1
|
Zhang J, Lu J, Zhu Y, Shen X, Zhu B, Qin L. Roles of endophytic fungi in medicinal plant abiotic stress response and TCM quality development. CHINESE HERBAL MEDICINES 2024; 16:204-213. [PMID: 38706819 PMCID: PMC11064630 DOI: 10.1016/j.chmed.2023.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/27/2022] [Accepted: 02/22/2023] [Indexed: 05/07/2024] Open
Abstract
Medicinal plants, as medicinal materials and important drug components, have been used in traditional and folk medicine for ages. However, being sessile organisms, they are seriously affected by extreme environmental conditions and abiotic stresses such as salt, heavy metal, temperature, and water stresses. Medicinal plants usually produce specific secondary metabolites to survive such stresses, and these metabolites can often be used for treating human diseases. Recently, medicinal plants have been found to partner with endophytic fungi to form a long-term, stable, and win-win symbiotic relationship. Endophytic fungi can promote secondary metabolite accumulation in medicinal plants. The close relationship can improve host plant resistance to the abiotic stresses of soil salinity, drought, and extreme temperatures. Their symbiosis also sheds light on plant growth and active compound production. Here, we show that endophytic fungi can improve the host medicinal plant resistance to abiotic stress by regulating active compounds, reducing oxidative stress, and regulating the cell ion balance. We also identify the deficiencies and burning issues of available studies and present promising research topics for the future. This review provides guidance for endophytic fungi research to improve the ability of medicinal plants to resist abiotic stress. It also suggests ideas and methods for active compound accumulation in medicinal plants and medicinal material development during the response to abiotic stress.
Collapse
Affiliation(s)
- Jiahao Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiemiao Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yichun Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoxia Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Songyang Institute of Zhejiang Chinese Medical University, Songyang 323400, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Songyang Institute of Zhejiang Chinese Medical University, Songyang 323400, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Songyang Institute of Zhejiang Chinese Medical University, Songyang 323400, China
| |
Collapse
|
2
|
Gowtham HG, Hema P, Murali M, Shilpa N, Nataraj K, Basavaraj GL, Singh SB, Aiyaz M, Udayashankar AC, Amruthesh KN. Fungal Endophytes as Mitigators against Biotic and Abiotic Stresses in Crop Plants. J Fungi (Basel) 2024; 10:116. [PMID: 38392787 PMCID: PMC10890593 DOI: 10.3390/jof10020116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
The escalating global food demand driven by a gradually expanding human population necessitates strategies to improve agricultural productivity favorably and mitigate crop yield loss caused by various stressors (biotic and abiotic). Biotic stresses are caused by phytopathogens, pests, and nematodes, along with abiotic stresses like salt, heat, drought, and heavy metals, which pose serious risks to food security and agricultural productivity. Presently, the traditional methods relying on synthetic chemicals have led to ecological damage through unintended impacts on non-target organisms and the emergence of microbes that are resistant to them. Therefore, addressing these challenges is essential for economic, environmental, and public health concerns. The present review supports sustainable alternatives, emphasizing the possible application of fungal endophytes as innovative and eco-friendly tools in plant stress management. Fungal endophytes demonstrate capabilities for managing plants against biotic and abiotic stresses via the direct or indirect enhancement of plants' innate immunity. Moreover, they contribute to elevated photosynthesis rates, stimulate plant growth, facilitate nutrient mineralization, and produce bioactive compounds, hormones, and enzymes, ultimately improving overall productivity and plant stress resistance. In conclusion, harnessing the potentiality of fungal endophytes represents a promising approach toward the sustainability of agricultural practices, offering effective alternative solutions to reduce reliance on chemical treatments and address the challenges posed by biotic and abiotic stresses. This approach ensures long-term food security and promotes environmental health and economic viability in agriculture.
Collapse
Affiliation(s)
- H G Gowtham
- Department of Studies and Research in Food Science and Nutrition, KSOU, Mysuru 570006, Karnataka, India
| | - P Hema
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Mahadevamurthy Murali
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - N Shilpa
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - K Nataraj
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
- PG Department of Botany, Maharani's Science College for Women, JLB Road, Mysuru 570005, Karnataka, India
| | - G L Basavaraj
- PG Department of Botany, Maharani's Science College for Women, JLB Road, Mysuru 570005, Karnataka, India
| | - Sudarshana Brijesh Singh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - A C Udayashankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Kestur Nagaraj Amruthesh
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| |
Collapse
|
3
|
Zheng J, Xie X, Li C, Wang H, Yu Y, Huang B. Regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1596-1613. [PMID: 36786203 DOI: 10.1080/15226514.2023.2176466] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Endophytic fungi exist widely in plants and play an important role in the growth and adaptation of plants. They could be used in phytoremediation techniques against heavy metal contaminated soil since beneficial microbial symbionts can endow plants with resistance to external heavy metal stresses. This review summarized the regulation mechanism of plant response to heavy metal stress mediated by endophytic fungi. Potential endophytic fungi in enhancing plant's adaption to heavy metal stresses include arbuscular mycorrhizal fungi, dark septate endophytic fungi, plant growth promoting endophytic fungi. The mechanisms involve coevolution strategy, immune regulation and detoxification transport to improve the ability of plants to adapt to heavy metal stress. They can increase the synthesis of host hormones and maintaining the balance of endogenous hormones, strengthen osmotic regulation, regulate carbon and nitrogen metabolism, and increase immune activity, antioxidant enzyme and glutathione activity. They also help to improve the detoxification transport and heavy metal emission capacity of the host by significantly producing iron carrier, metallothionein and 1-aminocyclopropane-1-carboxylic acid deaminase. The combination of endophytic fungi and hyperaccumulation plants provides a promising technology for the ecological restoration of heavy metal contaminated soil. Endophytic fungi reserves further development on enhancing host plant's adaptability to heavy metal stresses.
Collapse
Affiliation(s)
- Jiadong Zheng
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xingguang Xie
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Chunyan Li
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Hongxia Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yaru Yu
- School of Pharmacy, Naval Medical University, Shanghai, China
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Baokang Huang
- School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Chatterjee S, Das S. Whole-genome sequencing of biofilm-forming and chromium-resistant mangrove fungus Aspergillus niger BSC-1. World J Microbiol Biotechnol 2022; 39:55. [PMID: 36565384 DOI: 10.1007/s11274-022-03497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Filamentous fungus Aspergillus niger has gained significant industrial and ecological value due to its great potential in enzymatic activities. The present study reports the complete genome sequence of A. niger BSC-1 which was isolated from Indian Sundarban mangrove ecosystem. The study revealed that the genome of A. niger BSC-1 was 35.1 Mbp assembled in 40 scaffolds with 49.2% GC content. A total of 10,709 genes were reported out of which 10,535 genes were predicted for encoding the proteins. BUSCO assessment showed 98.6% of genome completeness indicating high quality genome sequencing. The genome sequencing of A. niger BSC-1 revealed the presence of rodA and exgA genes for initial adhesion to surface and Ags genes for matrix formation, during biofilm growth. OrthoVenn2 analysis revealed that A.niger BSC-1 shared 9552 gene clusters with the reference strain A. niger CBS554.65. Semi-quantitative RT-PCR analysis unveiled the role of Ags1 and P-type ATPase in fungal biofilm formation and chromium (Cr) resistance, respectively. During biofilm growth the expression of Ags1 significantly (P < 0.0001; two-way ANOVA followed by Sidak's multiple comparisons test) increased with respect to planktonic culture revealing the possible involvement of Ags1 in biofilm matrix formation. Expression of P-type ATPase gene was significantly upregulated (P < 0.0001; one-way ANOVA followed by Dunnett's multiple comparisons test) with the increasing chromium concentration in the fungal culture. Besides, several other genes encoding metalloprotease, copper and zinc binding proteins, and NADH-dependent oxidoreductase were also found in the genome of A. niger BSC-1. These proteins are also involved in heavy metal tolerance and nanofabrication indicating that this filamentous fungus A. niger BSC-1 could be potentially utilized for chromium detoxification through biofilm or nanobiremediation.
Collapse
Affiliation(s)
- Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
5
|
Wulandari AP, Triani E, Sari K, Prasetyani M, Nurzaman M, Purwati RD, Ermawar RA, Nuraini A. Endophytic microbiome of Boehmeria nivea and their antagonism against latent fungal pathogens in plants. BMC Microbiol 2022; 22:320. [PMID: 36564720 PMCID: PMC9789607 DOI: 10.1186/s12866-022-02737-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pathogenic microbes still become obstacles that can reduce the quality of plant growth, including ramie (Boehmeria nivea) plants. The study identified the microbiome and antagonistic interaction of the endophytic community from the B. nivea is necessary to improve the production of the ramie plant, especially ramie stem organs for fiber materials. RESULTS: Twenty isolates of endophytic microorganisms were obtained from the roots, stems, leaves, and flowers. They were identified using the Internal Transcribed Spacer (ITS) region of ribosomal (rDNA), and its morphotypes obtained 20 isolates, with a composition of 9 species of bacteria and 11 species of fungi. Besides that, the disease observations on ramie stems showed that four species of pathogenic fungi were identified as Fusarium solani isolate 3,248,941, Fusarium solani isolates colpat-359, Fusarium oxysporum isolate N-61-2, Clonostachys rosea strain B3042. The endophytic microorganism of ramie ability was tested to determine their potential to inhibit the growth of the pathogenic fungi based on the in-vivo antagonist test. The isolated bacteria were only able to inhibit the growth of F. solani, with the highest percentage of 54-55%. Three species of endophytic fungi, including Cladosporium tennissimum, Fusarium falciforme, and Penicillium citrinum, showed the best inhibition against the fungal pathogen Fusarium solani with the highest inhibitory presentation of 91-95%. Inhibitory interaction between the endophytic microbes and the ramie pathogens indicated the type of antibiosis, competition, and parasitism. CONCLUSION: The results of this study succeeded in showing the potential antifungal by endophytic fungi from ramie against the pathogens of the plant itself. P. citrinum isolate MEBP0017 showed the highest inhibition against all the pathogens of the ramie.
Collapse
Affiliation(s)
- Asri Peni Wulandari
- grid.11553.330000 0004 1796 1481Department of Biology, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Sumedang, Indonesia ,grid.11553.330000 0004 1796 1481Center for Bioprospection of Natural Fibers and Biological Resources, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Sumedang, Indonesia
| | - Erin Triani
- grid.11553.330000 0004 1796 1481Department of Biology, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Sumedang, Indonesia
| | - Kartika Sari
- grid.11553.330000 0004 1796 1481Department of Biology, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Sumedang, Indonesia
| | - Mila Prasetyani
- grid.11553.330000 0004 1796 1481Department of Biology, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Sumedang, Indonesia
| | - Mohamad Nurzaman
- grid.11553.330000 0004 1796 1481Department of Biology, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Sumedang, Indonesia ,grid.11553.330000 0004 1796 1481Center for Bioprospection of Natural Fibers and Biological Resources, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Sumedang, Indonesia
| | - Rully Dyah Purwati
- grid.500527.50000 0001 0675 7176Research Center of Sweetener Plants and Fibers, Ministry of Agriculture, Jakarta, Indonesia
| | - Riksfardini A. Ermawar
- Research and Development Center of Biomaterials, National Research and Innovation Agency, Cibinong, Indonesia
| | - Anne Nuraini
- grid.11553.330000 0004 1796 1481Department of Agrotechnology, Faculty of Agriculture, Padjadjaran University, Sumedang, Indonesia
| |
Collapse
|
6
|
Solano-Arguedas AF, Boothman C, Newsome L, Pattrick RAD, Arguedas-Quesada D, Robinson CH, Lloyd JR. Geochemistry and microbiology of tropical serpentine soils in the Santa Elena Ophiolite, a landscape-biogeographical approach. GEOCHEMICAL TRANSACTIONS 2022; 23:2. [PMID: 36167930 PMCID: PMC9516835 DOI: 10.1186/s12932-022-00079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
The Santa Elena Ophiolite is a well-studied ultramafic system in Costa Rica mainly comprised of peridotites. Here, tropical climatic conditions promote active laterite formation processes, but the biogeochemistry of the resulting serpentine soils is still poorly understood. The aim of this study was to characterize the soil geochemical composition and microbial community of contrasting landscapes in the area, as the foundation to start exploring the biogeochemistry of metals occurring there. The soils were confirmed as Ni-rich serpentine soils but differed depending on their geographical location within the ophiolite area, showing three serpentine soil types. Weathering processes resulted in mountain soils rich in trace metals such as cobalt, manganese and nickel. The lowlands showed geochemical variations despite sharing similar landscapes: the inner ophiolite lowland soils were more like the surrounding mountain soils rather than the north lowland soils at the border of the ophiolite area, and within the same riparian basin, concentrations of trace metals were higher downstream towards the mangrove area. Microbial community composition reflected the differences in geochemical composition of soils and revealed potential geomicrobiological inputs to local metal biogeochemistry: iron redox cycling bacteria were more abundant in the mountain soils, while more manganese-oxidizing bacteria were found in the lowlands, with the highest relative abundance in the mangrove areas. The fundamental ecological associations recorded in the serpentine soils of the Santa Elena Peninsula, and its potential as a serpentinization endemism hotspot, demonstrate that is a model site to study the biogeochemistry, geomicrobiology and ecology of tropical serpentine areas.
Collapse
Affiliation(s)
- Agustín F Solano-Arguedas
- Williamson Research Centre, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK.
- Forest Resources Unit (Reforesta), Engineering Research Institute (INII) and School of Chemistry, Universidad de Costa Rica, Montes de Oca, San José, 11501-2260, Costa Rica.
| | - Christopher Boothman
- Williamson Research Centre, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Laura Newsome
- Williamson Research Centre, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK
- Camborne School of Mines and Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Richard A D Pattrick
- Williamson Research Centre, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Daniel Arguedas-Quesada
- Sociedad Civil Pro Ambiente Verdiazul CR, Playa Junquillal de Santa Cruz, Guanacaste, 50303, Costa Rica
| | - Clare H Robinson
- Williamson Research Centre, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jonathan R Lloyd
- Williamson Research Centre, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
7
|
Chamkhi I, El Omari N, Balahbib A, El Menyiy N, Benali T, Ghoulam C. Is the rhizosphere a source of applicable multi-beneficial microorganisms for plant enhancement? Saudi J Biol Sci 2022; 29:1246-1259. [PMID: 35241967 PMCID: PMC8864493 DOI: 10.1016/j.sjbs.2021.09.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023] Open
Abstract
The plant faces different pedological and climatic challenges that influence its growth and enhancement. While, plant-microbes interactions throught the rhizosphere offer several privileges to this hotspot in the service of plant, by attracting multi-beneficial mutualistic and symbiotic microorganisms as plant growth-promoting bacteria (PGPB), archaea, mycorrhizal fungi, endophytic fungi, and others…). Currently, numerous investigations showed the beneficial effects of these microbes on growth and plant health. Indeed, rhizospheric microorganisms offer to host plants the essential assimilable nutrients, stimulate the growth and development of host plants, and induce antibiotics production. They also attributed to host plants numerous phenotypes involved in the increase the resistance to abiotic and biotic stresses. The investigations and the studies on the rhizosphere can offer a way to find a biological and sustainable solution to confront these environmental problems. Therefore, the interactions between microbes and plants may lead to interesting biotechnological applications on plant improvement and the adaptation in different climates to obtain a biological sustainable agricultures without the use of chemical fertilizers.
Collapse
Key Words
- AMF, Arbuscular Mycorrhizal Fungi
- AOA, Ammonia-Oxidizing Archaea
- BMV, Brome Mosaic Virus
- C, Carbon
- CMV, Cucumber mosaic virus
- LDH, Layered double hydroxides
- MF, Mycorrhizal fungi
- Microorganisms
- P, Phosphorus
- PAL, L-Phenylalanine Ammonia Lyase
- PCA, Phenazine-1-Carboxylic Acid
- PGPR, Plant Growth-Promoting Rhizobacteria
- POX, Peroxidase
- PPO, Polyphenol Oxidase
- Plant growth promoting microbes
- Plant-microbes interactions
- Rhizosphere
Collapse
Affiliation(s)
- Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco.,University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Naoual El Menyiy
- Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Cherki Ghoulam
- University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.,Cadi Ayyad University, Faculty of Sciences and Techniques, PO Box 549, Gueliz, Marrakech,Morocco
| |
Collapse
|
8
|
In vitro characterization bioassays of the nematophagous fungus Purpureocillium lilacinum: Evaluation on growth, extracellular enzymes, mycotoxins and survival in the surrounding agroecosystem of tomato. Fungal Biol 2022; 126:300-307. [DOI: 10.1016/j.funbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 11/23/2022]
|
9
|
El-Shahir AA, El-Tayeh NA, Ali OM, Abdel Latef AAH, Loutfy N. The Effect of Endophytic Talaromyces pinophilus on Growth, Absorption and Accumulation of Heavy Metals of Triticum aestivum Grown on Sandy Soil Amended by Sewage Sludge. PLANTS (BASEL, SWITZERLAND) 2021; 10:2659. [PMID: 34961130 PMCID: PMC8704920 DOI: 10.3390/plants10122659] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 05/24/2023]
Abstract
Sewage sludge improves agricultural soil and plant growth, but there are risks associated with its use, including high heavy metal content. In this study, experiments were carried out to investigate the role of endophytic Talaromyces pinophilus MW695526 on the growth of Triticum aestivum cultivated in soil amended with sewage sludge and its phytoremediation ability. T. pinophilus could produce gibberellic acid (GA) and stimulate T. aestivum to accumulate GA. The results showed that inoculation with T. pinophilus boosted plant growth criteria, photosynthetic pigments, osmolytes (soluble proteins, soluble sugars and total amino acids), enzymatic antioxidants (catalase, superoxide dismutase and peroxidase), K, Ca and Mg. On the other hand, it reduced Na, Na/K ratio, Cd, Ni, Cu and Zn in the growth media as well as in the shoot and root of T. aestivum. The results suggest that endophytic T. pinophilus can work as a barrier to reduce the absorption of heavy metals in T. aestivum cultivated in soil amended with sewage sludge.
Collapse
Affiliation(s)
- Amany A. El-Shahir
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (N.A.E.-T.); (N.L.)
| | - Noha A. El-Tayeh
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (N.A.E.-T.); (N.L.)
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Arafat Abdel Hamed Abdel Latef
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (N.A.E.-T.); (N.L.)
| | - Naglaa Loutfy
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (N.A.E.-T.); (N.L.)
| |
Collapse
|
10
|
Chi WC, Chen W, He CC, Guo SY, Cha HJ, Tsang LM, Ho TW, Pang KL. A highly diverse fungal community associated with leaves of the mangrove plant Acanthus ilicifolius var. xiamenensis revealed by isolation and metabarcoding analyses. PeerJ 2019; 7:e7293. [PMID: 31328048 PMCID: PMC6625500 DOI: 10.7717/peerj.7293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022] Open
Abstract
A high diversity of culturable foliar endophytic fungi is known from various mangrove plants, and the core taxa include species from Colletotrichum, Pestalotiopsis, Phoma, Phomopsis, Sporomiella, among others. Since a small fraction of fungi is able to grow in culture, this study investigated the diversity of fungi associated with leaves of Acanthus ilicifolius var. xiamenensis using both isolation and metabarcoding approaches. A total of 203 isolates were cultured from surface-sterilized leaves, representing 47 different fungal species: 30 species from the winter samples (104 isolates), and 26 species from the summer samples (99 isolates). Ascomycota was dominant in both types of leaf samples, while Basidiomycota was isolated only from the summer samples. Drechslera dematioidea (10.58%, percentage of occurrence), Colletotrichum sp. 3 (7.69%) and Alternaria sp. (7.69%) were dominant in the winter samples; Fusarium oxysporum (13.13%), Diaporthe endophytica (10.10%) and Colletotrichum sp. 1 (9.09%) in the summer samples. Overall, Corynespora cassiicola (6.90%), F. oxysporum (6.40%) and Guignardia sp. (6.40%) had the highest overall percentage of occurrence. In the metabarcoding analysis, a total of 111 operational taxonomic units (OTUs) were identified from 17 leaf samples: 96 OTUs from the winter and 70 OTUs from the summer samples. Sequences belonging to Ascomycota and Basidiomycota were detected in both samples but the former phylum was dominant over the latter. Based on read abundance, taxa having the highest percentage of occurrence included Alternaria sp. (3.46%), Cladosporium delicatulum (2.56%) and Pyrenochaetopsis leptospora (1.41%) in the winter leaves, and Aureobasidium sp. (10.72%), Cladosporium sp. (7.90%), C. delicatulum (3.45%) and Hortaea werneckii (3.21%) in the summer leaves. These latter four species also had the highest overall percentage of occurrence. Combining the results from both methods, a high diversity of fungi (at least 110 species) was found associated with leaves of A. ilicifolius var. xiamenensis. Many of the fungi identified were plant pathogens and may eventually cause diseases in the host.
Collapse
Affiliation(s)
- Wei-Chiung Chi
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.,Institute of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Weiling Chen
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chih-Chiao He
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Sheng-Yu Guo
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Hyo-Jung Cha
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Ling Ming Tsang
- School of Biological Science, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Tsz Wai Ho
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Ka-Lai Pang
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
11
|
Lotlikar NP, Damare SR. Variability in Protein Expression in Marine-Derived Purpureocillium lilacinum Subjected to Salt and Chromium Stresses. Indian J Microbiol 2018; 58:360-371. [PMID: 30013281 PMCID: PMC6023812 DOI: 10.1007/s12088-018-0733-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 04/22/2018] [Indexed: 02/07/2023] Open
Abstract
Abiotic factors can cause substantial limitation of growth of microbes. A combination of salinity stress along with chromium (Cr+6), one of the carcinogen, can pose an immediate threat to any living system. To understand how salinity (0, 35 and 100 PSU) and Cr(VI) stress (0, 100 and 500 ppm), affects cells at the molecular level, the cellular response of Purpureocillium lilacinum to the individual as well the combination of both the stresses were studied by peptide mass fingerprinting technique. The study reports 1412 proteins, of which 105 proteins were found to be present across all conditions. The most prevalent functional class expressed was genetic information processing. Proteins involved in free radical scavenging were up-regulated in response to the oxidative stress generated due to both the applied stresses while expression of metal chelators, transporters systems, indicated towards multiple stress tolerance mechanisms to combat synergistic effects of salt and Cr stress.
Collapse
Affiliation(s)
- Nikita P. Lotlikar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa 403004 India
- Department of Microbiology, Goa University, Taleigão, Goa India
| | - Samir R. Damare
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Panaji, Goa 403004 India
| |
Collapse
|