1
|
Zhao X, Zhao J, Qi S, Fan Y, Zhang J. Comprehensive analysis of volatile compounds in hybrid sweetgum population and other Liquidambar species by HS-SPME-GC-MS. BMC PLANT BIOLOGY 2025; 25:381. [PMID: 40133806 PMCID: PMC11938624 DOI: 10.1186/s12870-025-06409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Liquidambar species are rich sources of essential oils, with applications in cosmetics, perfumes, and pharmaceuticals. Traditionally, the industrial utilization of Liquidambar essential oil has focused on extraction from the resin, while the full potential of their leaf-derived essential oils remains underexplored. This study systematically compares the essential oil composition, sensory characteristics, and aroma profiles of leaves from various Liquidambar species, including hybrid sweetgum, using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS). A precise internal standard method was conducted to identify progenies exhibiting heterosis in volatile content from a hybrid sweetgum population of 110 full-sib progenies. RESULTS A total of 44 volatile compounds were identified, with monoterpenes (α-pinene, β-pinene, d-limonene) dominating Liquidambar styraciflua, Liquidambar formosana and hybrid sweetgum, while Liquidambar orientalis exhibited a unique d-Camphene-rich profile. Hybrid sweetgum progenies exhibiting heterosis in essential oil content were found, with several progenies significantly exceeding the average level. Sensory analysis, combined with odor activity value (OAV) calculations, revealed species-specific aroma profiles: L. styraciflua and hybrid sweetgum were characterized by citrus/herbaceous notes (high d-limonene OAV = 11.07), whereas L. orientalis exhibited pungent camphoraceous tones (d-camphene OAV = 15.9). Multivariate analyses identified eight key volatile compounds with high variable influence on projection (VIP > 1). CONCLUSIONS This study highlights the hybrid sweetgum population as a promising genetic resource for high essential oil yield, with seven elite progenies showing industrial potential. The distinct volatile profiles of Liquidambar species, particularly the d-camphene dominance in L. orientalis, underscore genus-wide metabolic diversity.
Collapse
Affiliation(s)
- Xiangyi Zhao
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Jian Zhao
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Shuaizheng Qi
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Yingming Fan
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
| | - Jinfeng Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Yin Q, Zhang W, Shi H, He P, Zhang F, Zhang J, Li B, Shi X, Liu W, Yu F. Identification of allelochemicals under continuous cropping of Morchella mushrooms. Sci Rep 2024; 14:31207. [PMID: 39732793 DOI: 10.1038/s41598-024-82542-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Continuous cropping obstacle has been becoming the bottleneck for the stable development of morel cultivation. The allelopathic effect of soil allelochemicals may play an instrumental role in the morel soil sickness. In this study, the allelochemicals were identified by gas chromatography-mass spectrometry (GC-MS) combined with in vitro bioassay. A total of 61 chemical substances were identified through the GC-MS analysis of 12 replanting and control soil samples, comprising 10 phenolic acids, 36 acids, 3 aldehydes, etc. Among which, 15 compounds with values of variable importance for the projection (VIP) greater than 1 in the orthogonal partial least squares-discriminant analysis (OPLS-DA) were selected as the differential metabolites between soil samples of continuous cropping and control. The bioassay showed that 4-coumaric acid and vanillic acid exhibited inhibitory effect on mycelial growth of three cultivated Morchella mushrooms (M. sextelata, M. eximia and M. importuna) under soil native concentrations. Analysis of potential biosynthetic pathways of phenolic acids found that the 3 cultivable Morchella mushrooms are unable to synthesize phenolic acid allelochemicals. Therefore, although they were detected in trace amounts in static culture broth of M. sextelata, the two phenolic acids can only be defined as morel allelochemicals rather than autotoxins. Taken together, we found two morel allelochemicals that may derive from morel related microbes and plants, which will be helpful for further fundamental study and application in morel artificial cultivation.
Collapse
Affiliation(s)
- Qi Yin
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Wenchang Zhang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Hanfei Shi
- Luanchuan County Financial and Technology Service Center, Luanchuan, 471500, China
| | - Peixin He
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China.
| | - Fengming Zhang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jin Zhang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Bin Li
- Zhengzhou Institute of Agricultural Science and Technology, Zhengzhou, 450005, China
| | - Xiaofei Shi
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Fuqiang Yu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
3
|
Ni Y, Liao Q, Gou S, Shi T, Li W, Feng R, Zhao Z, Zhao X. Study on Enzyme Activity and Metabolomics during Culture of Liquid Spawn of Floccularia luteovirens. J Fungi (Basel) 2024; 10:618. [PMID: 39330377 PMCID: PMC11433261 DOI: 10.3390/jof10090618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
To comprehensively investigate the physiological characteristics and metabolic processes of the mycelium of Floccularia luteovirens (F. luteovirens), a wild edible fungus unique to the plateau region, we conducted an in-depth analysis of the mycelium enzyme activity and metabolites during different culture periods. The activity of seven enzymes all followed a trend of initially increasing and then decreasing. The intra- and extracellular activity peaks of three hydrolases-amylase, protease, and cellulase-all occurred on the 20th day, except for the extracellular amylase, which peaked on the 15th day. In contrast, the peak activity of laccase occurred on the 10th day. Moreover, three types of oxidoreductases in the mycelium (catalase (CAT), superoxide dismutase (SOD), and 2,3,5-triphenyltetrazolium chloride (TTC)-dehydrogenase (TTC-DH)) also exhibited significant changes in activity. CAT and SOD activity reached their maximum on the 20th day, whereas TTC-DH showed high activity on both the 10th and 20th days. Through a comprehensive assessment of the evolving trends of these physiological parameters, we determined that the optimal cultivation cycle for F. luteovirens liquid spawn is 20 days. An untargeted metabolomic analysis revealed that 3569 metabolites were detected in the F. luteovirens mycelium, including a variety of secondary metabolites and functional components, with terpenoids being particularly abundant, accounting for 148 types. By comparing three different culture stages (10 days, 20 days, and 30 days), 299, 291, and 381 metabolites, respectively, showed different accumulation patterns in the comparison groups of 10d vs. 20d, 20d vs. 30d, and 10d vs. 30d. These differential metabolites were primarily concentrated in carboxylic acids and their derivatives, fatty acyl groups, organic oxygen compounds, and lipid compounds. In addition, there were several amino acids whose abundance continued to grow during culturing. The metabolism of amino acids greatly affects mycelium growth and development. This research delineates the interplay between mycelium growth and metabolism, offering empirical support for a cultivation strategy for liquid F. luteovirens, and an exploration of its metabolites for potential applications.
Collapse
Affiliation(s)
- Yanqing Ni
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qiuhong Liao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Siyuan Gou
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Tongjia Shi
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Wensheng Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rencai Feng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| | - Zhiqiang Zhao
- Zhuoni County Agricultural Technology Extension Station, Gannan 747600, China
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China; (Y.N.); (Q.L.)
- Chengdu National Agricultural Science and Technology Center, Chengdu 610299, China
| |
Collapse
|
4
|
Yan J, Wang H, Yang B, Zhang W, Cao Z, Zhao P, Dong Z, Ren F, Chen L. Characterization of the flavor profile of Hulatang using GC-IMS coupled with sensory analysis. Front Nutr 2024; 11:1461224. [PMID: 39267861 PMCID: PMC11390415 DOI: 10.3389/fnut.2024.1461224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Background Hulatang is a traditional specialty snack in Henan, China, and is well known for its unique flavor. Methods In this study, the volatile organic compounds (VOCs) in four kinds of Hulatang from two representative regions in Henan Province (Xiaoyaozhen and Beiwudu) were evaluated using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Results The results showed that Xiaoyaozhen Hulatang exhibited more ethers, fewer terpenes and ketones than Beiwudu Hulatang. Additionally, Hulatang from different regions were classified using the orthogonal partial least squares-discriminant analysis (OPLS-DA) based on GC-IMS data. Twenty aroma substances were selected as the potential markers using the variable importance in the projection (VIP) variable selection method. Additionally, fifteen aroma components significantly contributing to the aroma of Hulatang were screened using the relative odor activity value (ROAV) (ROAV > 1). Combined with the sensory score results, twelve key substances with significant correlation with odor perception were selected. The flavor characteristics of the key substances revealed that the flavor of Hulatang was mainly composed of volatile components with camphor, green, almond, fatty, spicy, herbal, vegetable, fruity, floral, musty, and solvent aromas. Conclusion Overall, the experimental results provide a theoretical basis for evaluating the flavor characteristics of Hulatang from different regions using GC-IMS.
Collapse
Affiliation(s)
- Jing Yan
- Food Laboratory of Zhong Yuan, Luohe, China
| | - Heng Wang
- Food Laboratory of Zhong Yuan, Luohe, China
| | - Bing Yang
- Food Laboratory of Zhong Yuan, Luohe, China
| | | | | | | | - Zijie Dong
- Food Laboratory of Zhong Yuan, Luohe, China
| | | | | |
Collapse
|
5
|
Hu Y, Zheng C, Chen H, Wang C, Ren X, Fu S, Xu N, Li P, Song J, Wang C. Characteristics and Discrimination of the Commercial Chinese Four Famous Vinegars Based on Flavor Compositions. Foods 2023; 12:foods12091865. [PMID: 37174404 PMCID: PMC10178022 DOI: 10.3390/foods12091865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/08/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Shanxi aged vinegar (SAV), Zhenjiang aromatic vinegar (ZAV), Sichuan bran vinegar (SBV), and Fujian monascus vinegar (FMV) are the representative Chinese traditional vinegars. However, the basic differential compositions between the four vinegars are unknown. In this study, compositions of commercial vinegar were investigated to evaluate the influence of diverse technologies on their distinct flavor. Unlike amino acids and organic acids which were mostly shared, only five volatiles were detected in all vinegars, whereas a dozen volatiles were common to each type of vinegar. The four vinegars could only be classified well with all compositions, and difference analysis suggested the most significant difference between FMV and SBV. However, SAV, ZAV, and SBV possessed similar volatile characteristics due to their common heating treatments. Further, the correlation of identification markers with vinegars stressed the contributions of the smoking process, raw materials, and Monascus inoculum to SAV, SBV, and FMV clustering, respectively. Therefore, regardless of the technology modification, this basic process supported the uniqueness of the vinegars. This study contributes to improving the standards of defining the characteristics of types of vinegar.
Collapse
Affiliation(s)
- Yong Hu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
- Suizhou February Wind Food Co., Ltd., Suizhou 431518, China
- Zhongxiang Weicheng Fruit and Vegetable Professional Planting Cooperative, Jingmen 431999, China
| | - Chuanyang Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Haiyin Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Xiyue Ren
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Shiming Fu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Ning Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Panheng Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| | - Jinyi Song
- Suizhou February Wind Food Co., Ltd., Suizhou 431518, China
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
6
|
Analysis of the Volatile Flavor Compounds of Pomegranate Seeds at Different Processing Temperatures by GC-IMS. Molecules 2023; 28:molecules28062717. [PMID: 36985689 PMCID: PMC10052118 DOI: 10.3390/molecules28062717] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
This study sought to reveal the mechanism of flavor generation when pomegranate seeds are processed, as well as the contribution of volatile organic components (VOCs) to flavor formation. Gas chromatography–ion mobility spectrometry (GC-IMS), combined with relative odor activity (ROAV) and statistical methods, was used for the analysis. The results showed that 54 compounds were identified from 70 peaks that appeared in the GC-IMS spectrum. Then, the ROAV results showed 17 key volatile components in processing pomegranate seeds, and 7 flavor components with large differential contributions were screened out using statistical methods. These included γ-butyrolactone, (E)-3-penten-2-one (dimer), pentanal, 1-propanethiol, octanal, and ethyl valerate (monomer). It is suggested that lipid oxidation and the Maillard reaction may be the main mechanisms of flavor formation during the processing of pomegranate seeds. Furthermore, this study lays the experimental and theoretical foundations for further research on the development of flavor products from pomegranate seeds.
Collapse
|
7
|
Wang W, Xie L, Wang Z, Deng G. Establishment of a NIR-based methodology for tracking the blend homogeneity of HTPB propellant slurry in the mixing process. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121869. [PMID: 36116411 DOI: 10.1016/j.saa.2022.121869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The hydroxyl-terminated polybutadiene (HTPB) propellants with high level of solid loadings from 80 wt% to 90 wt% consist of aluminum (Al) powder, ammonium perchlorate (AP) and HTPB. The Al/AP/HTPB adhesive system full of solid grains appears high viscosity against flow. Therefore, the mixing is a crucial procedure in the production as it directly affects the structural integrity of the finished product. This work focused on the feasibility of tracking the blend homogeneity of Al/AP/HTPB adhesive system in the mixing process through using the near-infrared (NIR) spectroscopy and orthogonal partial least squares discrimination analysis (OPLS-DA). The OPLS-DA classification models were created by variable selection, spectral pretreatment and latent variables (LVs) optimization. It had been demonstrated that the developed models presented an excellent predictability with the root mean square error of cross-validation (RMSECV) for slurries in Ⅰ, Ⅱ groups of 0.1261 and 0.0789, respectively. Meanwhile, the well-fitted models for slurries in Ⅰ, Ⅱ groups with the squared correlation coefficient (R2) of 0.806 and 0.980, exhibited separately an acceptable predictive capability with the predictive squared correlation coefficient (Q2) > 0.5. Furthermore, Euclidean distance and move block standard deviation (MBSD) as reference methods were used to validate the predictive performance of the developed models with respect to the blend homogeneity of HTPB propellant slurry. The experimental results showed that the terminal time for each batch of slurry reaching to ideal uniformity predicted by Euclidean distance/MBSD and OPLS-DA were both at 26-30 min. Therefore, it had been proved that the method we proposed was a potential tool to monitor the variation of the uniform state of HTPB propellant slurry in the mixing process.
Collapse
Affiliation(s)
- Weibin Wang
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Liang Xie
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Zhaoxuan Wang
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Guodong Deng
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
8
|
Kim HK, Choi YH, Verpoorte R. Natural Products Drug Discovery: On Silica or In-Silico? Handb Exp Pharmacol 2023; 277:117-141. [PMID: 36318326 DOI: 10.1007/164_2022_611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Natural products have been the most important source for drug development throughout the human history. Over time, the formulation of drugs has evolved from crude drugs to refined chemicals. In modern drug discovery, conventional natural products lead-finding usually uses a top-down approach, namely bio-guided fractionation. In this approach, the crude extracts are separated by chromatography and resulting fractions are tested for activity. Subsequently, active fractions are further refined until a single active compound is obtained. However, this is a painstakingly slow and expensive process. Among the alternatives that have been developed to improve this situation, metabolomics has proved to yield interesting results having been applied successfully to drug discovery in the last two decades. The metabolomics-based approach in lead-finding comprises two steps: (1) in-depth chemical profiling of target samples, e.g. plant extracts, and bioactivity assessment, (2) correlation of the chemical and biological data by chemometrics. In the first step of this approach, the target samples are chemically profiled in an untargeted manner to detect as many compounds as possible. So far, NMR spectroscopy, LC-MS, GC-MS, and MS/MS spectrometry are the most common profiling tools. The profile data are correlated with the biological activity with the help of various chemometric methods such as multivariate data analysis. This in-silico analysis has a high potential to replace or complement conventional on-silica bioassay-guided fractionation as it will greatly reduce the number of bioassays, and thus time and costs. Moreover, it may reveal synergistic mechanisms, when present, something for which the classical top-down approach is clearly not suited. This chapter aims to give an overview of successful approaches based on the application of chemical profiling with chemometrics in natural products drug discovery.
Collapse
Affiliation(s)
- Hye Kyong Kim
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.,College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
9
|
Discrimination of the geographical origin of dry red pepper using inorganic elements: A multielement fingerprinting analysis. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
10
|
Insight into the dynamic variation and retention of major aroma volatile compounds during the milling of Suxiang japonica rice. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Quality assessment of liquorice combined with quantum fingerprint profiles and electrochemical activity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Zhang J, Gu X, Yan W, Lou L, Xu X, Chen X. Characterization of Differences in the Composition and Content of Volatile Compounds in Cucumber Fruit. Foods 2022; 11:foods11081101. [PMID: 35454687 PMCID: PMC9027996 DOI: 10.3390/foods11081101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The cucumber is characterized by the presence of a wide range of volatile organic compounds (VOCs), which are recognized as the main responsible for its unique flavor. However, research on the types and contents of VOCs in different cucumber cultivars remains fragmentary. Here, using an automatic headspace solid-phase microextraction coupled with the gas chromatography-mass spectrometry method, the VOCs were analyzed in three representative cucumber cultivars, including YX, KX, and GX, with the best, middle, and worst flavor quality, respectively, which were selected from 30 cultivars after flavor quality evaluation. Principal component analysis revealed that the six biological replicates were grouped, indicating high reliability of the data. A total of 163 VOCs were detected. There were 28 differential VOCs in YX compared to GX, 33 differential VOCs in YX compared to KX, and 10 differential VOCs in KX compared to GX. Furthermore, K-means clustering analysis showed that 38 of the 43 no-overlapping differential VOCs were represented by the most abundant compounds detected in YX. The prevailing VOCs in YX included: hydrocarbons, aldehydes, and ketones. The data obtained in the present study extend our understanding the impact of cultivars on VOCs in cucumber and will help facilitate targeted breeding.
Collapse
Affiliation(s)
- Jie Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
| | - Xiuchao Gu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
| | - Wenjing Yan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
| | - Lina Lou
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Correspondence:
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.Z.); (X.G.); (W.Y.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Li Y, Wang J, Wang T, Lv Z, Liu L, Wang Y, Li X, Fan Z, Li B. Differences between Kazak Cheeses Fermented by Single and Mixed Strains Using Untargeted Metabolomics. Foods 2022; 11:966. [PMID: 35407053 PMCID: PMC8997636 DOI: 10.3390/foods11070966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Mixed fermentation improves the flavor quality of food. Untargeted metabolomics were used to evaluate the impact of mixed fermentation and single-strain fermentation on the volatile and non-volatile compound profiles of Kazak cheese. Lacticaseibacillus paracasei SMN-LBK and Kluyveromyces marxianus SMN-S7-LBK were used to make mixed-fermentation cheese (M), while L. paracasei SMN-LBK was applied in single-strain-fermentation cheese (S). A higher abundances of acids, alcohols, and esters were produced via mixed fermentation. Furthermore, 397 differentially expressed non-volatile metabolites were identified between S and M during ripening. The flavor compounds in mixed-fermentation cheese mainly resulted from ester production (ethyl butanoate, ethyl acetate, ethyl octanoate, and ethyl hexanoate) and amino acid biosynthesis (Asp, Glu, Gln, and Phe). The metabolites were differentially expressed in nitrogen metabolism, D-glutamine and D-glutamate metabolism, phenylalanine metabolism, D-alanine metabolism, and other metabolic pathways. The amount of flavor compounds was increased in M, indicating that L. paracasei SMN- LBK and K. marxianus SMN-S7-LBK had synergistic effects in the formation of flavor compounds. This study comprehensively demonstrated the difference in metabolites between mixed-fermentation and single-strain-fermentation cheese and provided a basis for the production of Kazak cheese with diverse flavor characteristics.
Collapse
Affiliation(s)
- Yandie Li
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Jianghan Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Tong Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Zhuoxia Lv
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Linting Liu
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Yuping Wang
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Xu Li
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
- Guangdong Yikewei Biotech Co., Ltd., Guangzhou 510520, China
| | - Zhexin Fan
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| | - Baokun Li
- School of Food Science and Technology/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832000, China; (Y.L.); (J.W.); (T.W.); (Z.L.); (L.L.); (Y.W.); (X.L.); (Z.F.)
| |
Collapse
|
14
|
Yang J, Zhou T, Huang L, Chen B, Jiang Y. Anti-obesity effect of Auricularia heimuer fruiting body alcohol extraction on obese mice and crucial metabolite pathway analysis by liquid chromatography-tandem mass spectrometry. J Food Biochem 2021; 46:e14002. [PMID: 34850407 DOI: 10.1111/jfbc.14002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 01/04/2023]
Abstract
In recent years, the increasing obese and overweight population has become a worldwide public health problem, as there is no effective medication to control obesity. Auricularia heimuer is rich in active substances that have potential biologically active functions. The anti-obesity effect and mechanism of Auricularia heimuer fruiting body alcohol extraction (AHA, 150-600 mg/kg·bw) was investigated in obese mice by assessing changes in endogenous liver metabolites using a liquid chromatography-tandem mass spectrometry approach. The aim of this study was to identify an effective food to control human obesity. AHA of 600 mg/kg·bw (HC) significantly decreased body weight and improved serum biochemistry indices. Sixty-eight liver metabolites were identified and significantly separated among the normal, high-fat diet (HFD), and HC groups. Moreover, the metabolic analysis revealed that HC significantly regulated specific metabolites in mice including amino acids, lipids, and carbohydrate compounds. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that HC was significantly involved in different metabolite pathways including arachidonic acid metabolism, galactose metabolism, carbohydrate digestion and absorption, linoleic acid metabolism, and starch and sucrose metabolism. Eight weeks after supplementing with HC, major metabolites in related pathways that were disrupted by an HFD were restored to normal levels, suggesting that HC had anti-obesity activity.
Collapse
Affiliation(s)
- Juan Yang
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianfeng Zhou
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linxiang Huang
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bingzhi Chen
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuji Jiang
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
15
|
Drug identification by electroanalysis with multiple classification approaches. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/j.cjac.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
You G, Feng T, Zhang H, Sun L, Mou J, Wang M, Ren X. Comparative study on the stability/intestinal absorption kinetics of 2,3,5,4′-tetrahydroxy-stilbene-2-O-β-D-glucoside derived from Polygoni Multiflori Radix and its herb pairs. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1966441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Guangjiao You
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huijie Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiajia Mou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
17
|
Tinte MM, Chele KH, van der Hooft JJJ, Tugizimana F. Metabolomics-Guided Elucidation of Plant Abiotic Stress Responses in the 4IR Era: An Overview. Metabolites 2021; 11:445. [PMID: 34357339 PMCID: PMC8305945 DOI: 10.3390/metabo11070445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/27/2022] Open
Abstract
Plants are constantly challenged by changing environmental conditions that include abiotic stresses. These are limiting their development and productivity and are subsequently threatening our food security, especially when considering the pressure of the increasing global population. Thus, there is an urgent need for the next generation of crops with high productivity and resilience to climate change. The dawn of a new era characterized by the emergence of fourth industrial revolution (4IR) technologies has redefined the ideological boundaries of research and applications in plant sciences. Recent technological advances and machine learning (ML)-based computational tools and omics data analysis approaches are allowing scientists to derive comprehensive metabolic descriptions and models for the target plant species under specific conditions. Such accurate metabolic descriptions are imperatively essential for devising a roadmap for the next generation of crops that are resilient to environmental deterioration. By synthesizing the recent literature and collating data on metabolomics studies on plant responses to abiotic stresses, in the context of the 4IR era, we point out the opportunities and challenges offered by omics science, analytical intelligence, computational tools and big data analytics. Specifically, we highlight technological advancements in (plant) metabolomics workflows and the use of machine learning and computational tools to decipher the dynamics in the chemical space that define plant responses to abiotic stress conditions.
Collapse
Affiliation(s)
- Morena M. Tinte
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
| | - Kekeletso H. Chele
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
| | | | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
18
|
Chemometric applications in metabolomic studies using chromatography-mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116165] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Comparative Analyses of Radix Paeoniae Alba with Different Appearance Traits and from Different Geographical Origins Using HPLC Fingerprints and Chemossmetrics. Chromatographia 2020. [DOI: 10.1007/s10337-020-03961-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Fan Z, Kong F, Zhou Y, Chen Y, Dai Y. Intelligence Algorithms for Protein Classification by Mass Spectrometry. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2862458. [PMID: 30534555 PMCID: PMC6252195 DOI: 10.1155/2018/2862458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022]
Abstract
Mass spectrometry (MS) is an important technique in protein research. Effective classification methods by MS data could contribute to early and less-invasive diagnosis and also facilitate developments in the bioinformatics field. As MS data is featured by high dimension, appropriate methods which can effectively deal with the large amount of MS data have been widely studied. In this paper, the applications of methods based on intelligence algorithms have been investigated. Firstly, classification and biomarker analysis methods using typical machine learning approaches have been discussed. Then those are followed by the Ensemble strategy algorithms. Clearly, simple and basic machine learning algorithms hardly addressed the various needs of protein MS classification. Preprocessing algorithms have been also studied, as these methods are useful for feature selection or feature extraction to improve classification performance. Protein MS data growing with data volume becomes complicated and large; improvements in classification methods in terms of classifier selection and combinations of different algorithms and preprocessing algorithms are more emphasized in further work.
Collapse
Affiliation(s)
- Zichuan Fan
- School of Computer and Information Science, Southwest University, Chongqing 400715, China
| | - Fanchen Kong
- School of Computer and Information Science, Southwest University, Chongqing 400715, China
| | - Yang Zhou
- School of Computer and Information Science, Southwest University, Chongqing 400715, China
| | - Yiqing Chen
- School of Computer and Information Science, Southwest University, Chongqing 400715, China
| | - Yalan Dai
- School of Computer and Information Science, Southwest University, Chongqing 400715, China
| |
Collapse
|