1
|
Pérez HJV, de Souza CL, Passos F, Roman MB, Mora EJC. Co-digestion and co-treatment of sewage and organic waste in mainstream anaerobic reactors: operational insights and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58687-58719. [PMID: 39316211 DOI: 10.1007/s11356-024-34918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024]
Abstract
The global shift towards sustainable waste management has led to an intensified exploration of co-digestion and co-treatment of sewage and organic waste using anaerobic reactors. This review advocates for an integrated approach where organic waste is treated along with the sewage stream, as a promising solution to collect, treat, and dispose of organic waste, thereby reducing the environmental and economic burden on municipalities. Various efforts, ranging from laboratory to full-scale studies, have been undertaken to assess the feasibility and impacts of co-digestion or co-management of sewage and organic waste, using technologies such as up-flow anaerobic sludge blankets or anaerobic membrane bioreactors. However, there has been no consensus on a standardized definition of co-digestion, nor a comprehensive understanding of its impacts. In this paper, we present a comprehensive review of the state-of-the-art in liquid anaerobic co-digestion systems, which typically operate at 1.1% total solids. The research aims to investigate how the integration of organic waste into mainstream anaerobic-based sewage treatment plants has the potential to enhance the sustainability of both sewage and organic waste management. In addition, utilizing the surplus capacity of existing anaerobic reactors leads to significant increases in methane production ranging from 190 to 388% (v/v). However, it should be noted that certain challenges may arise, such as the necessity for the development of tailored strategies and regulatory frameworks to enhance co-digestion practices and address the inherent challenges.
Collapse
Affiliation(s)
- Henry Javier Vílchez Pérez
- School of Civil Engineering, University of Costa Rica (UCR), Research City, San Pedro, Montes de Oca, 11501, San José, Costa Rica.
| | - Cláudio Leite de Souza
- Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, Belo Horizonte, MG, 6627, Brazil
| | - Fabiana Passos
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, C/Jordi Girona, 1-3, Building D1, 08034, Barcelona, Spain
| | - Mauricio Bustamante Roman
- School of Biosystems Engineering, University of Costa Rica (UCR), Research City, San Pedro, Montes de Oca, 11501, San José, Costa Rica
| | - Erick Javier Centeno Mora
- School of Civil Engineering, University of Costa Rica (UCR), Research City, San Pedro, Montes de Oca, 11501, San José, Costa Rica
| |
Collapse
|
2
|
Pratap V, Kumar S, Yadav BR. Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:696-720. [PMID: 39141030 DOI: 10.2166/wst.2024.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Sewage sludge (SS) is a potential source of bioenergy, yet its management is a global concern. Anaerobic digestion (AD) is applied to effectively valorize SS by reclaiming energy in the form of methane. However, the complex floc structure of SS hinders hydrolysis during AD process, thus resulting in lower process efficiency. To overcome the rate-limiting hydrolysis, various pre-treatment methods have been developed to enhance AD efficiency. This review aims to provide insights into recent advancements in pre-treatment technologies, including mechanical, chemical, thermal, and biological methods. Each technology was critically evaluated and compared, and its relative worth was summarized based on full-scale applicability, along with economic benefits, AD performance improvements, and impact on digested sludge. The paper illuminates the readers about existing research gaps, and the future research needed for successful implementation of these approaches at full scale.
Collapse
Affiliation(s)
- Vinay Pratap
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Bholu Ram Yadav
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India E-mail:
| |
Collapse
|
3
|
Hajji AL, Lucas KN. Anthropogenic stressors and the marine environment: From sources and impacts to solutions and mitigation. MARINE POLLUTION BULLETIN 2024; 205:116557. [PMID: 38875966 DOI: 10.1016/j.marpolbul.2024.116557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Human-released contaminants are often poorly understood wholistically in marine ecosystems. This review examines the sources, pathways, impacts on marine animals, and mitigation strategies of five pollutants (plastics, per- and polyfluoroalkyl substances, bisphenol compounds, ethynylestradiol, and petroleum hydrocarbons). Both abiotic and biotic mechanisms contribute to all five contaminants' movement. These pollutants cause short- and long-term effects on many biological processes genetically, molecularly, neurologically, physiologically, reproductively, and developmentally. We explore the extension of adverse outcome pathways to ecosystem effects by considering known inter-generational and trophic relations resulting in large-scale direct and indirect impacts. In doing so, we develop an understanding of their roles as environmental stressors in marine environments for targeted mitigation and future work. Ecosystems are interconnected and so international collaboration, standards, measures preceding mass production, and citizen involvement are required to protect and conserve marine life.
Collapse
Affiliation(s)
- Angelina L Hajji
- Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada.
| | - Kelsey N Lucas
- Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
4
|
Li L, Chai W, Sun C, Huang L, Sheng T, Song Z, Ma F. Role of microalgae-bacterial consortium in wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121226. [PMID: 38795468 DOI: 10.1016/j.jenvman.2024.121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
In the global effort to reduce CO2 emissions, the concurrent enhancement of pollutant degradation and reductions in fossil fuel consumption are pivotal aspects of microalgae-mediated wastewater treatment. Clarifying the degradation mechanisms of bacteria and microalgae during pollutant treatment, as well as regulatory biolipid production, could enhance process sustainability. The synergistic and inhibitory relationships between microalgae and bacteria are introduced in this paper. The different stimulators that can regulate microalgal biolipid accumulation are also reviewed. Wastewater treatment technologies that utilize microalgae and bacteria in laboratories and open ponds are described to outline their application in treating heavy metal-containing wastewater, animal husbandry wastewater, pharmaceutical wastewater, and textile dye wastewater. Finally, the major requirements to scale up the cascade utilization of biomass and energy recovery are summarized to improve the development of biological wastewater treatment.
Collapse
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China.
| | - Wei Chai
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Caiyu Sun
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Linlin Huang
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Tao Sheng
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Zhiwei Song
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Selvaraj D, Dhayabaran NK, Mahizhnan A. An insight on pollutant removal mechanisms in phycoremediation of textile wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124714-124734. [PMID: 35708812 DOI: 10.1007/s11356-022-21307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Pollutants, including dyes and heavy metals from textile industrial discharge, adversely affect the surface and groundwater resources, and pose a severe risk to the living organisms in the ecosystem. Phycoremediation of wastewater is now an emerging trend, as it is colossally available, inexpensive, eco-friendly, and has many other benefits, with high removal efficiency for undesirable substances, when compared to conventional treatment methods. Algae have a good binding affinity toward nutrients and toxic compounds because of various functional groups on its cell surface by following the mechanisms such as biosorption, bioaccumulation, or alternate biodegradation pathway. Algae-based treatments generate bioenergy feedstock as sludge, mitigate CO2, synthesize high-value-added products, and release oxygenated effluent. Algae when converted into activated carbon also show good potential against contaminants, because of its higher binding efficiency and surface area. This review provides an extensive analysis of different mechanisms involved in removal of undesirable and hazardous substances from textile wastewater using algae as green technology. It could be founded that both biosorption and biodegradation mechanisms were responsible for the removal of dye, organic, and inorganic pollutants. But for the heavy metals removal, biosorption results in higher removal efficiency. Overall, phycoremediation is a convenient technique for substantial conserving of energy demand, reducing greenhouse gas emissions, and removing pollutants.
Collapse
Affiliation(s)
- Durgadevi Selvaraj
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India
| | - Navamani Kartic Dhayabaran
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India
| | - Arivazhagan Mahizhnan
- Environmental Biotechnology Laboratory, Department of Chemical Engineering, National Institute of Technology, Tamil Nadu, Tiruchirappalli, 620015, India.
| |
Collapse
|
6
|
Singh A, Chaurasia D, Khan N, Singh E, Chaturvedi Bhargava P. Efficient mitigation of emerging antibiotics residues from water matrix: Integrated approaches and sustainable technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121552. [PMID: 37075921 DOI: 10.1016/j.envpol.2023.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
The prevalence of antibiotic traces in the aquatic matrices is a concern due to the emanation of antibiotic resistance which requires a multifaceted approach. One of the potential sources is the wastewater treatment plants with a lack of advance infrastructure leading to the dissemination of contaminants. Continuous advancements in economic globalization have facilitated the application of several conventional, advanced, and hybrid techniques for the mitigation of rising antibiotic traces in the aquatic matrices that have been thoroughly scrutinized in the current paper. Although the implementation of existing mitigation techniques is associated with several limiting factors and barriers which require further research to enhance their removal efficiency. The review further summarizes the application of the microbial processes to combat antibiotic persistence in wastewater establishing a sustainable approach. However, hybrid technologies are considered as most efficient and environmental-benign due to their higher removal efficacy, energy-efficiency, and cost-effectiveness. A brief elucidation has been provided for the mechanism responsible for lowering antibiotic concentration in wastewater through biodegradation and biotransformation. Overall, the current review presents a comprehensive approach for antibiotic mitigation using existing methods however, policies and measures should be implemented for continuous monitoring and surveillance of antibiotic persistence in aquatic matrices to reduce their potential risk to humans and the environment.
Collapse
Affiliation(s)
- Anuradha Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Deepshi Chaurasia
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
7
|
Du R, Li C, Liu Q, Fan J, Peng Y. A review of enhanced municipal wastewater treatment through energy savings and carbon recovery to reduce discharge and CO 2 footprint. BIORESOURCE TECHNOLOGY 2022; 364:128135. [PMID: 36257527 DOI: 10.1016/j.biortech.2022.128135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Municipal wastewater treatment that mainly performed by conventional activated sludge (CAS) process faces the challenge of intensive aeration-associated energy consumption for oxidation of organics and ammonium, contributing to significant directly/indirectly greenhouse gas (GHG) emissions from energy use, which hinders the achievement of carbon neutral, the top priority mission in the coming decades to cope with the global climate change. Therefore, this article aimed to offer a comprehensive analysis of recently developed biological treatment processes with the focus on reducing discharge and CO2 footprint. The biotechnologies including "Zero Carbon", "Low Carbon", "Carbon Capture and Utilization" are discussed, it suggested that, by integrating these processes with energy-saving and carbon recovery, the challenges faced in current wastewater treatment plants can be overcome, and a carbon-neutral even be possible. Future research should investigate the integration of these methods and improve anammox contribution as well as minimize organics lost under different scales.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
8
|
Nicula NO, Lungulescu EM, Rimbu GA, Culcea A, Csutak O. Nutrient and organic pollutants removal in synthetic wastewater by Pseudomonas aeruginosa and Chryseobacterium sp./biofilter systems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:881. [PMID: 36229564 DOI: 10.1007/s10661-022-10589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Nutrient and organic pollution raise serious problems for aquatic ecosystems through the accumulation of organic carbon, the reduction of light penetration, and the loss of submerged aquatic vegetation. The over-enrichment of water with nitrogen and phosphorus leads to an imbalance in nutrient ratios, creating favorable conditions for toxic algal blooms, formation of oxygen-depleted water, etc. Thus, developing new technological solutions to reduce their amount is imperative. The present study investigates the capacity of Pseudomonas aeruginosa and Chryseobacterium sp. bacterial strains to form biofilm on solid support (biofilter), both individually and in tandem, using various analytical techniques. Also, the biofilm/biofilter systems' efficiency in removing nutrients such as nitrate, nitrite, ammonium, and phosphate ions from municipal wastewaters is assessed. The results showed a reduction of nutrient pollution of up to 91%, 98%, 55%, and 71% for nitrite, nitrate, ammonium, and phosphate ions. A reduction of about 78% of COD was also observed. The results were obtained in the absence of an additional aeration process, thus having a great potential for reducing total costs of wastewater treatment and developing ecological systems for wastewater management.
Collapse
Affiliation(s)
- Nicoleta-Oana Nicula
- National Institute for R&D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest, 030138, Romania
- Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, Romania
| | - Eduard-Marius Lungulescu
- National Institute for R&D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest, 030138, Romania.
| | - Gimi A Rimbu
- National Institute for R&D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest, 030138, Romania
| | - Andreea Culcea
- National Institute for R&D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest, 030138, Romania
| | - Ortansa Csutak
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, Bucharest, Romania.
| |
Collapse
|
9
|
Makisha N. Advanced Research on Polymer Floating Carrier Application in Activated Sludge Reactors. Polymers (Basel) 2022; 14:polym14132604. [PMID: 35808651 PMCID: PMC9269137 DOI: 10.3390/polym14132604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
This research estimates the efficiency of domestic wastewater treatment in the removal of organic pollutants and nitrogen compounds with a two-stage treatment sequence (an activated sludge reactor in the first stage, and a trickling filter in the second stage), and with the application of floating carriers in the activated sludge reactor. The materials “Polyvom”, “Polystyrene” and “Bioballs” were adopted as floating carriers with previously determined filling ratios in the reactor volume of 10%, 20% and 20%, respectively. After the first stage of the study, it was found that the most effective treatment was achieved using the “Polyvom” material. Therefore, only this floating carrier was considered in the second and third stages of the study. Within the stages of the research, lab-scale benches operated under different operation modes of the treatment sequence. At the end of the study, it was possible to achieve the following levels of purification: BOD5 (2.1 mg/L), NH4 (0.4 mg/L), NO2 (1.0 mg/L), and NO3 (25 mg/L). The mean values of the concentrations of BOD, NH4, and NO3 met the requirements, but the concentration of NO2 exceeded the requirements (1.0 mg/L vs. 0.08 mg/L). These results were achieved under a hydraulic retention time in the activated sludge reactor of 8 h, and the MLSS for the free-floating and immobilized activated sludge was 0.2 and 0.9 g/L, respectively.
Collapse
Affiliation(s)
- Nikolay Makisha
- Research and Education Centre "Water Supply and Wastewater Treatment", Moscow State University of Civil Engineering, 26, Yaroslaskoye Highway, 129337 Moscow, Russia
| |
Collapse
|
10
|
Sun Y, Chang H, Zhang C, Xie Y, Ho SH. Emerging biological wastewater treatment using microalgal-bacterial granules: A review. BIORESOURCE TECHNOLOGY 2022; 351:127089. [PMID: 35358672 DOI: 10.1016/j.biortech.2022.127089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Aiming at deepening the understanding of the formation and evolution of emerging microalgal-bacterial granule (MBG)-based wastewater treatment systems, the recent advances regarding the formation processes, transfer phenomena, innovative bioreactors development and wastewater treatment performance of MBG-based systems are comprehensively reviewed in this work. Particularly, the successful establishments of MBG-based systems with various inocula are summarized. Besides, as the indispensable factors for biochemical reactions in MBGs, the light and substrates (organic matters, inorganic nutrients, etc) need to undergo complicated and multi-scale transfer processes before being assimilated by microorganisms within MBGs. Therefore, the involved transfer phenomena and mechanisms in MBG-based bioreactors are critically discussed. Subsequently, some recent advances of MBG-based bioreactors, the application of MBG-based systems in treating various synthetic and real wastewater, and the future development directions are discussed. In short, this review helps in promoting the development of MBG-based systems by presenting current research status and future perspectives.
Collapse
Affiliation(s)
- Yahui Sun
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Youping Xie
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
11
|
Ambaye TG, Chebbi A, Formicola F, Prasad S, Gomez FH, Franzetti A, Vaccari M. Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. CHEMOSPHERE 2022; 293:133572. [PMID: 35016966 DOI: 10.1016/j.chemosphere.2022.133572] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Petroleum hydrocarbons (PHs) are used as raw materials in many industries and primary energy sources. However, excessive PHs act as soil pollutants, posing serious threats to living organisms. Various ex-situ or in-situ chemical and biological methods are applied to restore polluted soil. However, most of the chemical treatment methods are expensive, environmentally unfriendly, and sometimes inefficient. That attracts scientists and researchers to develop and select new strategists to remediate polluted soil through risk-based analysis and eco-friendly manner. This review discusses the sources of PHs, properties, distribution, transport, and fate in the environment, internal and external factors affecting the soil remediation and restoration process, and its effective re-utilization for agriculture. Bioremediation is an eco-friendly method for degrading PHs, specifically by using microorganisms. Next-generation sequencing (NGS) technologies are being used to monitor contaminated sites. Currently, these new technologies have caused a paradigm shift by giving new insights into the microbially mediated biodegradation processes by targeting rRNA are discussed concisely. The recent development of risk-based management for soil contamination and its challenges and future perspectives are also discussed. Furthermore, nanotechnology seems very promising for effective soil remediation, but its success depends on its cost-effectiveness. This review paper suggests using bio-electrochemical systems that utilize electro-chemically active microorganisms to remediate and restore polluted soil with PHs that would be eco-friendlier and help tailor-made effective and sustainable remediation technologies.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| | - Alif Chebbi
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy; Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Francesca Formicola
- Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Shiv Prasad
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Franco Hernan Gomez
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences -DISAT, University of Milano-Bicocca, Piazza Della Scienza, 1 - 20126, Milano, Italy
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy.
| |
Collapse
|
12
|
A Comparison of Biosolids Production and System Efficiency between Activated Sludge, Moving Bed Biofilm Reactor, and Sequencing Batch Moving Bed Biofilm Reactor in the Dairy Wastewater Treatment. SUSTAINABILITY 2022. [DOI: 10.3390/su14052702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dairy industry wastewater is rich in organic content, presenting a high biodegradability, and therefore biological treatments are widely employed. This study aimed to evaluate biosolids production in three systems: activated sludge (AS), movingbed biofilm reactor (MBBR), and sequencingbatch movingbed biofilm reactor (SBMBBR). Simulated dairy wastewater was used at different organic load rates (OLRs): 1.22, 2.87, and 5.44 gCOD L−1d−1. Besides biosolids production, COD, total carbon (TC), and total nitrogen (TN) removal efficiency was evaluated. Biosolids production was measured in the mixed liquor, carrier-adhered biomass, treated wastewater, and surplus sludge. The operational conditions were kept similar for the three systems, with a carrier filling ratio of 50% for MBBR and SBMBBR. The SBMBBR proved to have better performance in the removal efficiencies of COD, TC, and TN for all OLRs studied. The MBBR presented a similar COD and TC removal efficiency as the SBBR for the two highest OLRs (2.87 and 5.44 gCOD L−1d−1). Concerning biosolids production, the MBBR system produced less biomass and delivered the lowest amount of adhered biomass inside the carriers. The AS treatment generated the highest amount of sludge and offered the worst treatment capability for all OLRs evaluated.
Collapse
|
13
|
Sucu S, van Schaik MO, Esmeli R, Ouelhadj D, Holloway T, Williams JB, Cruddas P, Martinson DB, Chen WS, Cappon HJ. A conceptual framework for a multi-criteria decision support tool to select technologies for resource recovery from urban wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113608. [PMID: 34509814 DOI: 10.1016/j.jenvman.2021.113608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In the context of circular economy, wastewater can be used to address some of the 21st century's challenges regarding the transition to renewable resources for water, energy, and nutrients. Despite all the research, development, and experience with resource recovery from urban wastewater, its implementation is still limited. The transition from treatment to resource recovery is complex due to the difficulty of selecting unit processes from a large number of candidate processes considering the operational limitations of each process, and sustainability objectives. Presently, a multi-criteria decision support tool that deals with the difficulty of unit process selection for resource recovery from wastewater has not been developed. Therefore, this paper presents the conceptual framework of a decision support tool to find the optimum treatment train consisting of compatible unit processes which can recover water, energy and/or nutrients from a specified influent composition. The framework presents the relationship between the user input, the knowledge library of technologies and a weighted multi-objective nonlinear programming model to aid process selection. The model presented here shows, not only how the processes are selected, but also the four-dimensional sustainability impact of the generated treatment train while considering the weight provided by the user. Thus, this study presents a reproducible framework which can support private and public decision-makers in transparent evidence-based decision making and eventually the systematic implementation of resource recovery from urban wastewater.
Collapse
Affiliation(s)
- Seda Sucu
- School of Maths and Physics, University of Portsmouth, Portsmouth, UK.
| | - Maria O van Schaik
- HZ University of Applied Sciences,Vlissingen, the Netherlands; Environmental Technology, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Djamila Ouelhadj
- School of Maths and Physics, University of Portsmouth, Portsmouth, UK
| | - Timothy Holloway
- School of Civil Engineering and Surveying, University of Portsmouth, UK
| | - John B Williams
- School of Civil Engineering and Surveying, University of Portsmouth, UK
| | - Peter Cruddas
- School of Civil Engineering and Surveying, University of Portsmouth, UK
| | - D Brett Martinson
- School of Civil Engineering and Surveying, University of Portsmouth, UK
| | - Wei-Shan Chen
- Environmental Technology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hans J Cappon
- HZ University of Applied Sciences,Vlissingen, the Netherlands; Environmental Technology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
14
|
Biocrude Oil Production by Integrating Microalgae Polyculture and Wastewater Treatment: Novel Proposal on the Use of Deep Water-Depth Polyculture of Mixotrophic Microalgae. ENERGIES 2021. [DOI: 10.3390/en14216992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microalgae have attracted significant attention worldwide as one of the most promising feedstock fossil fuel alternatives. However, there are a few challenges for algal fuels to compete with fossil fuels that need to be addressed. Therefore, this study reviews the R&D status of microalgae-based polyculture and biocrude oil production, along with wastewater treatment. Mixotrophic algae are free to some extent from light restrictions using organic matter and have the ability to grow well even in deep water-depth cultivation. It is proposed that integrating the mixotrophic microalgae polyculture and wastewater treatment process is the most promising and harmonizing means to simultaneously increase capacities of microalgae biomass production and wastewater treatment with a low land footprint and high robustness to perturbations. A large amount of mixotrophic algae biomass is harvested, concentrated, and dewatered by combining highly efficient sedimentation through flocculation and energy efficient filtration, which reduce the carbon footprint for algae fuel production and coincide with the subsequent hydrothermal liquefaction (HTL) conversion. HTL products are obtained with a relatively low carbon footprint and separated into biocrude oil, solid, aqueous, and gas fractions. Algae biomass feedstock-based HTL conversion has a high biocrude oil yield and quality available for existing oil refineries; it also has a bioavailability of the recycled nitrogen and phosphorus from the aqueous phase of algae community HTL. The HTL biocrude oil represents higher sustainability than conventional liquid fuels and other biofuels for the combination of greenhouse gas (GHG) and energy return on investment (EROI). Deep water-depth polyculture of mixotrophic microalgae using sewage has a high potential to produce sustainable biocrude oil within the land area of existing sewage treatment plants in Japan to fulfill imported crude oil.
Collapse
|
15
|
Velasco P, Jegatheesan V, Thangavadivel K, Othman M, Zhang Y. A focused review on membrane contactors for the recovery of dissolved methane from anaerobic membrane bioreactor (AnMBR) effluents. CHEMOSPHERE 2021; 278:130448. [PMID: 34126683 DOI: 10.1016/j.chemosphere.2021.130448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/16/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The need for a more sustainable wastewater treatment is more relevant now due to climate change. Production and reuse of methane from anaerobic treatment is one pathway. However, this is defeated by the presence of dissolved methane in the effluent and would be released to the environment, adding to the greenhouse gas emissions. This review paper provided summary and analysis of studies involved in the production of dissolved methane from AnMBR, focusing with actual methane measurement (gas and dissolved) from AnMBR with different types of wastewater. Then more focused discussion and analysis on the use of membrane-based technology or membrane contactors in the recovery of dissolved methane from AnMBR effluent are included, with its development and energy analysis. The dissolved methane removal and recovery rate of membrane contactors can be as high as 96% and 0.05 mol methane/m2/h, respectively, with very low additional energy requirement of 0.01 kWh/m3 for the recovery. Future perspectives presented focus on the long-term evaluation and modelling of membrane contactors and on the membrane modifications to improve the selectivity of membranes to methane and to limit their fouling and wetting, thus making the technology more economical for resource recovery.
Collapse
Affiliation(s)
- Perlie Velasco
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; Department of Civil Engineering, University of the Philippines - Los Baños, Pili Drive, College, Laguna, 4031, Philippines.
| | - Veeriah Jegatheesan
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | | | - Maazuza Othman
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Yang Zhang
- Membrane Innovation and Resource Recovery (MIRR), School of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, Shandong, China
| |
Collapse
|
16
|
Fan J, Wu H, Liu R, Meng L, Fang Z, Liu F, Xu Y. Non-thermal plasma combined with zeolites to remove ammonia nitrogen from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123627. [PMID: 33113719 DOI: 10.1016/j.jhazmat.2020.123627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
In this work, non-thermal plasma combined with zeolites was used to remove inorganic pollutant ammonia nitrogen from wastewater. Ammonia nitrogen elimination performances at various operating parameters were investigated. Roles of active species in the removal of ammonia nitrogen were also discussed. The experimental results showed that 69.97% ammonia nitrogen can be removed from the plasma/zeolites synergistic system after 30 min treatment. The removal efficiency was 16.23% and 61.55% higher than that in sole zeolites adsorption system and that in sole discharge plasma system, respectively. Higher applied voltage, lower initial ammonia nitrogen concentration and weak acidic conditions were favorable for ammonia nitrogen removal. After the addition of zeolites, part of O3 and H2O2 generated in the plasma/zeolites system were decomposed into other oxygen species (•OH and 1O2), which improved the oxidation degree of ammonia nitrogen. In addition, the reaction mechanism of ammonia nitrogen in water by plasma/zeolites process was discussed. After repeated use three times, the effect of the zeolites in the plasma/zeolites system remained stable. Characterization of the zeolites after reaction was analyzed through BET, SEM, XRD and FT-IR. The experiments have confirmed the applicability of the plasma/zeolites system for the further treatment of low-concentration ammonia nitrogen wastewater.
Collapse
Affiliation(s)
- Jiawei Fan
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China.
| | - Ruoyu Liu
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Liyuan Meng
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Zhi Fang
- School of Automation and Electrical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Feng Liu
- School of Automation and Electrical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yanhua Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
17
|
Zhao B, Ma X, Xie F, Cui Y, Zhang X, Yue X. Development of simultaneous nitrification-denitrification and anammox and in-situ analysis of microbial structure in a novel plug-flow membrane-aerated sludge blanket. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142296. [PMID: 33182197 DOI: 10.1016/j.scitotenv.2020.142296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
This study proposed a novel one-stage plug-flow microaerobic sludge blanket (PMSB) with membrane aerated for treating low carbon to nitrogen (C/N) ratio municipal sewage. The performance of simultaneous nitrification, denitrification, and anammox in the reactor was investigated. The results illustrated that the removal efficiencies of ammonium and total nitrogen (TN) were 93.2% and 87.1% with a C/N ratio of 4. High throughput sequencing revealed that aerobic bacteria, anaerobic bacteria and facultative anaerobe could co-exist at the same time in the sludge blanket. Meanwhile, a notable correlation between the oxygen concentration and the distance of the membrane module was analyzed. It was shown that the microbial community of functional bacteria developed in different aeration sites due to the oxygen concentration gradient. Microbial community structure was analyzed depending on the sludge stratification in the sludge blanket.
Collapse
Affiliation(s)
- Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiao Ma
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Fei Xie
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiao Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
18
|
Baldisserotto C, Demaria S, Accoto O, Marchesini R, Zanella M, Benetti L, Avolio F, Maglie M, Ferroni L, Pancaldi S. Removal of Nitrogen and Phosphorus from Thickening Effluent of an Urban Wastewater Treatment Plant by an Isolated Green Microalga. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121802. [PMID: 33353199 PMCID: PMC7766996 DOI: 10.3390/plants9121802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Microalgae are photosynthetic microorganisms and are considered excellent candidates for a wide range of biotechnological applications, including the removal of nutrients from urban wastewaters, which they can recover and convert into biomass. Microalgae-based systems can be integrated into conventional urban wastewater treatment plants (WW-TP) to improve the water depuration process. However, microalgal strain selection represents a crucial step for effective phytoremediation. In this work, a microalga isolated from the effluent derived from the thickening stage of waste sludge of an urban WW-TP was selected and tested to highlight its potential for nutrient removal. Ammonium and phosphate abatements by microalgae were evaluated using both the effluent and a synthetic medium in a comparative approach. Parallelly, the isolate was characterized in terms of growth capability, morphology, photosynthetic pigment content and photosystem II maximum quantum yield. The isolated microalga showed surprisingly high biomass yield and removal efficiency of both ammonium and phosphate ions from the effluent but not from the synthetic medium. This suggests its clear preference to grow in the effluent, linked to the overall characteristics of this matrix. Moreover, biomass from microalgae cultivated in wastewater was enriched in photosynthetic pigments, polyphosphates, proteins and starch, but not lipids, suggesting its possible use as a biofertilizer.
Collapse
Affiliation(s)
- Costanza Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| | - Sara Demaria
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| | - Ornella Accoto
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| | - Roberta Marchesini
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| | - Marcello Zanella
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy; (M.Z.); (L.B.); (F.A.)
| | - Linda Benetti
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy; (M.Z.); (L.B.); (F.A.)
| | - Francesco Avolio
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy; (M.Z.); (L.B.); (F.A.)
| | - Michele Maglie
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| | - Lorenzo Ferroni
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| |
Collapse
|
19
|
Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020; 120:12903-12993. [DOI: 10.1021/acs.chemrev.0c00472] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Olja Simoska
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Koun Lim
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Matteo Grattieri
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Mengwei Yuan
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Fangyuan Dong
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Yoo Seok Lee
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Kevin Beaver
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Samali Weliwatte
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Erin M. Gaffney
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
20
|
Li L, Liang T, Liu W, Liu Y, Ma F. A Comprehensive Review of the Mycelial Pellet: Research Status, Applications, and Future Prospects. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01325] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Taojie Liang
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Wanmeng Liu
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Yan Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150020, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|