mixtures. The results indicated that Cd, Ce, and their mixtures had detrimental effects on maize growth by reducing biomass accumulation (shoot dry weight was decreased by 59.94 %, 37.94 %, and 54.10 %, respectively), disrupting photosynthesis and chlorophyll synthesis, and causing ROS imbalance. However, co-exposure to Cd and Ce resulted in a less severe impact on the maize photosynthetic system compared to Cd treatment alone, as it reduced the production of osmiophilic plastoglobuli. Transcriptomic and molecular docking analyses revealed that Ce enhanced the repair of photosystem II under Cd stress by upregulating chlorophyll-binding proteins and carbon assimilation proteins. SOT5 (Zm00001eb327110) is primarily involved in photosynthesis, ROS scavenging, and phytohormone signaling, which could be crucial for breeding stress-resilient crops. For the first time, we demonstrate that Cd and Ce interacted antagonistically in transcriptomic level. This study provides new insights into how maize responds to heavy metals and rare earth elements and highlights critical pathways for improving stress tolerance.
Collapse
Affiliation(s)
- Huihong Zhang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China.
| | - Yue Wu
- Agricultural Technology Extension Center of Shandong Province, Jinan 250100, PR China
| | - Shiying Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China
| | - Lina Fan
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Evgenios Agathokleous
- Department of Ecology, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Yinglong Chen
- The UWA Institute of Agriculture, & School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia
| | - Yi Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Cultivated Land Quality Conservation in the Huanghuaihai Plain, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China.
| |
Collapse
|
3
|
Liu C, Wang H, Wang Z, Liang L, Li Y, Liu D, Lu Q. Distinct assembly processes of intestinal and non-intestinal microbes of bark beetles from clues of metagenomic insights. Sci Rep 2025; 15:7910. [PMID: 40050382 PMCID: PMC11885575 DOI: 10.1038/s41598-025-91621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Ips (Curculionidae: Scolytinae) bark beetles (BBs) are ecologically and economically devastating coniferous pests in the Northern Hemisphere. Although the microbial diversity associated with these beetles has been well studied, mechanisms of community assembly and the functional roles of key microbes remain poorly understood. This study investigates the microbial community structures and functions in both intestinal and non-intestinal environments of five Ips BBs using a metagenomic approach. The findings reveal similar microbial community compositions, though the α-diversity of dominant taxa differs between intestinal and non-intestinal environments due to the variability in bark beetle species, host trees, and habitats. Intestinal microbial communities are predominantly shaped homogenizing dispersal (HD) and undominated processes (UP), whereas non-intestinal microbial communities are primarily driven by heterogeneous selection (HS). Functional analysis shows that genes and enzymes associated with steroid biosynthesis and oxidative phosphorylation are primarily found in non-intestinal fungal symbionts Ogataea, Wickerhamomyce, Ophiostoma, and Ceratocystis of Ips species. Genes and enzymes involved in degrading terpenoids, phenolic compounds, and polysaccharides are predominately found in the intestinal Acinetobacter, Erwinia, and Serratia. This study provides valuable and in-depth insights into the symbiotic relationships between Ips BBs and their microbial partners, enhancing our understanding of insect-microbe coevolution and suggesting new strategies for pest management.
Collapse
Affiliation(s)
- Caixia Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Huimin Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Zheng Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Lingyu Liang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Yaning Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Duanchong Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
4
|
Zhao L, Ma Z, Zhang L, Shen Y, Chen L, Li Y, Xu S, Shi G, Fan D, Ding Z. Synthesis of value-added uridine 5'-diphosphate-glucose from sucrose applying an engineered sucrose synthase counteracts the activity-stability trade-off. Food Chem 2025; 464:141765. [PMID: 39503094 DOI: 10.1016/j.foodchem.2024.141765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
The one-step deconstruction of sucrose into uridine 5'-diphosphate-glucose (UDP-Glc), an important sugar donor for transglycosylation, employing sucrose synthase (Susy) is emerging as a valuable sucrose utilization process. The insufficient activity and stability of Susy limit the productivity of UDP-Glc from sucrose. Here, an engineered Susy (SusyM6) that counteracted the activity-stability trade-off was developed with the half-life time and activity being 43-fold and 1.4-fold of wild-type, respectively. Tighter hydrophobic patches and stabilization of the SSN2 domain contributed to greater activity and stability. The use of SusyM6 in UDP-Glc production resulted in a satisfactory space-time yield of 73 g/L/h within 1 h. The cascade of different biocatalysts with SusyM6, focusing on utilizing two products of sucrose decomposition, fructose and UDP-Glc, expanded sucrose utilization, efficiently promoting the UDP-Glc productivity and giving a cost-effective method for UDP-galactose (UDP-Gal) synthesis. This study demonstrated promising green pathways for producing multiple value-added products from sucrose using Susy.
Collapse
Affiliation(s)
- Liting Zhao
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Zhongbao Ma
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Linpei Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yu Shen
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Sha Xu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhongyang Ding
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Ni D, Zhang S, Huang Z, Liu X, Xu W, Zhang W, Mu W. Multistrategy Engineering of an Inulosucrase to Enhance the Activity and Thermostability for Efficient Production of Microbial Inulin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18100-18109. [PMID: 39090787 DOI: 10.1021/acs.jafc.4c05224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Inulin has found commercial applications in the pharmaceutical, nutraceutical, and food industries due to its beneficial health effects. The enzymatic biosynthesis of microbial inulin has garnered increasing attention. In this study, molecular modification was applied to Lactobacillus mulieris UMB7800 inulosucrase, an enzyme that specifically produces high-molecular weight inulin, to enhance its catalytic activity and thermostability. Among the 18 variable regions, R5 was identified as a crucial region significantly impacting enzymatic activity by replacing it with more conserved sequences. Site-directed mutagenesis combined with saturated mutagenesis revealed that the mutant A250 V increased activity by 68%. Additionally, after screening candidate mutants by rational design, four single-point mutants, S344D, H434P, E526D, and G531P, were shown to enhance thermostability. The final combinational mutant, M5, exhibited a 66% increase in activity and a 5-fold enhancement in half-life at 55 °C. These findings are significant for understanding the catalytic activity and thermostability of inulosucrase and are promising for the development of microbial inulin biosynthesis platforms.
Collapse
Affiliation(s)
- Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Shuqi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Technology Co., Ltd, Weihai, Shandong 264333, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
6
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Alteration of oral microbial biofilms by sweeteners. Biofilm 2024; 7:100171. [PMID: 38197082 PMCID: PMC10772577 DOI: 10.1016/j.bioflm.2023.100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
There is a growing interest in using sweeteners for taste improvement in the food and drink industry. Sweeteners were found to regulate the formation or dispersal of structural components of microbial biofilms. Dietary sugars may enhance biofilm formation and facilitate the development of antimicrobial resistance, which has become a major health issue worldwide. In contrast, bulk and non-nutritive sweeteners are also beneficial for managing microbial infections. This review discusses the clinical significance of oral biofilms formed upon the administration of nutritive and non-nutritive sweeteners. The underlying mechanism of action of sweeteners in the regulation of mono- or poly-microbial biofilm formation and destruction is comprehensively discussed. Bulk and non-nutritive sweeteners have also been used in conjunction with antimicrobial substances to reduce microbial biofilm formation. Formulations with bulk and non-nutritive sweeteners have been demonstrated to be particularly efficient in this regard. Finally, future perspectives with respect to advancing our understanding of mechanisms underlying biofilm regulation activities of sweeteners are presented as well. Several alternative strategies for the application of bulk sweeteners and non-nutritive sweeteners have been employed to control the biofilm-forming microbial pathogens. Gaining insight into the underlying mechanisms responsible for enhancing or inhibiting biofilm formation and virulence properties by both mono- and poly-microbial species in the presence of the sweetener is crucial for developing a therapeutic agent to manage microbial infections.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
7
|
Wang N, Dong J, Li X, Svensson B, Jin Z, Bai Y. N1019D Mutant of Limosilactobacillus reuteri 121 4,6-α-Glucanotransferase GtfB Significantly Improved Catalytic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6509-6518. [PMID: 38488047 DOI: 10.1021/acs.jafc.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Limosilactobacillus reuteri 121 4,6-α-glucanotransferase GtfB (Lr 121 GtfB), belonging to glycoside hydrolase family 70 (GH70), synthesizes linear isomalto/malto polysaccharides having (α1→6) linkages attached to the nonreducing ends of (α1→4) linked maltose oligosaccharide segments using starch or maltodextrin as a substrate. Since Lr 121 GtfB has low catalytic activity and efficiency, it leads to substrate regeneration and reduced substrate utilization. In this study, we superimposed the crystal structure of Lr 121 GtfB-ΔNΔV with that of L. reuteri NCC 2613 GtfB-ΔNΔV (Lr 2613 GtfB-ΔNΔV) to identify the acceptor binding subsites +1 to +3 and constructed five single-residue mutants and a random mutagenesis of N1019. Compared with the wild-type, N1019D Lr 121 GtfB-ΔN did not alter the product specificity, increased the catalytic activity and efficiency by 420 and 590%, respectively, and maintained >80% relative activity in the pH 3.5-6.5 interval. The findings will contribute to the industrial application of Lr 121 GtfB and provide new solutions for starch synthesis of higher value derivatives.
Collapse
Affiliation(s)
- Nana Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingjing Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
8
|
Du Q, Wang R, Deng Z, Zhou J, Li N, Li W, Zheng L. Structural characterization and calcium absorption-promoting effect of sucrose-calcium chelate in Caco-2 monolayer cells and mice. J Food Sci 2024; 89:1773-1790. [PMID: 38349030 DOI: 10.1111/1750-3841.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024]
Abstract
Sucrose emerges as a chelating agent to form a stable sucrose-metal-ion chelate that can potentially improve metal-ion absorption. This study aimed to analyze the structure of sucrose-calcium chelate and its potential to promote calcium absorption in both Caco-2 monolayer cells and mice. The characterization results showed that calcium ions mainly chelated with hydroxyl groups in sucrose to produce sucrose-calcium chelate, altering the crystal structure of sucrose (forming polymer particles) and improving its thermal stability. Sucrose-calcium chelate dose dependently increased the amount of calcium uptake, retention, and transport in the Caco-2 monolayer cell model. Compared to CaCl2 , there was a significant improvement in the proportion of absorbed calcium utilized for transport but not retention (93.13 ± 1.75% vs. 67.67 ± 7.55%). Further treatment of calcium channel inhibitors demonstrated the active transport of sucrose-calcium chelate through Cav1.3. Cellular thermal shift assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays indicated that the ability of sucrose-calcium chelate to promote calcium transport was attributed to its superior ability to bind with PMCA1b, a calcium transporter located on the basement membrane, and stimulate its gene expression compared to CaCl2 . Pharmacokinetic analysis of mice confirmed the calcium absorption-promoting effect of sucrose-calcium chelate, as evident by the higher serum calcium level (44.12 ± 1.90 mg/L vs. 37.42 ± 1.88 mmol/L) and intestinal PMCA1b gene expression than CaCl2 . These findings offer a new understanding of how sucrose-calcium chelate enhances intestinal calcium absorption and could be used as an ingredient in functional foods to treat calcium deficiency. PRACTICAL APPLICATION: The development of high-quality calcium supplements is crucial for addressing the various adverse symptoms associated with calcium deficiency. This study aimed to prepare a sucrose-calcium chelate and analyze its structure, as well as its potential to enhance calcium absorption in Caco-2 monolayer cells and mice. The results demonstrated that the sucrose-calcium chelate effectively promoted calcium absorption. Notably, its ability to enhance calcium transport was linked to its strong binding with PMCA1b, a calcium transporter located on the basement membrane, and its capacity to stimulate PMCA1b gene expression. These findings contribute to a deeper understanding of how the sucrose-calcium chelate enhances intestinal calcium absorption and suggest its potential use as an ingredient in functional foods for treating calcium deficiency.
Collapse
Affiliation(s)
- Qian Du
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Ruiyan Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, P. R. China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, P. R. China
- Institute for Advanced Study, University of Nanchang, Nanchang, Jiangxi, P. R. China
| | - Jianqun Zhou
- Nanning Zeweier Feed Co., Ltd, Nanning, P. R. China
| | - Nan Li
- Institute for Advanced Study, University of Nanchang, Nanchang, Jiangxi, P. R. China
| | - Wenwen Li
- Institute for Advanced Study, University of Nanchang, Nanchang, Jiangxi, P. R. China
| | - Liufeng Zheng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
9
|
Qi C, Xv L, Xia W, Zhu Y, Wang Y, Zhang Z, Dai H, Miao M. Genome-Wide Identification and Expression Patterns of Cucumber Invertases and Their Inhibitor Genes. Int J Mol Sci 2023; 24:13421. [PMID: 37686228 PMCID: PMC10487868 DOI: 10.3390/ijms241713421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Invertases and their inhibitors play important roles in sucrose metabolism, growth and development, signal transduction, and biotic and abiotic stress tolerance in many plant species. However, in cucumber, both the gene members and functions of invertase and its inhibitor families remain largely unclear. In this study, in comparison with the orthologues of Citrullus lanatus (watermelon), Cucumis melo (melon), and Arabidopsis thaliana (Arabidopsis), 12 invertase genes and 12 invertase inhibitor genes were identified from the genome of Cucumis sativus (cucumber). Among them, the 12 invertase genes were classified as 4 cell wall invertases, 6 cytoplasmic invertases, and 2 vacuolar invertases. Most invertase genes were conserved in cucumber, melon, and watermelon, with several duplicate genes in melon and watermelon. Transcriptome analysis distinguished these genes into various expression patterns, which included genes CsaV3_2G025540 and CsaV3_2G007220, which were significantly expressed in different tissues, organs, and development stages, and genes CsaV3_7G034730 and CsaV3_5G005910, which might be involved in biotic and abiotic stress. Six genes were further validated in cucumber based on quantitative real-time PCR (qRT-PCR), and three of them showed consistent expression patterns as revealed in the transcriptome. These results provide important information for further studies on the physiological functions of cucumber invertases (CSINVs) and their inhibitors (CSINHs).
Collapse
Affiliation(s)
- Chenze Qi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Liyun Xv
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Wenhao Xia
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Yunyi Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Yudan Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Haibo Dai
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (C.Q.); (L.X.); (W.X.); (Y.Z.); (Y.W.); (Z.Z.); (H.D.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics, The Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Li D, Miyasaka Y, Kubota A, Kozono T, Kitano Y, Sasaki N, Fujii T, Tochio T, Kadota Y, Nishikawa A, Tonozuka T. Characterization and alteration of product specificity of Beijerinckia indica subsp. indica β-fructosyltransferase. Biosci Biotechnol Biochem 2023; 87:981-990. [PMID: 37280168 DOI: 10.1093/bbb/zbad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
The trisaccharide 1-kestose, a major constituent of fructooligosaccharide, has strong prebiotic effects. We used high-performance liquid chromatography and 1H nuclear magnetic resonance spectroscopy to show that BiBftA, a β-fructosyltransferase belonging to glycoside hydrolase family 68, from Beijerinckia indica subsp. indica catalyzes transfructosylation of sucrose to produce mostly 1-kestose and levan polysaccharides. We substituted His395 and Phe473 in BiBftA with Arg and Tyr, respectively, and analyzed the reactions of the mutant enzymes with 180 g/L sucrose. The ratio of the molar concentrations of glucose and 1-kestose in the reaction mixture with wild-type BiBftA was 100:8.1, whereas that in the reaction mixture with the variant H395R/F473Y was 100:45.5, indicating that H395R/F473Y predominantly accumulated 1-kestose from sucrose. The X-ray crystal structure of H395R/F473Y suggests that its catalytic pocket is unfavorable for binding of sucrose while favorable for transfructosylation.
Collapse
Affiliation(s)
- Ding Li
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yuki Miyasaka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Arisa Kubota
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takuma Kozono
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yoshikazu Kitano
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Nobumitsu Sasaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoshihiro Kadota
- Research and Development Center, B Food Science Co., Ltd., Chita, Aichi, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
11
|
Zhao L, Ma Z, Wang Q, Shen Y, Zhang L, Chen L, Shi G, Ding Z. Highly Efficient Production of UDP-Glucose from Sucrose via the Semirational Engineering of Sucrose Synthase and a Cascade Route Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12549-12557. [PMID: 37552844 DOI: 10.1021/acs.jafc.3c03877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Nucleotide sugars are essential precursors for carbohydrate synthesis but are in scarce supply. Uridine diphosphate (UDP)-glucose is a core building block in nucleotide sugar preparation, making its efficient synthesis critical. Here, a process for producing valuable UDP-glucose and functional mannose from sucrose was established and improved via a semirational sucrose synthase (SuSy) design and the accurate D-mannose isomerase (MIase) cascade. Engineered SuSy exhibited enzyme activity 2.2-fold greater than that of the WT. The structural analysis identified a latch-hinge combination as the hotspot for enhancing enzyme activity. Coupling MIase, process optimization, and reaction kinetic analysis revealed that MIase addition during the high-speed UDP-glucose synthesis phase distinctly accelerated the entire process. The simultaneous triggering of enzyme modules halved the reaction time and significantly increased the UDP-glucose yield. A maximum UDP-glucose yield of 83%, space-time yield of 70 g/L/h, and mannose yield of 32% were achieved. This novel and efficient strategy for sucrose value-added exploitation has industrial promise.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Qiong Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Shen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Linpei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Zhang S, Ni D, Xu W, Zhang W, Mu W. Characterization of a processive inulosucrase from Lactobacillus mulieris for efficient biosynthesis of high-molecular-weight inulin. Enzyme Microb Technol 2023; 164:110186. [PMID: 36529060 DOI: 10.1016/j.enzmictec.2022.110186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Inulin has been determined to have many exceptional properties and functions and has been used in the food and pharmaceutical fields. Recently, microbial high-molecular-weight inulin synthesized from sucrose by inulosucrase attracted much attention. In this study, a novel inulosucrase from Lactobacillus mulieris was constructed, overexpressed, purified, and identified. The recombinant enzyme displayed the maximum activity at pH 6.0 and 55 °C, and it exhibited high thermostability below 45 °C. After optimizing the production conditions, the conversion rate from 100 g/L sucrose to inulin reached 31 %, meanwhile, the maximum molecular weight of produced inulin reached 3.21 × 106 g/mol. The truncated IS showed a "processive" transfructosylation process, only synthesizing a small number of short-chain oligosaccharides with polymerization degrees below 6, which was in favor of the accumulation of high-molecular-weight inulin. Given this, L. mulieris inulosucrase might be a good potential candidate for the industrial production of high-molecular-weight inulin.
Collapse
Affiliation(s)
- Shuqi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Zhan A, Niu D, Li K, Li J. Characterization of some sucrose-based deep eutectic solvents and their effect on the solubility of piroxicam. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
14
|
Chu F, Lin Y, Huang Y, Niu L, Lai K. Effect of Sucrose on the Formation of Advanced Glycation End-Products of Ground Pork during Freeze-Thaw Cycles and Subsequent Heat Treatment. Foods 2023; 12:foods12051024. [PMID: 36900541 PMCID: PMC10001163 DOI: 10.3390/foods12051024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
The changes in protein degradation (TCA-soluble peptides), Schiff bases, dicarbonyl compounds (glyoxal-GO, methylglyoxal-MGO) and two typical advanced glycation end-products (AGEs) including Nε-carboxymethyllysine (CML), Nε-carboxyethyllysine (CEL) levels in ground pork supplemented with sucrose (4.0%) were investigated under nine freeze-thaw cycles and subsequent heating (100 °C/30 min). It was found that increase in freeze-thaw cycles promoted protein degradation and oxidation. The addition of sucrose further promoted the production of TCA-soluble peptides, Schiff bases and CEL, but not significantly, ultimately leading to higher levels of TCA-soluble peptides, Schiff bases, GO, MGO, CML, and CEL in the ground pork with the addition of sucrose than in the blank groups by 4%, 9%, 214%, 180%, 3%, and 56%, respectively. Subsequent heating resulted in severe increase of Schiff bases but not TCA-soluble peptides. Contents of GO and MGO all decreased after heating, while contents of CML and CEL increased.
Collapse
Affiliation(s)
- Fuyu Chu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yi Lin
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410004, China
| | - Lihong Niu
- School of Food Engineering, Ludong University, No. 186, Middle Hongqi Road, Yantai 264025, China
- Correspondence: (L.N.); (K.L.); Tel.: +86-535-669-5491 (L.N.); +86-21-6190-0754 (K.L.); Fax: +86-21-6190-0365 (K.L.)
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
- Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
- Correspondence: (L.N.); (K.L.); Tel.: +86-535-669-5491 (L.N.); +86-21-6190-0754 (K.L.); Fax: +86-21-6190-0365 (K.L.)
| |
Collapse
|
15
|
Yang X, Hu J, Lu T, Zhou L. The important role of weak Brønsted acid site of Sn-β in conversion of sucrose to methyl lactate. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|