1
|
Gu Y, Li Y, Gao L. Association between tumor markers elevation and poor functional outcomes after acute ischemic stroke: a longitudinal stroke center-based study. Ann Med 2024; 56:2426753. [PMID: 39575674 PMCID: PMC11587720 DOI: 10.1080/07853890.2024.2426753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/23/2024] [Accepted: 10/16/2024] [Indexed: 11/27/2024] Open
Abstract
OBJECTIVE Previous studies revealed that the elevation of serum tumor markers (TMs) can serve as a prognostic indicator for diseases other than cancer, but little is known about its association with acute ischemic stroke (AIS). Based on a series of molecular markers and gene pathways shared in both stroke and cancer, we aimed to investigate whether the elevation of TMs could predict clinical outcomes after AIS. METHODS Patients diagnosed with AIS were enrolled and classified into the elevated TMs group and the non-elevated TMs group according to whether any TMs were elevated or not. Then they were followed up 6 months to assess clinical outcomes. Poor functional outcomes were defined as modified Rankin Scale (mRS) > 2 points. RESULTS 289 AIS patients were finally enrolled, of which 197 (68.2%) were classified as the elevated TMs group. Patients in the elevated TMs group were more likely (OR = 2.384; p = 0.005) to have poor functional outcomes at follow-up than those in the non-elevated TMs group. However, no specific TM was significantly more elevated than the other TMs in the patients with poor functional outcome. The combination of TMs was more sensitive than individual TM in terms of prognosis prediction. Furthermore, rather than the number of elevated items, whether any TM was elevated or not was the most appropriate discriminator for functional outcomes after AIS. CONCLUSIONS Elevation of TMs may indicate poor functional outcomes after AIS. Consequently, AIS patients with elevated TMs required close clinical monitoring and intensified treatment.
Collapse
Affiliation(s)
- Yongzhe Gu
- Department of Neurology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Academic Research, The People’s Hospital of Yingshang, Anhui, China
| | - Yangyang Li
- Department of General Surgery, The People’s Hospital of Yingshang, Anhui, China
| | - Li Gao
- Department of Obstetrics and Gynecology, The People’s Hospital of Yingshang, Anhui, China
| |
Collapse
|
2
|
Tang M, Zhang Z, Wang P, Zhao F, Miao L, Wang Y, Li Y, Li Y, Gao Z. Advancements in precision nanomedicine design targeting the anoikis-platelet interface of circulating tumor cells. Acta Pharm Sin B 2024; 14:3457-3475. [PMID: 39220884 PMCID: PMC11365446 DOI: 10.1016/j.apsb.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor metastasis, the apex of cancer progression, poses a formidable challenge in therapeutic endeavors. Circulating tumor cells (CTCs), resilient entities originating from primary tumors or their metastases, significantly contribute to this process by demonstrating remarkable adaptability. They survive shear stress, resist anoikis, evade immune surveillance, and thwart chemotherapy. This comprehensive review aims to elucidate the intricate landscape of CTC formation, metastatic mechanisms, and the myriad factors influencing their behavior. Integral signaling pathways, such as integrin-related signaling, cellular autophagy, epithelial-mesenchymal transition, and interactions with platelets, are examined in detail. Furthermore, we explore the realm of precision nanomedicine design, with a specific emphasis on the anoikis‒platelet interface. This innovative approach strategically targets CTC survival mechanisms, offering promising avenues for combatting metastatic cancer with unprecedented precision and efficacy. The review underscores the indispensable role of the rational design of platelet-based nanomedicine in the pursuit of restraining CTC-driven metastasis.
Collapse
Affiliation(s)
- Manqing Tang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Ivan VS, Lighezan DF, Ardelean M, Balteș N, Faur AC, Ciubotaru PG, Cutina-Morgovan AF, Buzaș R. What to Do When There Is Something Unexpected? Life (Basel) 2024; 14:213. [PMID: 38398722 PMCID: PMC10890187 DOI: 10.3390/life14020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Myocardial infarction is currently the leading cause of death worldwide, followed by malignant neoplasms. The presence of both within the same patient obviously increases the risk of death, as many coronary events are detected in patients diagnosed with cancer. Diagnosis of an occult digestive cancer in the acute phase of myocardial infarction is most frequently prompted by a hemorrhagic complication. CASE SUMMARY This case features an 81-year-old male patient diagnosed with acute myocardial infarction, treated with primary percutaneous intervention (PCI), who developed post-stenting hemorrhagic complications in the first 24 h due to the presence of two different concomitant malignant neoplasms. The outcome was favorable in the acute phase, even if de-escalation therapy was given immediately post-stenting, and intrastent residual thrombotic risk was high. CONCLUSIONS The presence of bleeding complications in patients with acute myocardial infarction should mobilize resources in search of a neoplastic cause, especially a digestive one. However, other locations should be looked for, depending on the source of bleeding.
Collapse
Affiliation(s)
- Vlad Sabin Ivan
- Department of Internal Medicine I, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (V.S.I.); (D.-F.L.); (M.A.); (A.-F.C.-M.); (R.B.)
- Center for Advanced Research in Cardiovascular Pathology and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Daniel-Florin Lighezan
- Department of Internal Medicine I, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (V.S.I.); (D.-F.L.); (M.A.); (A.-F.C.-M.); (R.B.)
- Center for Advanced Research in Cardiovascular Pathology and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Melania Ardelean
- Department of Internal Medicine I, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (V.S.I.); (D.-F.L.); (M.A.); (A.-F.C.-M.); (R.B.)
- Center for Advanced Research in Cardiovascular Pathology and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Nicoleta Balteș
- Gastroenterology Unit, Emergency Clinical Municipal Hospital, 300079 Timișoara, Romania;
| | - Alexandra Corina Faur
- Department of Anatomy and Embriology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Paul-Gabriel Ciubotaru
- Department of Internal Medicine I, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (V.S.I.); (D.-F.L.); (M.A.); (A.-F.C.-M.); (R.B.)
- Center for Advanced Research in Cardiovascular Pathology and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Adina-Flavia Cutina-Morgovan
- Department of Internal Medicine I, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (V.S.I.); (D.-F.L.); (M.A.); (A.-F.C.-M.); (R.B.)
| | - Roxana Buzaș
- Department of Internal Medicine I, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania; (V.S.I.); (D.-F.L.); (M.A.); (A.-F.C.-M.); (R.B.)
- Center for Advanced Research in Cardiovascular Pathology and Hemostaseology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
4
|
Wahab R, Hasan MM, Azam Z, Grippo PJ, Al-Hilal TA. The role of coagulome in the tumor immune microenvironment. Adv Drug Deliv Rev 2023; 200:115027. [PMID: 37517779 PMCID: PMC11099942 DOI: 10.1016/j.addr.2023.115027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The rising incidence and persistent thrombosis in multiple cancers including those that are immunosuppressive highlight the need for understanding the tumor coagulome system and its role beyond hemostatic complications. Immunotherapy has shown significant benefits in solid organ tumors but has been disappointing in the treatment of hypercoagulable cancers, such as glioblastoma and pancreatic ductal adenocarcinomas. Thus, targeting thrombosis to prevent immunosuppression seems a clinically viable approach in cancer treatment. Hypercoagulable tumors often develop fibrin clots within the tumor microenvironment (TME) that dictates the biophysical characteristics of the tumor tissue. The application of systems biology and single-cell approaches highlight the potential role of coagulome or thrombocytosis in shaping the tumor immune microenvironment (TIME). In-depth knowledge of the tumor coagulome would provide unprecedented opportunities to better predict the hemostatic complications, explore how thrombotic stroma modulates tumor immunity, reexamine the significance of clinical biomarkers, and enable steering the stromal versus systemic immune response for boosting the effectiveness of immune checkpoint inhibitors in cancer treatment. We focus on the role of coagulation factors in priming a suppressive TIME and the huge potential of existing anticoagulant drugs in the clinical settings of cancer immunotherapy.
Collapse
Affiliation(s)
- Riajul Wahab
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Mahedi Hasan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zulfikar Azam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
5
|
Shafqat A, Omer MH, Ahmed EN, Mushtaq A, Ijaz E, Ahmed Z, Alkattan K, Yaqinuddin A. Reprogramming the immunosuppressive tumor microenvironment: exploiting angiogenesis and thrombosis to enhance immunotherapy. Front Immunol 2023; 14:1200941. [PMID: 37520562 PMCID: PMC10374407 DOI: 10.3389/fimmu.2023.1200941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
This review focuses on the immunosuppressive effects of tumor angiogenesis and coagulation on the tumor microenvironment (TME). We summarize previous research efforts leveraging these observations and targeting these processes to enhance immunotherapy outcomes. Clinical trials have documented improved outcomes when combining anti-angiogenic agents and immunotherapy. However, their overall survival benefit over conventional therapy remains limited and certain tumors exhibit poor response to anti-angiogenic therapy. Additionally, whilst preclinical studies have shown several components of the tumor coagulome to curb effective anti-tumor immune responses, the clinical studies reporting combinations of anticoagulants with immunotherapies have demonstrated variable treatment outcomes. By reviewing the current state of the literature on this topic, we address the key questions and future directions in the field, the answers of which are crucial for developing effective strategies to reprogram the TME in order to further the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Ali Mushtaq
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Eman Ijaz
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Zara Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
6
|
Yao J, Li S, Cui Q, Ren Y, Li M, Wang J, Zeng M, Ji N, Peng Y, Sessler DI. Intraoperative Hypotension and Postoperative Stroke in Older Patients Who Had Brain Tumor Resections: A Retrospective Cohort Analysis. World Neurosurg 2023; 174:e72-e81. [PMID: 36878404 DOI: 10.1016/j.wneu.2023.02.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND At some level, intraoperative hypotension causes strokes. Elderly neurosurgical patients are presumably at especially high risk. We tested the primary hypothesis that intraoperative hypotension is associated with postoperative stroke in older patients undergoing brain tumor resection. METHODS Patients >65 years old who had elective craniotomy for tumor resections were included. The primary exposure was the area under the threshold of intraoperative hypotension. The primary outcome was newly diagnosed ischemic stroke within 30 days, confirmed by scheduled brain imaging. RESULTS Among 724 eligible patients, 98 (13.5%) had strokes within 30 days after surgery, 86% of which were clinically silent. Curves of lowest mean arterial pressure versus stroke incidence suggested a threshold at 75 mm Hg. Area under the threshold of mean arterial pressure below 75 mm Hg was therefore incorporated into multivariable modeling. There was no association of area below 75 mm Hg and stroke (adjusted odds ratio, 1.00; 95% confidence interval, 1.00-1.00). The adjusted odds ratio for area below 75 mm Hg between 1 and 148 mm Hg × minutes was 1.21 (95% confidence interval, 0.23-6.23). When the area below 75 mm Hg exceeded 1117 mm Hg × minutes, the association remained insignificant. In contrast, malignant tumor and history of previous stroke or myocardial ischemia were associated with strokes. CONCLUSIONS Postoperative strokes were common in older patients who underwent brain tumor resection, with about 14% having ischemic cerebrovascular events within 30 days, of which 86% were clinically silent. Malignant brain tumors and previous ischemic vascular events were associated with postoperative strokes, but area under 75 mm Hg was not.
Collapse
Affiliation(s)
- Jingxin Yao
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shu Li
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianyu Cui
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Ren
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Muhan Li
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Juan Wang
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Min Zeng
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuming Peng
- Department of Anaesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Daniel I Sessler
- Department of Outcomes Research, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
7
|
Ji T, Shi Q, Mei S, Xu J, Liang H, Xie L, Ren T, Sun K, Li D, Tang X, Zhang P, Guo W. Integrated analysis of single-cell and bulk RNA sequencing data reveals an immunostimulatory microenvironment in tumor thrombus of osteosarcoma. Oncogenesis 2023; 12:31. [PMID: 37244923 DOI: 10.1038/s41389-023-00474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/29/2023] Open
Abstract
Tumor thrombus of bone sarcomas represents a unique reservoir for various types of cancer and immune cells, however, the investigation of tumor thrombus at a single-cell level is very limited. And it is still an open question to identify the thrombus-specific tumor microenvironment that is associated with the tumor-adaptive immune response. Here, by analyzing bulk tissue and single-cell level transcriptome from the paired thrombus and primary tumor samples of osteosarcoma (OS) patients, we define the immunostimulatory microenvironment in tumor thrombus of OS with a higher proportion of tumor-associated macrophages with M1-like states (TAM-M1) and TAM-M1 with high expression of CCL4. OS tumor thrombus is found to have upregulated IFN-γ and TGF-β signalings that are related to immune surveillance of circulating tumor cells in blood circulation. Further multiplexed immunofluorescence staining of the CD3/CD4/CD8A/CD68/CCL4 markers validates the immune-activated state in the tumor thrombus samples. Our study first reports the transcriptome differences at a single-cell level between tumor thrombus and primary tumor in sarcoma.
Collapse
Affiliation(s)
- Tao Ji
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Qianyu Shi
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Song Mei
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiuhui Xu
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Haijie Liang
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Lu Xie
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Kunkun Sun
- Department of Pathology, People's Hospital, Peking University, Beijing, 100044, China
| | - Dasen Li
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Wei Guo
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China.
| |
Collapse
|
8
|
Kaye B, Ali A, Correa Bastianon Santiago RA, Ibrahim B, Isidor J, Awad H, Sabahi M, Obrzut M, Adada B, Ranjan S, Borghei-Razavi H. The Role of EGFR Amplification in Deep Venous Thrombosis Occurrence in IDH Wild-Type Glioblastoma. Curr Oncol 2023; 30:4946-4956. [PMID: 37232831 DOI: 10.3390/curroncol30050373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Glioblastoma (GBM) patients have a 20-30 incidence of venous thromboembolic events. EGFR is a widely used prognostic marker for many cancers. Recent lung cancer studies have described relationships between EGFR amplification and an increased incidence of thromboembolic complications. We aim to explore this relationship in glioblastoma patients. Methods: Two hundred ninety-three consecutive patients with IDH wild-type GBM were included in the analysis. The amplification status of EGFR was measured using fluorescence in situ hybridization (FISH). Centromere 7 (CEP7) expression was recorded to calculate the EGFR-to-CEP7 ratio. All data were collected retrospectively through chart review. Molecular data were obtained through the surgical pathology report at the time of biopsy. Results: There were 112 subjects who were EGFR-amplified (38.2%) and 181 who were non-amplified (61.8%). EGFR amplification status was not significantly correlated with VTE risk overall (p = 0.2001). There was no statistically significant association between VTE and EGFR status after controlling for Bevacizumab therapy (p = 0.1626). EGFR non-amplified status was associated with an increased VTE risk in subjects greater than 60 years of age (p = 0.048). Conclusions: There was no significant difference in occurrence of VTE in patients with glioblastoma, regardless of EGFR amplification status. Patients older than 60 years of age with EGFR amplification experienced a lower rate of VTE, contrary to some reports on non-small-cell lung cancer linking EGFR amplification to VTE risk.
Collapse
Affiliation(s)
- Brandon Kaye
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Assad Ali
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | | | - Bilal Ibrahim
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | - Julio Isidor
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | - Hany Awad
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | | | - Michal Obrzut
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | - Badih Adada
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | - Surabhi Ranjan
- Cleveland Clinic Florida, Department of Neurosurgery, Weston, FL 33331, USA
| | | |
Collapse
|
9
|
Leitão TP, Corredeira P, Kucharczak S, Rodrigues M, Piairo P, Rodrigues C, Alves P, Cavaco AM, Miranda M, Antunes M, Ferreira J, Palma Reis J, Lopes T, Diéguez L, Costa L. Clinical Validation of a Size-Based Microfluidic Device for Circulating Tumor Cell Isolation and Analysis in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24098404. [PMID: 37176111 PMCID: PMC10178884 DOI: 10.3390/ijms24098404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Renal cell carcinoma (RCC) presents as metastatic disease in one third of cases. Research on circulating tumor cells (CTCs) and liquid biopsies is improving the understanding of RCC biology and metastases formation. However, a standardized, sensitive, specific, and cost-effective CTC detection technique is lacking. The use of platforms solely relying on epithelial markers is inappropriate in RCC due to the frequent epithelial-mesenchymal transition that CTCs undergo. This study aimed to test and clinically validate RUBYchip™, a microfluidic label-free CTC detection platform, in RCC patients. The average CTC capture efficiency of the device was 74.9% in spiking experiments using three different RCC cell lines. Clinical validation was performed in a cohort of 18 patients, eight non-metastatic (M0), five metastatic treatment-naïve (M1TN), and five metastatic progressing-under-treatment (M1TP). An average CTC detection rate of 77.8% was found and the average (range) total CTC count was 6.4 (0-27), 101.8 (0-255), and 3.2 (0-10), and the average mesenchymal CTC count (both single and clustered cells) was zero, 97.6 (0-255), and 0.2 (0-1) for M0, M1TN, and M1TP, respectively. CTC clusters were detected in 25% and 60% of M0 and M1TN patients, respectively. These results show that RUBYchip™ is an effective CTC detection platform in RCC.
Collapse
Affiliation(s)
- Tito Palmela Leitão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Urology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Sandra Kucharczak
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Erling Skjalgsons gate 1, 7491 Trondheim, Norway
| | - Margarida Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Biological Engineering Department, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal
- RUBYnanomed Lda, Praça Conde de Agrolongo 123, 4700-312 Braga, Portugal
| | - Carolina Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Patrícia Alves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Ana Martins Cavaco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Miguel Miranda
- Urology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marília Antunes
- CEAUL-Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - José Palma Reis
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Urology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Tomé Lopes
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal
- RUBYnanomed Lda, Praça Conde de Agrolongo 123, 4700-312 Braga, Portugal
| | - Luís Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
10
|
Zhang X, Yu S, Li X, Wen X, Liu S, Zu R, Ren H, Li T, Yang C, Luo H. Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacol Res 2023; 191:106777. [PMID: 37080257 DOI: 10.1016/j.phrs.2023.106777] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
Oxidative stress (OS) is a chemical imbalance between an oxidant and an antioxidant, causing damage to redox signaling and control or causing molecular damage. Unbalanced oxidative metabolism can produce excessive reactive oxygen species (ROS). These excess ROS can cause drastic changes in platelet metabolism and further affect platelet function. It will also lead to an increase in platelet procoagulant phenotype and cell apoptosis, which will increase the risk of thrombosis. The creation of ROS and subsequent platelet activation, adhesion, and recruitment are then further encouraged in an auto-amplifying loop by ROS produced from platelets. Meanwhile, cancer cells produce a higher concentration of ROS due to their fast metabolism and high proliferation rate. However, excessive ROS can result in damage to and modification of cellular macromolecules. The formation of cancer and its progression is strongly associated with oxidative stress and the resulting oxidative damage. In addition, platelets are an important part of the tumor microenvironment, and there is a significant cross-communication between platelets and cancer cells. Cancer cells alter the activation status of platelets, their RNA spectrum, proteome, and other properties. The "cloaking" of cancer cells by platelets providing physical protection,avoiding destruction from shear stress and the attack of immune cells, promoting tumor cell invasion.We explored the vicious circle interaction between ROS, platelets, and cancer in this review, and we believe that ROS can play a stimulative role in tumor growth and metastasis through platelets.
Collapse
Affiliation(s)
- Xingmei Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Sisi Yu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China
| | - Xiaobo Li
- Molecular Diagnostic Laboratory of Department of Microbiology and Immunology, 3201 Hospital Affiliated to Medical College of Xi'an Jiaotong University, Hanzhong 723099, China
| | - Xiaoxia Wen
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Shan Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Ruiling Zu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China
| | - Hanxiao Ren
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Chaoguo Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610042, China.
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041 China.
| |
Collapse
|
11
|
Landais Y, Vallot C. Multi-modal quantification of pathway activity with MAYA. Nat Commun 2023; 14:1668. [PMID: 36966153 PMCID: PMC10039856 DOI: 10.1038/s41467-023-37410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Signaling pathways can be activated through various cascades of genes depending on cell identity and biological context. Single-cell atlases now provide the opportunity to inspect such complexity in health and disease. Yet, existing reference tools for pathway scoring resume activity of each pathway to one unique common metric across cell types. Here, we present MAYA, a computational method that enables the automatic detection and scoring of the diverse modes of activation of biological pathways across cell populations. MAYA improves the granularity of pathway analysis by detecting subgroups of genes within reference pathways, each characteristic of a cell population and how it activates a pathway. Using multiple single-cell datasets, we demonstrate the biological relevance of identified modes of activation, the robustness of MAYA to noisy pathway lists and batch effect. MAYA can also predict cell types starting from lists of reference markers in a cluster-free manner. Finally, we show that MAYA reveals common modes of pathway activation in tumor cells across patients, opening the perspective to discover shared therapeutic vulnerabilities.
Collapse
Affiliation(s)
| | - Céline Vallot
- CNRS UMR3244, Institut Curie, PSL University, Paris, France.
- Translational Research Department, Institut Curie, PSL University, Paris, France.
- Single Cell Initiative, Institut Curie, PSL University, Paris, France.
| |
Collapse
|
12
|
Fainchtein K, Tera Y, Kearn N, Noureldin A, Othman M. Hypercoagulability and Thrombosis Risk in Prostate Cancer: The Role of Thromboelastography. Semin Thromb Hemost 2023; 49:111-118. [PMID: 36410399 DOI: 10.1055/s-0042-1758116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thrombosis is one of the leading causes of death in cancer. Cancer-induced hypercoagulable state contributes to thrombosis and is often overlooked. Prostate cancer may not be of high thrombogenic potential compared with other cancers, but its high prevalence brings it into focus. Pathological evidence for venous thromboembolisms (VTEs) in prostate cancer exists. Factors such as age, comorbidities, and therapies increase the VTE risk further. There is a need to systematically identify the risk of VTE in regard to patient-, cancer-, and treatment-related factors to risk stratify patients for better-targeted and individualized strategies to prevent VTE. Sensitive tests to enable such risk assessment are urgently required. There is sufficient evidence for the utility of thromboelastography (TEG) in cancer, but it is not yet part of the clinic and there is only limited data on the use of TEG in prostate cancer. One study revealed that compared with age-matched controls, 68.8% of prostate cancer patients demonstrated hypercoagulable TEG parameters. The absence of clinical guidelines is a limiting factor in TEG use in the cancer population. Cancer heterogeneity and the unique cancer-specific microenvironment in each patient, as well as determining the hypercoagulable state in each patient, are added limitations. The way forward is to combine efforts to design large multicenter studies to investigate the utility and clinical effectiveness of TEG in cancer and establish longitudinal studies to understand the link between hypercoagulable state and development of thrombosis. There is also a need to study low thrombogenic cancers as well as high thrombogenic ones. Awareness among clinicians and understanding of test applicability and interpretation are needed. Finally, expert discussion is critical to identify the investigation priorities.
Collapse
Affiliation(s)
- Karina Fainchtein
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yousra Tera
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada.,Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Natalie Kearn
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Abdelrahman Noureldin
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Maha Othman
- Department of Biomedical and Molecular Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada.,Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,School of Baccalaureate Nursing, St. Lawrence College, Kingston, Ontario, Canada
| |
Collapse
|
13
|
Johnson A, Reimer S, Childres R, Cupp G, Kohs TCL, McCarty OJT, Kang Y(A. The Applications and Challenges of the Development of In Vitro Tumor Microenvironment Chips. Cell Mol Bioeng 2023; 16:3-21. [PMID: 36660587 PMCID: PMC9842840 DOI: 10.1007/s12195-022-00755-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
The tumor microenvironment (TME) plays a critical, yet mechanistically elusive role in tumor development and progression, as well as drug resistance. To better understand the pathophysiology of the complex TME, a reductionist approach has been employed to create in vitro microfluidic models called "tumor chips". Herein, we review the fabrication processes, applications, and limitations of the tumor chips currently under development for use in cancer research. Tumor chips afford capabilities for real-time observation, precise control of microenvironment factors (e.g. stromal and cellular components), and application of physiologically relevant fluid shear stresses and perturbations. Applications for tumor chips include drug screening and toxicity testing, assessment of drug delivery modalities, and studies of transport and interactions of immune cells and circulating tumor cells with primary tumor sites. The utility of tumor chips is currently limited by the ability to recapitulate the nuances of tumor physiology, including extracellular matrix composition and stiffness, heterogeneity of cellular components, hypoxic gradients, and inclusion of blood cells and the coagulome in the blood microenvironment. Overcoming these challenges and improving the physiological relevance of in vitro tumor models could provide powerful testing platforms in cancer research and decrease the need for animal and clinical studies.
Collapse
Affiliation(s)
- Annika Johnson
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Samuel Reimer
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Ryan Childres
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Grace Cupp
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Tia C. L. Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
- Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201 USA
| | - Youngbok (Abraham) Kang
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| |
Collapse
|
14
|
Shi Q, Ji T, Tang X, Guo W. The role of tumor-platelet interplay and micro tumor thrombi during hematogenous tumor metastasis. Cell Oncol (Dordr) 2023; 46:521-532. [PMID: 36652166 DOI: 10.1007/s13402-023-00773-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In addition to their pivotal roles in coagulation and thrombosis, platelets are crucial in tumor progression, with plenty of clinical and experimental data demonstrating that the interplay of platelets and tumor cells is essential for hematogenous tumor metastasis. After detach from primary sites, tumor cells intravasate into the blood circulation becoming circulating tumor cells and induce platelet activation, aggregation and encasement around tumor cells to form micro tumor thrombi, which create a permissive tumor microenvironment for metastasis. Platelets in micro tumor thrombi protect tumor cells from immune surveillance and anoikis (detachment-triggered apoptosis) through various pathways, which are significant for tumor cell survival in the bloodstream. Moreover, platelets can facilitate tumor metastasis by expediting epithelial-mesenchymal transition (EMT), adhesion to the endothelium, angiogenesis, tumor proliferation processes and platelet-derived microvesicle (PMV) formation. CONCLUSIONS Here, we provide a synopsis of the current understanding of the formation of micro tumor thrombi and the role of micro tumor thrombi in tumor hematogenous metastasis based on the tumor-platelet interplay. We also highlight potential therapeutic strategies targeting platelets for tumor treatment, including cancer-associated platelet-targeted nanomedicines.
Collapse
Affiliation(s)
- Qianyu Shi
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Tao Ji
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China.
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
| | - Wei Guo
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| |
Collapse
|
15
|
Tissue factor in cancer-associated thromboembolism: possible mechanisms and clinical applications. Br J Cancer 2022; 127:2099-2107. [PMID: 36097177 PMCID: PMC9467428 DOI: 10.1038/s41416-022-01968-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/29/2023] Open
Abstract
Venous and arterial thromboses, called as cancer-associated thromboembolism (CAT), are common complications in cancer patients that are associated with high mortality. The cell-surface glycoprotein tissue factor (TF) initiates the extrinsic blood coagulation cascade. TF is overexpressed in cancer cells and is a component of extracellular vesicles (EVs). Shedding of TF+EVs from cancer cells followed by association with coagulation factor VII (fVII) can trigger the blood coagulation cascade, followed by cancer-associated venous thromboembolism in some cancer types. Secretion of TF is controlled by multiple mechanisms of TF+EV biogenesis. The procoagulant function of TF is regulated via its conformational change. Thus, multiple steps participate in the elevation of plasma procoagulant activity. Whether cancer cell-derived TF is maximally active in the blood is unclear. Numerous mechanisms other than TF+EVs have been proposed as possible causes of CAT. In this review, we focused on a wide variety of regulatory and shedding mechanisms for TF, including the effect of SARS-CoV-2, to provide a broad overview for its role in CAT. Furthermore, we present the current technical issues in studying the relationship between CAT and TF.
Collapse
|
16
|
Corral JM, Puerto-Nevado LD, Cedeño M, Río-Vilariño A, Mahillo-Fernández I, Galeano C, Baños N, García-Foncillas J, Dómine M, Cebrián A. Galectin-1, a novel promising target for outcome prediction and treatment in SCLC. Biomed Pharmacother 2022; 156:113987. [DOI: 10.1016/j.biopha.2022.113987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
|
17
|
Tissue factor-dependent coagulation activation in intracranial neoplasms: a comparative study. Blood Coagul Fibrinolysis 2022; 33:438-448. [PMID: 36165076 DOI: 10.1097/mbc.0000000000001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of the study was to investigate the concentration and activity of tissue factor (TF) and Tissue factor pathway inhibitor (TFPI) as well as the concentration of thrombin-antithrombin (TAT) complexes in patients with primary and metastatic intracranial neoplasms. The study included 69 patients with an average age of 62 years. Twenty-one patients were diagnosed with gliomas, 18 meningioma stage II (M) patients, and 30 metastatic brain tumour cases (Meta). The control group consisted of 30 individuals with a mean age of 57 years. In the plasma of all the participants and in tumour tissue-derived homogenate, the concentrations and activities of TF, TFPI, the concentration of TAT complexes and the concentration of total protein were measured. The results were converted per 1 mg of protein. The concentration of TF was over 80 times higher in the tumour tissue-derived homogenate in respect to patients' plasma levels. Plasma TF activity in intracranial cancer patients was almost six times higher compared with noncancer counterparts, while in the tumour tissue-derived homogenate it was more than 14 times higher than in the intracranial cancer patients' plasma, whereas the concentration of TFPI in the tumour tissue-derived homogenate was significantly lower than in the patients' plasma. However, a significantly higher TFPI activity in the tumour tissue derived than in the patients' plasma was reported. The high concentration and activity of TF, along with the coexisting low concentration and activity of TFPI in the plasma of intracranial tumour patients, is associated with a higher prothrombotic risk in these patients.
Collapse
|
18
|
Zhang K, Ma Z, Li S, Zhang W, Foda MF, Zhao Y, Han H. Platelet-Covered Nanocarriers for Targeted Delivery of Hirudin to Eliminate Thrombotic Complication in Tumor Therapy. ACS NANO 2022; 16:18483-18496. [PMID: 36350264 DOI: 10.1021/acsnano.2c06666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Most patients are at high risk of thrombosis during cancer treatment. However, the major discrepancy in the therapeutic mechanisms and microenvironment between tumors and thrombosis makes it challenging for a panacea to treat cancer while being able to eliminate the risk of thrombosis. Herein, we developed a biomimetic MnOx/Ag2S nanoflower platform with platelet membrane modification (MnOx@Ag2S@hirudin@platelet membrane: MAHP) for the long-term release of anticoagulant drugs to treat thrombosis together with tumor therapy. This MAHP platform could achieve the targeted delivery of hirudin to the thrombus site and perform the controlled release under the irradiation of near-infrared light, demonstrating effective removal of the thrombus. Moreover, MAHP could inhibit tumor progression and prolong the survival time of mice with thromboembolic complications.
Collapse
Affiliation(s)
- Kai Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zhaoyu Ma
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Shuting Li
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Weiyun Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Mohamed Frahat Foda
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| |
Collapse
|
19
|
Parrini I, Lucà F, Rao CM, Parise G, Micali LR, Musumeci G, La Meir M, Colivicchi F, Gulizia MM, Gelsomino S. Superiority of Direct Oral Anticoagulants over Vitamin K Antagonists in Oncological Patients with Atrial Fibrillation: Analysis of Efficacy and Safety Outcomes. J Clin Med 2022; 11:jcm11195712. [PMID: 36233581 PMCID: PMC9572823 DOI: 10.3390/jcm11195712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Background and aim. Cancer and atrial fibrillation (AF) may be associated, and anticoagulation, either with vitamin K antagonists (VKAs) or direct oral anticoagulants (DOACs), is necessary to prevent thromboembolic events by reducing the risk of bleeding. The log incidence rate ratio (IRR) and 95% confidence interval were used as index statistics. Higgin’s I2 test was adopted to assess statistical inconsistencies by considering interstudy variations, defined by values ranging from 0 to 100%. I2 values of less than 40% are associated with very low heterogeneity among the studies; values between 40% and 75% indicate moderate heterogeneity, and those greater than 75% suggest severe heterogeneity. The aim of this meta-analysis was to compare the safety and efficacy of VKAs and DOACs in oncologic patients with AF. Methods. A meta-analysis was conducted comparing VKAs to DOACs in terms of thromboembolic events and bleeding. A meta-regression was conducted to investigate the differences in efficacy and safety between four different DOACs. Moreover, a sub-analysis on active-cancer-only patients was conducted. Results. A total of eight papers were included. The log incidence rate ratio (IRR) for thromboembolic events between the two groups was −0.69 (p < 0.005). The meta-regression did not reveal significant differences between the types of DOACs (p > 0.9). The Log IRR was −0.38 (p = 0.008) for ischemic stroke, −0.43 (p = 0.02) for myocardial infarction, −0.39 (p = 0.45) for arterial embolism, and −1.04 (p = 0.003) for venous thromboembolism. The log IRR for bleeding events was −0.43 (p < 0.005), and the meta-regression revealed no statistical difference (p = 0.7). The log IRR of hemorrhagic stroke, major bleeding, and clinically relevant non-major bleeding between the VKA and DOAC groups was −0.51 (p < 0.0001), −0.45 (p = 0.03), and 0.0045 (p = 0.97), respectively. Similar results were found in active-cancer patients for all the endpoints except for clinically-relevant non-major bleedings. Conclusions. DOACs showed better efficacy and safety outcomes than VKAs. No difference was found between types of DOACs.
Collapse
Affiliation(s)
- Iris Parrini
- Division of Cardiology, Mauriziano Hospital, 10128 Turin, Italy
- Correspondence:
| | - Fabiana Lucà
- Grande Ospedale Metropolitano, 89124 Reggio Calabria, Italy
| | | | - Gianmarco Parise
- Department of Cardiothoracic Surgery, Cardiovascular Research Institute, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Linda Renata Micali
- Department of Cardiothoracic Surgery, Cardiovascular Research Institute, Maastricht University, 6211 LK Maastricht, The Netherlands
| | | | - Mark La Meir
- University Hospital Brussels, 1050 Brussels, Belgium
| | | | - Michele Massimo Gulizia
- Cardiology Division, Ospedale Garibaldi-Nesima, Azienda di Rilievo Nazionale e Alta Specializzazione “Garibaldi”, 95126 Catania, Italy
| | - Sandro Gelsomino
- Department of Cardiothoracic Surgery, Cardiovascular Research Institute, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
20
|
Tufano A. Optimizing antithrombotic therapy for atrial fibrillation in cancer. Thromb Res 2022; 213 Suppl 1:S103-S106. [DOI: 10.1016/j.thromres.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 10/18/2022]
|
21
|
Lucà F, Parrini I, Abrignani MG, Rao CM, Piccioni L, Di Fusco SA, Ceravolo R, Bisceglia I, Riccio C, Gelsomino S, Colivicchi F, Gulizia MM. Management of Acute Coronary Syndrome in Cancer Patients: It's High Time We Dealt with It. J Clin Med 2022; 11:1792. [PMID: 35407399 PMCID: PMC8999526 DOI: 10.3390/jcm11071792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer patients have an increased risk of cardiovascular disease and, notably, a significant prevalence of acute coronary syndrome (ACS). It has been shown that an elevated presence of cardiovascular risk factors in this setting leads to an interaction between these two conditions, influencing their therapeutic strategies and contributing to higher mortality. Nonetheless, cancer patients have generally not been evaluated in ACS trials, so that the treatment in these cases is still not fully known. We reviewed the current literature and discussed the best management for these very high-risk patients. The treatment strategy must be tailored based on the cancer type and stage, balancing thrombotic and bleeding risks. When the prognosis is longer than six months, especially if a clinical instability coexists, patients with ACS and cancer should be referred for percutaneous coronary intervention (PCI) as soon as possible. Moreover, an invasive strategy should be preferred in STEMI patients as well as in NSTEMI patients who are considered as high risk. On the contrary, in clinically stable NSTEMI patients, a conservative non-invasive strategy could be adopted, especially in cases of a poor life expectancy and/or of high risk of bleeding. Drug-Eluting-Stents (DES) should be the first choice if an invasive strategy is adopted. Conservative therapy could instead be considered in cancer patients with more stable CAD at an increased risk of major bleeding complications. However, the duration of dual antiplatelet therapy (DAPT) with aspirin and clopidogrel is recommended, but it should be as short as possible, whereas triple antithrombotic therapy is non-advised because it significantly increases the risk of bleeding. ACS management among cancer patients should be based on an accurate evaluation of the risk of thrombosis and bleeding. Future studies focused on choosing optimal strategies in tumor patients with ACS should be performed to treat this subset of patients better.
Collapse
Affiliation(s)
- Fabiana Lucà
- Cardiology Department, Grande Ospedale Metropolitano, AO Bianchi Melacrino Morelli, 89129 Reggio Calabria, Italy;
| | - Iris Parrini
- Cardiology Department, Ospedale Mauriziano Umberto I, 10128 Torino, Italy;
| | | | - Carmelo Massimiliano Rao
- Cardiology Department, Grande Ospedale Metropolitano, AO Bianchi Melacrino Morelli, 89129 Reggio Calabria, Italy;
| | - Laura Piccioni
- Cardiology Department, Ospedale “G. Mazzini”, 64100 Teramo, Italy;
| | - Stefania Angela Di Fusco
- Clinical and Rehabilitation Cardiology Department, Presidio Ospedaliero San Filippo Neri, ASL Roma 1, 10128 Roma, Italy; (S.A.D.F.); (F.C.)
| | - Roberto Ceravolo
- Cardiology Department, Ospedale Lamezia Terme, 88046 Catanzaro, Italy;
| | - Irma Bisceglia
- Integrated Cardiology Services, Cardio-Thoracic-Vascular Department, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy;
| | - Carmine Riccio
- Cardiovascular Department, A.O.R.N. Sant’Anna e San Sebastiano, 81100 Caserta, Italy;
| | - Sandro Gelsomino
- Cardiothoracic Department, Maastricht University, 6221 Maastricht, The Netherlands;
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Department, Presidio Ospedaliero San Filippo Neri, ASL Roma 1, 10128 Roma, Italy; (S.A.D.F.); (F.C.)
| | - Michele Massimo Gulizia
- Cardiology Department, Azienda di Rilievo Nazionale e Alta Specializzazione “Garibaldi”, 95126 Catania, Italy;
- Fondazione per il Tuo Cuore-Heart Care Foundation, 50121 Firenze, Italy
| | | |
Collapse
|
22
|
Abstract
The association between venous thrombosis and malignancy, having typical features of a paraneoplastic syndrome, has been established for a century. Currently, it is recognized that arterial thromboembolism (ATE) may also behave as a paraneoplastic syndrome. Recent matched cohort studies, systematic reviews, and observational studies concur in showing an increased incidence of acute coronary events, ischemic stroke, accelerated peripheral arterial disease, and in-stent thrombosis during the 6-month period before cancer diagnosis, peaking for 30 days immediately before cancer diagnosis. Cancer patients with ATE are at higher risk of in-hospital and long-term mortality as compared with noncancer patients. In the present review, we focus on the epidemiology, clinical variants and presentation, morbidity, mortality, primary and secondary prevention, and treatment of cancer-associated ATE. The awareness that cancer can be a risk factor for ATE and that cancer therapy can initiate cardiovascular complications make it mandatory to identify high-risk patients, modify preexistent cardiovascular risk factors, and adopt effective antithrombotic prophylaxis. For ATE prophylaxis, modifiable patient-related risk factors and oncology treatment-related factors are levers for intervention. Statins and platelet antiaggregants have been studied, but their efficacy for prevention of cancer-associated ATE remains to be demonstrated. Results of revascularization procedures for cancer-associated ATE are worse than for ATE in noncancer patients. It is important that a multidisciplinary approach is adopted for making informed decisions, by involving the vascular surgeon, interventional radiologist, oncologist, and palliative medicine, as well as the patients and their family.
Collapse
Affiliation(s)
- Jochanan E Naschitz
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Comprehensive Geriatric Ward, Bait Balev Nesher, Nesher, Israel
| |
Collapse
|
23
|
Suleiman L, Muataz Y, Négrier C, Boukerche H. Protein S-mediated signal transduction pathway regulates lung cancer cell proliferation, migration and angiogenesis. Hematol Oncol Stem Cell Ther 2021:S1658-3876(21)00111-4. [PMID: 34906536 DOI: 10.1016/j.hemonc.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/11/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE/BACKGROUND Protein S (PS; encoded by the PROS1 gene), a key vitamin K-dependent anticoagulant protein, is emerging as a key structural and functional protein that is overexpressd in various malignancies, but how PS signals to promote lung cancer progression is unclear. METHODS We used immortalized, nontumorigenic human lung epithelial cell line NL-20, A549 cells as experimental cellular models for lung cancer, and human microvascular endothelial cells (HMEC-1) as a model system for angiogenesis. A loss- and gain-of-function approach was then used to analyze the role of tumor-derived PS and their natural TAM receptors Tyro3 and MerTK in regulating cell proliferation, migration, anchorage-independent growth, and capillary-like tube formation, all prominent attributes of the metastatic phenotype of tumor cells. RESULTS Evidence is now provided that regulation of PROS1 gene expression using either stable cell lines expressing lentiviral-short hairpin RNA (shRNAs) or a replication-incompetent adenovirus alters the phosphorylation of several major signaling pathways, including Erk, PKB/Akt, p38, and focal adhesion kinase (FAK), and modulates PS-dependent Tyro3- and MerTK-mediated cell migration, proliferation, and anchorage-independent growth of lung cancer cells, and endothelial cell capillary-like tube formation. CONCLUSION These finding suggest that the PS-Tyro3 and -MerTK axis mediates important signaling pathways to promote lung cancer progression. Genetic inhibition of endogenous PS may serve as a promising target for anticancer drug development.
Collapse
Affiliation(s)
- Lutfi Suleiman
- Hemostasis and Cancer Unit EA 4609, University Claude Bernard, Lyon 1, France
| | - Yacoub Muataz
- Hemostasis and Cancer Unit EA 4609, University Claude Bernard, Lyon 1, France
| | - Claude Négrier
- Hemostasis and Cancer Unit EA 4609, University Claude Bernard, Lyon 1, France
| | - Habib Boukerche
- Hemostasis and Cancer Unit EA 4609, University Claude Bernard, Lyon 1, France.
| |
Collapse
|
24
|
Castle J, Blower E, Kirwan CC. Update on the role of circulating tumour cells in cancer-associated thrombosis. THROMBOSIS UPDATE 2021. [DOI: 10.1016/j.tru.2021.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
25
|
Yu L, Guo Y, Chang Z, Zhang D, Zhang S, Pei H, Pang J, Zhao ZJ, Chen Y. Bidirectional Interaction Between Cancer Cells and Platelets Provides Potential Strategies for Cancer Therapies. Front Oncol 2021; 11:764119. [PMID: 34722319 PMCID: PMC8551800 DOI: 10.3389/fonc.2021.764119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets are essential components in the tumor microenvironment. For decades, clinical data have demonstrated that cancer patients have a high risk of thrombosis that is associated with adverse prognosis and decreased survival, indicating the involvement of platelets in cancer progression. Increasing evidence confirms that cancer cells are able to induce production and activation of platelets. Once activated, platelets serve as allies of cancer cells in tumor growth and metastasis. They can protect circulating tumor cells (CTCs) against the immune system and detachment-induced apoptosis while facilitating angiogenesis and tumor cell adhesion and invasion. Therefore, antiplatelet agents and platelet-based therapies should be developed for cancer treatment. Here, we discuss the mechanisms underlying the bidirectional cancer-platelet crosstalk and platelet-based therapeutic approaches.
Collapse
Affiliation(s)
- Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shiqiang Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hanzhong Pei
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
26
|
Farrington L, Mortimore G. Chronic limb ischaemia: case study and clinical literature review. ACTA ACUST UNITED AC 2021; 30:846-851. [PMID: 34288743 DOI: 10.12968/bjon.2021.30.14.846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This article will discuss chronic limb ischaemia as the result of peripheral artery disease (PAD) using a case study. The patient's concurrent diagnosis of metastases meant clinical decision making was complex and treatment options were limited. PAD is the third most common clinical presentation of atherosclerosis after coronary artery disease and stroke. Although advances in radiological technology and biochemical screening offer the potential for earlier intervention and improved survival rates for patients with PAD, a review of the evidence suggests that commitment to more conservative approaches, such as exercise therapy and health promotion, could have more sustainable, longer-term benefits for patients with chronic limb ischaemia. The therapeutic nature of the nurse-patient relationship makes nurses ideally placed for encouraging lifestyle changes and signposting to support services. Active participation from the patient is imperative for any potential modifications, which should be individualised as part of a holistic care plan, to ensure patient engagement and compliance. Therefore emphasis should remain on the management and prevention of modifiable risk factors, for which the nurse's role is an integral part to ensure success.
Collapse
Affiliation(s)
- Liz Farrington
- Trainee Advanced Clinical Practitioner, University Hospitals of Derby and Burton NHS Foundation Trust
| | - Gerri Mortimore
- Senior Lecturer in Advanced Practice, College of Health, Psychology and Social Care, University of Derby
| |
Collapse
|
27
|
Illig KA, Gober L. Invited Review: Optimal Management of Upper Extremity DVT: Is Venous Thoracic Outlet Syndrome Underrecognized? J Vasc Surg Venous Lymphat Disord 2021; 10:514-526. [PMID: 34352421 DOI: 10.1016/j.jvsv.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND UEDVT accounts for approximately 10% of all cases of deep vein thrombosis. In the most widely referenced general review of deep vein thrombosis (DVT the American Academy of Chest Physicians essentially recommend that upper extremity DVT (UEDVT) essentially be treated identically to that of lower extremity DVT, with anticoagulation being the default therapy. Unfortunately, the medical literature does not well differentiate between DVT in the arm and the leg, and does not emphasize the effects of the costoclavicular junction (CCJ) and the lack of effect of gravity, to the point where UEDVT due to extrinsic bony compression at the CCJ is classified as "primary." METHODS Comprehensive literature review, beginning with both Medline and Google Scholar searches in addition to collected references, then following relevant citations within the initial manuscripts studied. Both surgical and medical journals were explored RESULTS: It is proposed that effort thrombosis be classified as a secondary cause of UEDVT, limiting the definition of primary to that which is truly idiopathic. Other causes of secondary UEDVT include catheter- and pacemaker-related thrombosis (the most common cause, but often asymptomatic), thrombosis related to malignancy and hypercoagulable conditions, and the rare case of thrombosis due to compression of the vein by a focal malignancy or other space-occupying lesion. In true primary UEDVT and in those secondary cases where no mechanical cause is present or can be corrected, anticoagulation remains the treatment of choice, usually for three months or the duration of a needed catheter. However, evidence suggests that many cases of effort thrombosis are likely missed by a too-narrow adherence to this protocol. CONCLUSIONS Because proper treatment of effort thrombosis drops the long-term symptomatic status rate from 50% to almost zero and these are healthy patients with a long lifespan ahead, it is proposed that a more aggressive attitude toward thrombolysis be followed in any patient who has a reasonable degree of suspicion for venous thoracic outlet syndrome.
Collapse
|
28
|
Erratum. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2021; 30:851. [PMID: 34288756 DOI: 10.12968/bjon.2021.30.14.851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
29
|
Preoperative plasma D-dimer independently predicts survival in patients with pancreatic ductal adenocarcinoma undergoing radical resection. World J Surg Oncol 2021; 19:166. [PMID: 34107980 PMCID: PMC8191214 DOI: 10.1186/s12957-021-02281-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Background Elevated plasma D-dimer levels have been reported as an unfavorable prognostic indicator in many solid tumors. However, there are limited relevant studies in pancreatic cancer patients following radical surgery, and the clinical significance remains controversial. The aim of this study was to investigate the clinical and prognostic significance of preoperative plasma D-dimer in patients with pancreatic ductal adenocarcinoma (PDAC) undergoing resection. Methods A retrospective analysis was performed on all patients who consecutively underwent radical surgery for PDAC by laparotomy or robotic surgery from December 2011 to December 2018. Baseline clinicopathologic characteristics, preoperative laboratory parameters, and follow-up information were collected. Univariate and multivariate analyses were performed to analyze the prognostic value of preoperative plasma D-dimer. Results Among 1351 patients, elevated preoperative plasma D-dimer levels (≥ 0.55 ng/mL) were found in 417 (30.9%) patients. Three hundred twelve (23.09%) underwent minimally invasive robotic pancreatectomy. The median overall survival (OS) of patients with elevated D-dimer levels was 6.3 months shorter than that of patients with normal D-dimer levels (15.0 months vs 21.3 months, p < 0.001). Multivariate analysis showed that elevated D-dimer levels independently predicted poorer OS (hazard ratio, 1.33; 95% confidence interval, 1.17-1.51, p < 0.001). Subgroup analysis demonstrated that D-dimer was a reliable prognostic factor in patients who underwent R0 resection. In addition, integration of D-dimer, carbohydrate antigen 19-9 (CA19-9), and NLR provided a better prognostic model for PDAC patients before operation. Conclusion An elevated preoperative plasma D-dimer level was a reliable independent prognostic factor for OS in patients with PDAC undergoing resection. Combination of D-dimer, CA19-9, and NLR can enhance the prognostic accuracy before operation. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02281-8.
Collapse
|
30
|
Profiles of immune infiltration and its relevance to survival outcome in meningiomas. Biosci Rep 2021; 40:223848. [PMID: 32378707 PMCID: PMC7225412 DOI: 10.1042/bsr20200538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/26/2022] Open
Abstract
Tumor-infiltrating immune cells play a decisive part in prognosis and survival. Until now, previous researches have not made clear about the diversity of cell types involved in the immune response. The objective of this work was to confirm the composition of tumor-infiltrating immune cells and their correlation with prognosis in meningiomas based on a metagene approach (known as CIBERSORT) and online databases. A total of 22 tumor-infiltrating immune cells were detected to determine the relationship between the immune infiltration pattern and survival. The proportion of M2 macrophages was more abundant in 68 samples, reaching more than 36%. Univariate Cox regression analysis displayed that the proportion of dendritic cells was obviously related to prognosis. Hierarchical clustering analysis identified two clusters by the method of within sum of squares errors, which exhibited different infiltrating immune cell composition and survival. To summarize, our results indicated that proportions of tumor-infiltrating immune cells as well as cluster patterns were associated with the prognosis, which offered clinical significance for research of meningiomas.
Collapse
|
31
|
Darwish NHE, Godugu K, Mousa SA. Sulfated non-anticoagulant low molecular weight heparin in the prevention of cancer and non-cancer associated thrombosis without compromising hemostasis. Thromb Res 2021; 200:109-114. [PMID: 33582600 DOI: 10.1016/j.thromres.2021.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Cancer-associated thrombosis (CAT) accounts for about 20% of all cases of Venous Thromboembolism (VTE). Tissue factor (TF) is documented to be highly expressed on cancer cells and pathological angiogenic endothelial cells. Here, we used a novel oxidized sulfated ultra-LMWH, S-NACH, which is devoid of anti-factor Xa and IIa activities with limited to no systemic anticoagulant effects. This sulfated form has enhanced binding to vascular endothelial cells (EC) and releases and potentiates the action of tissue factor pathway inhibitor (TFPI). S-NACH binds with high affinity to EC, releases and binds to EC TFPI, and promotes vascular antithrombotic effect with limited to no risk of bleeding complications. MATERIALS AND METHODS We investigated the effects of S-NACH on clot kinetics in vitro and in vivo. Also, we investigated the effects of S-NACH on CAT mediated by human acute leukemia cells (K562) and human pancreatic cancer cells (SUIT2). RESULTS S-NACH was associated with ~3-fold increase of TFPI 2 levels within 3 h. Also, S-NACH reversed the hypercoagulability state that is associated with cancer cells in vitro. In vivo, S-NACH at 20 mg/kg subcutaneously (SC) had no effect on bleeding time compared to both tinzaparin and enoxaparin at 5 mg/kg SC. S-NACH did not show any anti-IIa or anti-Xa activities in comparison to tinzaparin and enoxaparin (p < 0.001). CONCLUSION Data suggest the importance of S-NACH through its EC binding, EC TFPI release and its interaction with TFPI in enhancing its activity in the prevention of cancer and non-cancer associated thrombosis with limited to no bleeding complications.
Collapse
Affiliation(s)
- Noureldien H E Darwish
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA; Hematology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
32
|
Giampieri R, Cantini L, Giglio E, Bittoni A, Lanese A, Crocetti S, Pecci F, Copparoni C, Meletani T, Lenci E, Lupi A, Baleani MG, Berardi R. Impact of Polypharmacy for Chronic Ailments in Colon Cancer Patients: A Review Focused on Drug Repurposing. Cancers (Basel) 2020; 12:cancers12102724. [PMID: 32977434 PMCID: PMC7598185 DOI: 10.3390/cancers12102724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer is characterized by high incidence worldwide. Despite increased awareness and early diagnosis thanks to screening programmes, mortality remains high, particularly for patients with metastatic involvement. Immune checkpoint inhibitors or poly (ADP-ribose) polymerase (PARP)-inhibitors have met with disappointing results when used in this setting, opposed to other malignancies. New drugs with different mechanisms of action are needed in this disease. Drug repurposing might offer new therapeutic options, as patients with metastatic colorectal cancer often share risk factors for other chronic diseases and thus frequently are on incidental therapy with these drugs. The aim of this review is to summarise the published results of the activity of drugs used to treat chronic medications in patients affected by colorectal cancer. We focused on antihypertensive drugs, Non-Steroid Anti-inflammatory Drugs (NSAIDs), metformin, antidepressants, statins and antibacterial antibiotics. Our review shows that there are promising results with beta blockers, statins and metformin, whereas data concerning antidepressants and antibacterial antibiotics seem to show a potentially harmful effect. It is hoped that further prospective trials that take into account the role of these drugs as anticancer medications are conducted.
Collapse
|
33
|
Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020; 12:E1632. [PMID: 32575608 PMCID: PMC7352430 DOI: 10.3390/cancers12061632] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly, EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to their heterogeneity. Here, we review major EMT-driven properties that may help hybrid Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
Collapse
Affiliation(s)
- Anthony Genna
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Aline M. Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Amélie V. Villard
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Charles Pottier
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium
| | - Julien Ancel
- CHU (Centre Hopitalier Universitaire) de Reims, Hôpital Maison Blanche, Service de Pneumologie, 51092 Reims, France;
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
| | - Myriam Polette
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
- CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, 51092 Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| |
Collapse
|
34
|
Augustine TN, Pather K, Mak D, Klonaros D, Xulu K, Dix-Peek T, Duarte R, van der Spuy WJ. Ex vivo interaction between blood components and hormone-dependent breast cancer cells induces alterations associated with epithelial-mesenchymal transition and thrombosis. Ultrastruct Pathol 2020; 44:262-272. [PMID: 32252581 DOI: 10.1080/01913123.2020.1749197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prevalence of breast cancer is steadily increasing with metastasis and thromboembolic complications identified as the most common causes of death. The acquisition of an aggressive phenotype by hormone-dependent breast cancers is mediated by Transforming Growth Factor Beta 1 (TGF-β1) expression and is associated with epithelial-mesenchymal transition (EMT) and, potentially, increased propensity for thrombosis. We investigated this phenomenon by assessing the effect of platelet-rich plasma (PRP) and whole blood (WB) on parameters of EMT and hypercoagulation in vitro. MCF-7 breast cancer cells were cultured under standard conditions, followed by co-culture with PRP or WB. Cells were processed for real-time PCR (TGF-β1 and vimentin), electron microscopy or immunocytochemistry (TGF-β1). Micrographs were qualitatively assessed, and real-time PCR data analyzed with PAST Statistical Software. The addition of blood components heightened TGF-β1 immunolocalization and significantly increased corresponding gene expression. Both PRP and WB significantly increased vimentin expression and induced a shape change from a typical epithelial phenotype to a spindle-shape morphology, indicative of EMT. Fibrin fiber, network and plaque formation indicated a hypercoagulatory environment. The results thus show that in preparation for hematogenous metastasis, hormone-dependent breast cancer cells assume an aggressive phenotype associated with EMT, simultaneously increasing the propensity for the formation of thrombo-emboli.
Collapse
Affiliation(s)
- T N Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - K Pather
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - D Mak
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - D Klonaros
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - K Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - T Dix-Peek
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - R Duarte
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| | - W J van der Spuy
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand , Johannesburg, South Africa
| |
Collapse
|
35
|
Vimentin prevents a miR-dependent negative regulation of tissue factor mRNA during epithelial-mesenchymal transitions and facilitates early metastasis. Oncogene 2020; 39:3680-3692. [PMID: 32152404 PMCID: PMC7190572 DOI: 10.1038/s41388-020-1244-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/31/2023]
Abstract
Epithelial-mesenchymal transitions (EMTs) are high-profile in the field of circulating tumor cells (CTCs). EMT-shifted CTCs are considered to encompass pre-metastatic subpopulations though underlying molecular mechanisms remain elusive. Our previous work identified tissue factor (TF) as an EMT-induced gene providing tumor cells with coagulant properties and supporting metastatic colonization by CTCs. We here report that vimentin, the type III intermediate filament considered a canonical EMT marker, contributes to TF regulation and positively supports coagulant properties and early metastasis. Different evidence further pointed to a new post-transcriptional regulatory mechanism of TF mRNA by vimentin: (1) vimentin silencing accelerated TF mRNA decay after actinomycin D treatment, reflecting TF mRNA stabilization, (2) RNA immunoprecipitation revealed enriched levels of TF mRNA in vimentin immunoprecipitate, (3) TF 3'-UTR-luciferase reporter vector assays implicated the 3'-UTR of TF mRNA in vimentin-dependent TF regulation, and (4) using different TF 3'UTR-luciferase reporter vectors mutated for potential miR binding sites and specific Target Site Blockers identified a key miR binding site in vimentin-dependent TF mRNA regulation. All together, these data support a novel mechanism by which vimentin interferes with a miR-dependent negative regulation of TF mRNA, thereby promoting coagulant activity and early metastasis of vimentin-expressing CTCs.
Collapse
|
36
|
Ghosh MK, Chakraborty D, Sarkar S, Bhowmik A, Basu M. The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduct Target Ther 2019; 4:42. [PMID: 31637020 PMCID: PMC6799849 DOI: 10.1038/s41392-019-0075-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Glioma and cerebral ischemic stroke are two major events that lead to patient death worldwide. Although these conditions have different physiological incidences, ~10% of ischemic stroke patients develop cerebral cancer, especially glioma, in the postischemic stages. Additionally, the high proliferation, venous thrombosis and hypercoagulability of the glioma mass increase the significant risk of thromboembolism, including ischemic stroke. Surprisingly, these events share several common pathways, viz. hypoxia, cerebral inflammation, angiogenesis, etc., but the proper mechanism behind this co-occurrence has yet to be discovered. The hypercoagulability and presence of the D-dimer level in stroke are different in cancer patients than in the noncancerous population. Other factors such as atherosclerosis and coagulopathy involved in the pathogenesis of stroke are partially responsible for cancer, and the reverse is also partially true. Based on clinical and neurosurgical experience, the neuronal structures and functions in the brain and spine are observed to change after a progressive attack of ischemia that leads to hypoxia and atrophy. The major population of cancer cells cannot survive in an adverse ischemic environment that excludes cancer stem cells (CSCs). Cancer cells in stroke patients have already metastasized, but early-stage cancer patients also suffer stroke for multiple reasons. Therefore, stroke is an early manifestation of cancer. Stroke and cancer share many factors that result in an increased risk of stroke in cancer patients, and vice-versa. The intricate mechanisms for stroke with and without cancer are different. This review summarizes the current clinical reports, pathophysiology, probable causes of co-occurrence, prognoses, and treatment possibilities.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Dipankar Chakraborty
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Sibani Sarkar
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata, 700 026 India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas, 743372 India
| |
Collapse
|
37
|
Garnett ER, Lomax JE, Mohammed BM, Gailani D, Sheehan JP, Raines RT. Phenotype of ribonuclease 1 deficiency in mice. RNA (NEW YORK, N.Y.) 2019; 25:921-934. [PMID: 31053653 PMCID: PMC6633200 DOI: 10.1261/rna.070433.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/27/2019] [Indexed: 05/06/2023]
Abstract
Biological roles for extracellular RNA (eRNA) have become apparent. For example, eRNA can induce contact activation in blood via activation of the plasma proteases factor XII (FXII) and factor XI (FXI). We sought to reveal the biological role of the secretory enzyme ribonuclease 1 (RNase 1) in an organismal context by generating and analyzing RNase 1 knockout (Rnase1-/-) mice. We found that these mice are viable, healthy, and fertile, though larger than Rnase1+/+ mice. Rnase1-/- plasma contains more RNA than does the plasma of Rnase1+/+ mice. Moreover, the plasma of Rnase1-/- mice clots more rapidly than does wild-type plasma. This phenotype appeared to be due to increased levels of the active form of FXII (FXIIa) in the plasma of Rnase1-/- mice compared to Rnase1+/+ mice, and is consistent with the known effects of eRNA on FXII activation. The apparent activity of FXI in the plasma of Rnase1-/- mice was 1000-fold higher when measured in an assay triggered by a low concentration of tissue factor than in assays based on recalcification, consistent with eRNA enhancing FXI activation by thrombin. These findings suggest that one of the physiological functions of RNase 1 is to degrade eRNA in blood plasma. Loss of this function facilitates FXII and FXI activation, which could have effects on inflammation and blood coagulation. We anticipate that Rnase1-/- mice will be a useful tool for evaluating other hypotheses about the functions of RNase 1 and of eRNA in vivo.
Collapse
Affiliation(s)
- Emily R Garnett
- Graduate Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jo E Lomax
- Graduate Program Molecular and Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Bassem M Mohammed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - John P Sheehan
- Department of Medicine/Hematology-Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
38
|
Zarà M, Guidetti GF, Camera M, Canobbio I, Amadio P, Torti M, Tremoli E, Barbieri SS. Biology and Role of Extracellular Vesicles (EVs) in the Pathogenesis of Thrombosis. Int J Mol Sci 2019; 20:ijms20112840. [PMID: 31212641 PMCID: PMC6600675 DOI: 10.3390/ijms20112840] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are well-established mediators of cell-to-cell communication. EVs can be released by every cell type and they can be classified into three major groups according to their biogenesis, dimension, density, and predominant protein markers: exosomes, microvesicles, and apoptotic bodies. During their formation, EVs associate with specific cargo from their parental cell that can include RNAs, free fatty acids, surface receptors, and proteins. The biological function of EVs is to maintain cellular and tissue homeostasis by transferring critical biological cargos to distal or neighboring recipient cells. On the other hand, their role in intercellular communication may also contribute to the pathogenesis of several diseases, including thrombosis. More recently, their physiological and biochemical properties have suggested their use as a therapeutic tool in tissue regeneration as well as a novel option for drug delivery. In this review, we will summarize the impact of EVs released from blood and vascular cells in arterial and venous thrombosis, describing the mechanisms by which EVs affect thrombosis and their potential clinical applications.
Collapse
Affiliation(s)
- Marta Zarà
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | | | - Marina Camera
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy.
- Unit of Cell and Molecular Biology in Cardiovascular Diseases, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Patrizia Amadio
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Mauro Torti
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Elena Tremoli
- Scientific Direction, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| | - Silvia Stella Barbieri
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy.
| |
Collapse
|
39
|
Korda D, Doros A, Piros L, Gerlei Z, Haboub-Sandil A, Mándli T, Fazakas J, Deák ÁP, Máthé Z. Liver Transplant for Metastatic Neuroendocrine Tumors: A Single-Center Experience in Hungary. Transplant Proc 2019; 51:1251-1253. [DOI: 10.1016/j.transproceed.2019.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
40
|
Wong BS, Shea DJ, Mistriotis P, Tuntithavornwat S, Law RA, Bieber JM, Zheng L, Konstantopoulos K. A Direct Podocalyxin-Dynamin-2 Interaction Regulates Cytoskeletal Dynamics to Promote Migration and Metastasis in Pancreatic Cancer Cells. Cancer Res 2019; 79:2878-2891. [PMID: 30975647 DOI: 10.1158/0008-5472.can-18-3369] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/18/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
The sialoglycoprotein podocalyxin is absent in normal pancreas but is overexpressed in pancreatic cancer and is associated with poor clinical outcome. Here, we investigate the role of podocalyxin in migration and metastasis of pancreatic adenocarcinomas using SW1990 and Pa03c as cell models. Although ezrin is regarded as a cytoplasmic binding partner of podocalyxin that regulates actin polymerization via Rac1 or RhoA, we did not detect podocalyxin-ezrin association in pancreatic cancer cells. Moreover, depletion of podocalyxin did not alter actin dynamics or modulate Rac1 and RhoA activities in pancreatic cancer cells. Using mass spectrometry, bioinformatics analysis, coimmunoprecipitation, and pull-down assays, we discovered a novel, direct binding interaction between the cytoplasmic tail of podocalyxin and the large GTPase dynamin-2 at its GTPase, middle, and pleckstrin homology domains. This podocalyxin-dynamin-2 interaction regulated microtubule growth rate, which in turn modulated focal adhesion dynamics and ultimately promoted efficient pancreatic cancer cell migration via microtubule- and Src-dependent pathways. Depletion of podocalyxin in a hemispleen mouse model of pancreatic cancer diminished liver metastasis without altering primary tumor size. Collectively, these findings reveal a novel mechanism by which podocalyxin facilitates pancreatic cancer cell migration and metastasis. SIGNIFICANCE: These findings reveal that a novel interaction between podocalyxin and dynamin-2 promotes migration and metastasis of pancreatic cancer cells by regulating microtubule and focal adhesion dynamics.
Collapse
Affiliation(s)
- Bin Sheng Wong
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland.,Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland
| | - Daniel J Shea
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland.,Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland
| | - Soontorn Tuntithavornwat
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Robert A Law
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Jake M Bieber
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Lei Zheng
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland. .,Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, Maryland.,Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
41
|
Abstract
The clinical utility of tissue biopsies in cancer management will continue to expand, especially with the evolving role of targeted therapies. "Liquid biopsy" refers to testing a patient's biofluid samples such as blood or urine to detect tumor-derived molecules and cells that can be used diagnostically and prognostically in the assessment of cancer. Many proof-of-concept and pilot studies have shown the clinical potential of liquid biopsies as diagnostic and prognostic markers which would provide a surrogate for the conventional "solid biopsy". In this review, we focus on three methods of liquid biopsy-circulating tumor cells, extracellular vesicles, and circulating tumor DNA-to provide a landscape view of their clinical applicability in cancer management and research.
Collapse
Affiliation(s)
- Matthew Scarlotta
- 1 Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Cem Simsek
- 2 Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Amy K Kim
- 2 Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
42
|
Mitrugno A, Tassi Yunga S, Sylman JL, Zilberman-Rudenko J, Shirai T, Hebert JF, Kayton R, Zhang Y, Nan X, Shatzel JJ, Esener S, Duvernay MT, Hamm HE, Gruber A, Williams CD, Takata Y, Armstrong R, Morgan TK, McCarty OJT. The role of coagulation and platelets in colon cancer-associated thrombosis. Am J Physiol Cell Physiol 2018; 316:C264-C273. [PMID: 30462538 DOI: 10.1152/ajpcell.00367.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer-associated thrombosis is a common first presenting sign of malignancy and is currently the second leading cause of death in cancer patients after their malignancy. However, the molecular mechanisms underlying cancer-associated thrombosis remain undefined. In this study, we aimed to develop a better understanding of how cancer cells affect the coagulation cascade and platelet activation to induce a prothrombotic phenotype. Our results show that colon cancer cells trigger platelet activation in a manner dependent on cancer cell tissue factor (TF) expression, thrombin generation, activation of the protease-activated receptor 4 (PAR4) on platelets and consequent release of ADP and thromboxane A2. Platelet-colon cancer cell interactions potentiated the release of platelet-derived extracellular vesicles (EVs) rather than cancer cell-derived EVs. Our data show that single colon cancer cells were capable of recruiting and activating platelets and generating fibrin in plasma under shear flow. Finally, in a retrospective analysis of colon cancer patients, we found that the number of venous thromboembolism events was 4.5 times higher in colon cancer patients than in a control population. In conclusion, our data suggest that platelet-cancer cell interactions and perhaps platelet procoagulant EVs may contribute to the prothrombotic phenotype of colon cancer patients. Our work may provide rationale for targeting platelet-cancer cell interactions with PAR4 antagonists together with aspirin and/or ADP receptor antagonists as a potential intervention to limit cancer-associated thrombosis, balancing safety with efficacy.
Collapse
Affiliation(s)
- Annachiara Mitrugno
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland, Oregon.,Division of Hematology & Medical Oncology, Oregon Health & Science University , Portland, Oregon
| | - Samuel Tassi Yunga
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland, Oregon.,Knight Cancer Institute, Oregon Health & Science University , Portland, Oregon.,Cancer Early Detection & Advanced Research Center, Oregon Health & Science University , Portland, Oregon
| | - Joanna L Sylman
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland, Oregon.,VA Palo Alto Health Care System, Palo Alto, California.,Canary Center at Stanford, Department of Radiology, Stanford University School of Medicine , Stanford, California
| | - Jevgenia Zilberman-Rudenko
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Toshiaki Shirai
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Jessica F Hebert
- Department of Pathology, Oregon Health & Science University , Portland, Oregon
| | - Robert Kayton
- Department of Pathology, Oregon Health & Science University , Portland, Oregon
| | - Ying Zhang
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Xiaolin Nan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Joseph J Shatzel
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland, Oregon.,Division of Hematology & Medical Oncology, Oregon Health & Science University , Portland, Oregon
| | - Sadik Esener
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland, Oregon.,Knight Cancer Institute, Oregon Health & Science University , Portland, Oregon.,Cancer Early Detection & Advanced Research Center, Oregon Health & Science University , Portland, Oregon
| | - Matthew T Duvernay
- Department of Pharmacology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University School of Medicine , Nashville, Tennessee
| | - András Gruber
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland, Oregon
| | | | - Yumie Takata
- College of Public Health & Human Science, Oregon State University , Corvallis, Oregon
| | - Randall Armstrong
- Knight Cancer Institute, Oregon Health & Science University , Portland, Oregon.,Cancer Early Detection & Advanced Research Center, Oregon Health & Science University , Portland, Oregon
| | - Terry K Morgan
- Department of Pathology, Oregon Health & Science University , Portland, Oregon
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University , Portland, Oregon.,Division of Hematology & Medical Oncology, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
43
|
Ponert JM, Gockel LM, Henze S, Schlesinger M. Unfractionated and Low Molecular Weight Heparin Reduce Platelet Induced Epithelial-Mesenchymal Transition in Pancreatic and Prostate Cancer Cells. Molecules 2018; 23:molecules23102690. [PMID: 30347648 PMCID: PMC6222876 DOI: 10.3390/molecules23102690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 12/17/2022] Open
Abstract
The interaction with platelets is of crucial importance for tumor cells passing through hematogenous metastasis. Platelets protect cancer cells from immune surveillance and exhibit many other prometastatic effects. Notably, platelets can change the epithelial tumor phenotype, a process termed epithelial-mesenchymal transition (EMT), which confers stem cell-like properties onto tumor cells associated with an increased motility and drug resistance. The aim of the study is to investigate the impact of heparin on the platelet induced EMT program in pancreatic and prostate tumor cells. Platelet activation and interaction with cancer cells were determined by static adhesion assays. Applying ELISAs, the platelet release of EMT inducing mediators was quantified. EMT marker protein expression by tumor cells was explored by western blot and qPCR. Our data show that different tumor cell entities have different platelet binding capacities and also that a weak interaction is sufficient to change tumor cell phenotype. Additionally, unfractionated heparin (UFH) as well as low molecular weight heparin (LMWH) reduced tumor cell platelet interaction. Subsequently, attenuated platelet-derived mediator release resulted in reduced EMT marker protein and transcription factor expression by the cancer cells and decreased cell migration. These data suggest that heparin reduces platelet induced EMT program and prevents the formation of cancer cells with stem cell-like properties. This additional mechanism argues for the use of heparin in oncological applications.
Collapse
Affiliation(s)
- Jan Moritz Ponert
- Department of Pharmacy, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| | - Lukas Maria Gockel
- Department of Pharmacy, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| | - Svenja Henze
- Department of Pharmacy, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| | - Martin Schlesinger
- Department of Pharmacy, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
44
|
Cowman J, Richter L, Walsh R, Keegan N, Tinago W, Ricco AJ, Hennessy BT, Kenny D, Dunne E. Dynamic platelet function is markedly different in patients with cancer compared to healthy donors. Platelets 2018; 30:737-742. [PMID: 30252557 DOI: 10.1080/09537104.2018.1513475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite a fivefold increased risk of thromboembolism in patients with cancer, the mechanism of arterial thromboembolism is poorly understood. To address this, we investigated platelet function in cancer patients and healthy controls using an assay that mimics the arterial vasculature. Blood samples from cancer patients (n = 36) and healthy controls (n = 22) were perfused through custom-made parallel-plate flow chambers coated with von Willebrand factor (VWF) under arterial shear (1,500 s-1). Multiparameter measurements of platelet interactions with the immobilized VWF surface were recorded by digital-image microscopy and analyzed using custom-designed platelet-tracking software. Six measured parameters that characterize in detail the surface motion and surface binding of several hundred platelets per blood sample differed significantly in those with cancer from the healthy donors. In particular, it was found that patients with cancer had decreased numbers of platelets interacting, translocating and adhering to VWF. There were also reductions in the speed and distances that platelets traveled on VWF in comparison to healthy controls. Platelet function differed between those with early-stage cancer compared to those with later stage cancer. Patients with advanced cancer had an increased number of platelets stably adhering to VWF and greater platelet surface coverage after a given time of interaction. To the best of our knowledge, our results demonstrate for the first time that dynamic platelet function is markedly different in patients with cancer compared to healthy donors.
Collapse
Affiliation(s)
- Jonathan Cowman
- a Molecular and Cellular Therapeutics , The Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Louis Richter
- a Molecular and Cellular Therapeutics , The Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Roisin Walsh
- a Molecular and Cellular Therapeutics , The Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Niamh Keegan
- b Department of Medical Oncology , Beaumont Hospital , Dublin , Ireland
| | - Willard Tinago
- c HIV Molecular Research Group , University College Dublin , Dublin , Ireland
| | - Antonio J Ricco
- d The Biomedical Diagnostics Institute, Dublin City University , Dublin , Ireland
| | - Bryan T Hennessy
- b Department of Medical Oncology , Beaumont Hospital , Dublin , Ireland
| | - Dermot Kenny
- a Molecular and Cellular Therapeutics , The Royal College of Surgeons in Ireland , Dublin , Ireland
| | - Eimear Dunne
- a Molecular and Cellular Therapeutics , The Royal College of Surgeons in Ireland , Dublin , Ireland
| |
Collapse
|
45
|
Li W, Khan M, Mao S, Feng S, Lin JM. Advances in tumor-endothelial cells co-culture and interaction on microfluidics. J Pharm Anal 2018; 8:210-218. [PMID: 30140484 PMCID: PMC6104288 DOI: 10.1016/j.jpha.2018.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 01/10/2023] Open
Abstract
The metastasis in which the cancer cells degrade the extracellular matrix (ECM) and invade to the surrounding and far tissues of the body is the leading cause of mortality in cancer patients. With a lot of advancement in the field, yet the biological cause of metastasis are poorly understood. The microfluidic system provides advanced technology to reconstruct a variety of in vivo-like environment for studying the interactions between tumor cells (TCs) and endothelial cells (ECs). This review gives a brief account of both two-dimensional models and three-dimensional microfluidic systems for the analysis of TCs-ECs co-culture as well as their applications to anti-cancer drug screening. Furthermore, the advanced methods for analyzing cell-to-cell interactions at single-cell level were also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Burbury K, MacManus MP. The coagulome and the oncomir: impact of cancer-associated haemostatic dysregulation on the risk of metastasis. Clin Exp Metastasis 2018; 35:237-246. [PMID: 29492795 DOI: 10.1007/s10585-018-9875-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
Patients with cancer are at high risk of both thromboembolic and haemorrhagic events during the course of their disease. The pathogenesis of haemostatic dysfunction in cancer is complex and involves the interplay of multiple factors. There is growing evidence that interactions between malignancies and the coagulation system are not random but can represent coordinated and clinically-significant adaptations that enhance tumour cell survival, proliferation and metastatic potential. A detailed understanding of the interactions between the haemostatic systems and the pathophysiology of metastasis may not only provide insight into strategies that could potentially reduce the incidence of thrombohaemorrhagic events and complications, but could also help design strategies that are capable of modifying tumour biology, progression and metastatic potential in ways that could enhance anticancer therapies and thereby improve overall survival.
Collapse
Affiliation(s)
- Kate Burbury
- Departments of Haematology, Peter MacCallum Cancer Centre, A'Beckett Street, Locked Bag 1, Melbourne, VIC, 8006, Australia. .,The University of Melbourne, Melbourne, Australia.
| | - Michael P MacManus
- Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,The University of Melbourne, Melbourne, Australia
| |
Collapse
|
47
|
Ponert JM, Schwarz S, Haschemi R, Müller J, Pötzsch B, Bendas G, Schlesinger M. The mechanisms how heparin affects the tumor cell induced VEGF and chemokine release from platelets to attenuate the early metastatic niche formation. PLoS One 2018; 13:e0191303. [PMID: 29346400 PMCID: PMC5773218 DOI: 10.1371/journal.pone.0191303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/01/2018] [Indexed: 11/18/2022] Open
Abstract
Metastasis is responsible for the majority of cancer associated fatalities. Tumor cells leaving the primary tumor and entering the blood flow immediately interact with platelets. Activated platelets contribute in different ways to cancer cell survival and proliferation, e.g. in formation of the early metastatic niche by release of different growth factors and chemokines. Here we show that a direct interaction between platelets and MV3 melanoma or MCF7 breast cancer cells induces platelet activation and a VEGF release in citrated plasma that cannot be further elevated by the coagulation cascade and generated thrombin. In contrast, the release of platelet-derived chemokines CXCL5 and CXCL7 depends on both, a thrombin-mediated platelet activation and a direct interaction between tumor cells and platelets. Preincubation of platelets with therapeutic concentrations of unfractionated heparin reduces the tumor cell initiated VEGF release from platelets. In contrast, tumor cell induced CXCL5 and CXCL7 release from platelets was not impacted by heparin pretreatment in citrated plasma. In defibrinated, recalcified plasma, on the contrary, heparin is able to reduce CXCL5 and CXCL7 release from platelets by thrombin inhibition. Our data indicate that different chemokines and growth factors in diverse platelet granules are released in tightly regulated processes by various trigger mechanisms. We show for the first time that heparin is able to reduce the mediator release induced by different tumor cells both in a contact and coagulation dependent manner.
Collapse
Affiliation(s)
- Jan Moritz Ponert
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Svenja Schwarz
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Reza Haschemi
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Jens Müller
- Institute for Experimental Hematology and Transfusion Medicine, University of Bonn Medical Centre, Bonn, Germany
| | - Bernd Pötzsch
- Institute for Experimental Hematology and Transfusion Medicine, University of Bonn Medical Centre, Bonn, Germany
| | - Gerd Bendas
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
48
|
|
49
|
Ordookhani A, Motazedi A, Burman KD. Thrombosis in Thyroid Cancer. Int J Endocrinol Metab 2018; 16:e57897. [PMID: 29696039 PMCID: PMC5903374 DOI: 10.5812/ijem.57897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/26/2017] [Accepted: 08/23/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The number of studies on venous thromboembolism (VTE) and thyroid cancer is very scarce and existing data are contradictory. This paper reviews VTE in thyroid cancer. METHODS The following words were used for a comprehensive literature review using MEDLINE database: Blood coagulation factors; thyroid hormones; blood coagulation tests; venous thromboembolism; receptors thyroid hormone; hemostasis; fibrinolysis; bleeding; blood coagulation disorders; thyroid neoplasms; Thyroid cancer, papillary; Thyroid cancer, follicular; Thyroid carcinoma, anaplastic; Thyroid cancer, Hurthle cell; Familial medullary thyroid carcinoma; venous thrombosis; Pulmonary embolism; Blood coagulation factors. The studies, which include any changes in hemostasis and thyroid cancer were included and reviewed. RESULTS Although few studies have shown a possible increase in VTE occurrence in thyroid cancer in patients ≥ 60 years old and in proximity to cancer diagnosis, other studies could not find any difference compared to general population. New thyroid cancer classification excluding common subtype(s) with benign nature, may affect the results of the future studies on association of VTE and thyroid cancer. CONCLUSIONS Prospective studies on the occurrence of VTE in various types and severities of thyroid cancer and in different age groups are warranted, as the results would affect clinical practice on the necessity of usage of anticoagulants in some thyroid cancer groups.
Collapse
Affiliation(s)
- Arash Ordookhani
- MD, Endocrine Section, Department of Internal Medicine, Providence Hospital, Washington, DC, 20017
| | - Abbas Motazedi
- MD, Endocrine Section, Department of Internal Medicine, Providence Hospital, Washington, DC, 20017
| | - Kenneth D. Burman
- MD, Endocrine Section, MedStar Washington Hospital Center, Washington, DC, 20010
| |
Collapse
|
50
|
Mitrugno A, Sylman JL, Rigg RA, Tassi Yunga S, Shatzel JJ, Williams CD, McCarty OJT. Carpe low-dose aspirin: the new anti-cancer face of an old anti-platelet drug. Platelets 2017; 29:773-778. [PMID: 29265902 DOI: 10.1080/09537104.2017.1416076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer metastasis is a dynamic process during which cancer cells separate from a primary tumor, migrate through the vessel wall into the bloodstream, and extravasate at distant sites to form secondary colonies. During this process, circulating tumor cells are subjected to shear stress forces from blood flow, and in contact with plasma proteins and blood cells of the immune and hemostatic system, including platelets. Many studies have shown an association between high platelet count and cancer metastasis, suggesting that platelets may play an occult role in tumorigenesis. This mini-review summarizes recent and emerging discoveries of mechanisms by which cancer cells activate platelets and the role of activated platelets in promoting tumor growth and metastasis. Moreover, the review discusses how aspirin has the potential for being clinically used as an adjuvant in cancer therapy.
Collapse
Affiliation(s)
- Annachiara Mitrugno
- a Department of Biomedical Engineering , Oregon Health & Science University, Portland, OR, USA.,b Cell, Developmental & Cancer Biology , Oregon Health & Science University, Portland, OR, USA.,c Division of Hematology & Medical Oncology , Oregon Health & Science University, Portland, OR, USA.,e Knight Cancer Institute, School of Medicine , Oregon Health & Science University , Portland , OR , USA
| | - Joanna L Sylman
- a Department of Biomedical Engineering , Oregon Health & Science University, Portland, OR, USA.,f VA Palo Alto Health Care System , Palo Alto , CA , USA.,g Department of Radiology, Canary Center at Stanford , Stanford University School of Medicine , Stanford , CA , USA
| | - Rachel A Rigg
- a Department of Biomedical Engineering , Oregon Health & Science University, Portland, OR, USA.,b Cell, Developmental & Cancer Biology , Oregon Health & Science University, Portland, OR, USA.,c Division of Hematology & Medical Oncology , Oregon Health & Science University, Portland, OR, USA
| | - Samuel Tassi Yunga
- d Cancer Early Detection & Advanced Research Center , Oregon Health & Science University, Portland, OR, USA.,e Knight Cancer Institute, School of Medicine , Oregon Health & Science University , Portland , OR , USA
| | - Joseph J Shatzel
- c Division of Hematology & Medical Oncology , Oregon Health & Science University, Portland, OR, USA.,e Knight Cancer Institute, School of Medicine , Oregon Health & Science University , Portland , OR , USA
| | - Craig D Williams
- h School of Pharmacy , Oregon State University , Portland , OR , USA
| | - Owen J T McCarty
- a Department of Biomedical Engineering , Oregon Health & Science University, Portland, OR, USA.,b Cell, Developmental & Cancer Biology , Oregon Health & Science University, Portland, OR, USA.,c Division of Hematology & Medical Oncology , Oregon Health & Science University, Portland, OR, USA.,e Knight Cancer Institute, School of Medicine , Oregon Health & Science University , Portland , OR , USA
| |
Collapse
|