1
|
Kalli S, Vallieres C, Violet J, Sanders JW, Chapman J, Vincken JP, Avery SV, Araya-Cloutier C. Cellular Responses and Targets in Food Spoilage Yeasts Exposed to Antifungal Prenylated Isoflavonoids. Microbiol Spectr 2023; 11:e0132723. [PMID: 37428107 PMCID: PMC10433819 DOI: 10.1128/spectrum.01327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/17/2023] [Indexed: 07/11/2023] Open
Abstract
Prenylated isoflavonoids are phytochemicals with promising antifungal properties. Recently, it was shown that glabridin and wighteone disrupted the plasma membrane (PM) of the food spoilage yeast Zygosaccharomyces parabailii in distinct ways, which led us to investigate further their modes of action (MoA). Transcriptomic profiling with Z. parabailii showed that genes encoding transmembrane ATPase transporters, including Yor1, and genes homologous to the pleiotropic drug resistance (PDR) subfamily in Saccharomyces cerevisiae were upregulated in response to both compounds. Gene functions involved in fatty acid and lipid metabolism, proteostasis, and DNA replication processes were overrepresented among genes upregulated by glabridin and/or wighteone. Chemogenomic analysis using the genome-wide deletant collection for S. cerevisiae further suggested an important role for PM lipids and PM proteins. Deletants of gene functions involved in biosynthesis of very-long-chain fatty acids (constituents of PM sphingolipids) and ergosterol were hypersensitive to both compounds. Using lipid biosynthesis inhibitors, we corroborated roles for sphingolipids and ergosterol in prenylated isoflavonoid action. The PM ABC transporter Yor1 and Lem3-dependent flippases conferred sensitivity and resistance, respectively, to the compounds, suggesting an important role for PM phospholipid asymmetry in their MoAs. Impaired tryptophan availability, likely linked to perturbation of the PM tryptophan permease Tat2, was evident in response to glabridin. Finally, substantial evidence highlighted a role of the endoplasmic reticulum (ER) in cellular responses to wighteone, including gene functions associated with ER membrane stress or with phospholipid biosynthesis, the primary lipid of the ER membrane. IMPORTANCE Preservatives, such as sorbic acid and benzoic acid, inhibit the growth of undesirable yeast and molds in foods. Unfortunately, preservative tolerance and resistance in food spoilage yeast, such as Zygosaccharomyces parabailii, is a growing challenge in the food industry, which can compromise food safety and increase food waste. Prenylated isoflavonoids are the main defense phytochemicals in the Fabaceae family. Glabridin and wighteone belong to this group of compounds and have shown potent antifungal activity against food spoilage yeasts. The present study demonstrated the mode of action of these compounds against food spoilage yeasts by using advanced molecular tools. Overall, the cellular actions of these two prenylated isoflavonoids share similarities (at the level of the plasma membrane) but also differences. Tryptophan import was specifically affected by glabridin, whereas endoplasmic reticulum membrane stress was specifically induced by wighteone. Understanding the mode of action of these novel antifungal agents is essential for their application in food preservation.
Collapse
Affiliation(s)
- Sylvia Kalli
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Cindy Vallieres
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Joseph Violet
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - John Chapman
- Unilever Foods Innovation Centre, Wageningen, the Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| | - Simon V. Avery
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Lv HW, Wang QL, Luo M, Zhu MD, Liang HM, Li WJ, Cai H, Zhou ZB, Wang H, Tong SQ, Li XN. Phytochemistry and pharmacology of natural prenylated flavonoids. Arch Pharm Res 2023; 46:207-272. [PMID: 37055613 PMCID: PMC10101826 DOI: 10.1007/s12272-023-01443-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/07/2023] [Indexed: 04/15/2023]
Abstract
Prenylated flavonoids are a special kind of flavonoid derivative possessing one or more prenyl groups in the parent nucleus of the flavonoid. The presence of the prenyl side chain enriched the structural diversity of flavonoids and increased their bioactivity and bioavailability. Prenylated flavonoids show a wide range of biological activities, such as anti-cancer, anti-inflammatory, neuroprotective, anti-diabetic, anti-obesity, cardioprotective effects, and anti-osteoclastogenic activities. In recent years, many compounds with significant activity have been discovered with the continuous excavation of the medicinal value of prenylated flavonoids, and have attracted the extensive attention of pharmacologists. This review summarizes recent progress on research into natural active prenylated flavonoids to promote new discoveries of their medicinal value.
Collapse
Affiliation(s)
- Hua-Wei Lv
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Qiao-Liang Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng Luo
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Meng-Di Zhu
- Research Center of Analysis and Measurement, Zhejiang University of Technology University, 310014, Hang Zhou, P. R. China
| | - Hui-Min Liang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Wen-Jing Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Hai Cai
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Zhong-Bo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 533000, Baise, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China
| | - Sheng-Qiang Tong
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 310014, Hang zhou, P. R. China.
| |
Collapse
|
3
|
Nogueira-Lima SHC, Gomes PWP, Navegantes-Lima KC, Reis JDE, Carvalho ARV, Pamplona SDGSR, Muribeca ADJB, da Silva MN, Monteiro MC, e Silva CYY. The Roots of Deguelia nitidula as a Natural Antibacterial Source against Staphylococcus aureus Strains. Metabolites 2022; 12:1083. [PMID: 36355166 PMCID: PMC9696647 DOI: 10.3390/metabo12111083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2024] Open
Abstract
Deguelia nitidula (Benth.) A.M.G.Azevedo & R.A.Camargo (Fabaceae) is an herbaceous plant distributed in the Brazilian Amazon, and it is called "raiz do sol" (sun roots). On Marajó Island, quilombola communities use its prepared roots to treat skin diseases commonly caused by fungi, viruses, and bacteria. Thus, in this study, the extract, and its fractions from D. nitidula roots were used to perform in vitro cytotoxic and antibacterial assays against Staphylococcus aureus strains. Thereafter, liquid chromatography-mass spectrometry (LC-MS) was used for the metabolite annotation process. The ethanolic extract of D. nitidula roots show significant bactericidal activity against S. aureus with IC50 82 μg.mL-1 and a selectivity index (SI) of 21.35. Furthermore, the SREFr2 and SREFr3 fractions show a potent bactericidal activity, i.e., MIC of 46.8 μg.mL-1 for both, and MBC of 375 and 93.7 μg.mL-1, respectively. As showcased, SREFr3 shows safe and effective antibacterial activity mainly in respect to the excellent selectivity index (SI = 82.06). On the other hand, SREFr2 shows low selectivity (SI = 6.8), which characterizes it as not safe for therapeutic use. Otherwise, due to a limited amount of reference MS2 spectra in public libraries, up to now, it was not possible to perform a complete metabolite annotation. Despite that, our antibacterial results for SREFr3 and correlated substructures of amino acid derivatives show that the roots of D. nitidula are a natural source of specialized metabolites, which can be isolated in the future, and then used as a support for further bio-guided research, as well as natural drug development.
Collapse
Affiliation(s)
| | - Paulo Wender P. Gomes
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, San Diego, CA 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093, USA
| | - Kely C. Navegantes-Lima
- Institute of Health Sciences, Postgraduate Program in Neuroscience and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil
| | - José Diogo E. Reis
- Institute of Exact and Natural Sciences, Postgraduate Program in Chemistry, Federal University of Pará, Belém 66075-110, Brazil
| | - Alice Rhelly Veloso Carvalho
- Institute of Health Sciences, Faculty of Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | - Abraão de Jesus B. Muribeca
- Institute of Exact and Natural Sciences, Postgraduate Program in Chemistry, Federal University of Pará, Belém 66075-110, Brazil
| | - Milton N. da Silva
- Institute of Exact and Natural Sciences, Postgraduate Program in Chemistry, Federal University of Pará, Belém 66075-110, Brazil
| | - Marta C. Monteiro
- Institute of Health Sciences, Postgraduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Institute of Health Sciences, Postgraduate Program in Neuroscience and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil
| | - Consuelo Yumiko Yoshioka e Silva
- Institute of Health Sciences, Postgraduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
4
|
Li Q, Xu J, Chen Y, Xie W, Mei G, Li X, Chen Y, Yang G. Chemical constituents from the seeds of Nigella glandulifera and their hypoglycemic activities. RSC Adv 2022; 12:19445-19451. [PMID: 35865566 PMCID: PMC9254149 DOI: 10.1039/d2ra02628g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
The seeds of Nigella glandulifera Freyn et Sint. are traditional Uygur medicine used for the treatment of diabetes. However, the active anti-diabetic constituents in the seeds of N. glandulifera remain unclear. In the present study, a new delabellane-type diterpene, 8-denicotinoylnigellamine A1 (1), and a new acyclic sesquiterpene, 2,6,10-trimethyl-6,7,12-trihydroxy-dodec-2-ene (3), together with eight known compounds including alkaloids (2 and 7), triterpenoid saponins (4–6), and phenolic compounds (8–10), were isolated from the seeds of N. glandulifera. Their structures were determined by extensive spectroscopic analyses and quantum chemical calculations. We evaluated the potential protective effects of the isolated compounds on an insulin resistant HepG2 (IR-HepG2) cell model. The results showed that compounds 2, 4–8, and 10 could promote the consumption of glucose in IR-HepG2 cells. Those compounds might be responsible for the anti-diabetic effects of the seeds of N. glandulifera. The seed of Nigella glandulifera Freyn et Sint. is a traditional Uygur medicine used for the treatment of diabetes.![]()
Collapse
Affiliation(s)
- Qingqing Li
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P. R. China +86 27 6784 1196 +86 27 6784 1196
| | - Jing Xu
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P. R. China +86 27 6784 1196 +86 27 6784 1196
| | - Yiyu Chen
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P. R. China +86 27 6784 1196 +86 27 6784 1196
| | - Wenli Xie
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P. R. China +86 27 6784 1196 +86 27 6784 1196
| | - Gui Mei
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P. R. China +86 27 6784 1196 +86 27 6784 1196
| | - Xueni Li
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P. R. China +86 27 6784 1196 +86 27 6784 1196
| | - Yu Chen
- College of Chemistry and Material Sciences, South-Central Minzu University Wuhan 430074 P. R. China
| | - Guangzhong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 P. R. China +86 27 6784 1196 +86 27 6784 1196
| |
Collapse
|
5
|
Prenylated (iso)flavonoids as antifungal agents against the food spoiler Zygosaccharomyces parabailii. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Chuo SC, Nasir HM, Mohd-Setapar SH, Mohamed SF, Ahmad A, Wani WA, Muddassir M, Alarifi A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit Rev Anal Chem 2020; 52:667-696. [PMID: 32954795 DOI: 10.1080/10408347.2020.1820851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Naturally active compounds are usually contained inside plants and materials thereof. Thus, the extraction of the active compounds from plants needs appropriate extraction methods. The commonly employed extraction methods are mostly based on solid-liquid extraction. Frequently used conventional extraction methods such as maceration, heat-assisted extraction, Soxhlet extraction, and hydrodistillation are often criticized for large solvent consumption and long extraction times. Therefore, many advanced extraction methods incorporating various technologies such as ultrasound, microwaves, high pressure, high voltage, enzyme hydrolysis, innovative solvent systems, adsorption, and mechanical forces have been studied. These advanced extraction methods are often better than conventional methods in terms of higher yields, higher selectivity, lower solvent consumption, shorter processing time, better energy efficiency, and potential to avoid organic solvents. They are usually designed to be greener, more sustainable, and environment friendly. In this review, we have critically described recently developed extraction methods pertaining to obtaining active compounds from plants and materials thereof. Main factors that affect the extraction performances are tuned, and extraction methods are chosen in line with the properties of targeted active compounds or the objectives of extraction. The review also highlights the advancements in extraction procedures by using combinations of extraction methods to obtain high overall yields or high purity extracts.
Collapse
Affiliation(s)
- Sing Chuong Chuo
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Hasmida Mohd Nasir
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Siti Hamidah Mohd-Setapar
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Sarajul Fikri Mohamed
- Department of Quantity Surveying, Faculty of Built Environment, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia
| | - Akil Ahmad
- Centre of Lipids Engineering and Applied Research, Universiti Teknologi Malaysia, UTM Skudai, Johor, Malaysia.,Malaysia-Japan International Institute of Technology, Jalan Sultan Yahya Petra, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Waseem A Wani
- Department of Chemistry, Govt. Degree College Tral, Kashmir, J&K, India
| | - Mohd Muddassir
- Catalytic Chemistry Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alarifi
- Catalytic Chemistry Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Arockianathan PM, Mishra M, Niranjan R. Recent Status and Advancements in the Development of Antifungal Agents: Highlights on Plant and Marine Based Antifungals. Curr Top Med Chem 2019; 19:812-830. [PMID: 30977454 DOI: 10.2174/1568026619666190412102037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
The developing resistance in fungi has become a key challenge, which is being faced nowadays with the available antifungal agents in the market. Further search for novel compounds from different sources has been explored to meet this problem. The current review describes and highlights recent advancement in the antifungal drug aspects from plant and marine based sources. The current available antifungal agents act on specific targets on the fungal cell wall, like ergosterol synthesis, chitin biosynthesis, sphingolipid synthesis, glucan synthesis etc. We discuss some of the important anti-fungal agents like azole, polyene and allylamine classes that inhibit the ergosterol biosynthesis. Echinocandins inhibit β-1, 3 glucan synthesis in the fungal cell wall. The antifungals poloxins and nikkomycins inhibit fungal cell wall component chitin. Apart from these classes of drugs, several combinatorial therapies have been carried out to treat diseases due to fungal resistance. Recently, many antifungal agents derived from plant and marine sources showed potent activity. The renewed interest in plant and marine derived compounds for the fungal diseases created a new way to treat these resistant strains which are evident from the numerous literature publications in the recent years. Moreover, the compounds derived from both plant and marine sources showed promising results against fungal diseases. Altogether, this review article discusses the current antifungal agents and highlights the plant and marine based compounds as a potential promising antifungal agents.
Collapse
Affiliation(s)
- P Marie Arockianathan
- PG & Research Department of Biochemistry, St. Joseph's College of Arts & Science (Autonomous), Cuddalore-607001, Tamil Nadu, India
| | - Monika Mishra
- Neurobiology laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rituraj Niranjan
- Unit of Microbiology and Molecular Biology, ICMR-Vector Control Research Center, Puducherry 605006, India
| |
Collapse
|