1
|
Mancin S, Cangelosi G, Matteucci S, Palomares SM, Parozzi M, Sandri E, Sguanci M, Piredda M. The Role of Vitamin D in Hematopoietic Stem Cell Transplantation: Implications for Graft-versus-Host Disease-A Narrative Review. Nutrients 2024; 16:2976. [PMID: 39275291 PMCID: PMC11397640 DOI: 10.3390/nu16172976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
INTRODUCTION/AIM Vitamin D plays a crucial role in immune modulation, which may influence the development of graft-versus-host disease (GvHD) in patients undergoing hematopoietic stem cell transplantation (HSCT). This study aims to evaluate the impact of vitamin D levels and supplementation on the incidence of GvHD in HSCT patients. METHODS A narrative review was conducted across PubMed/Medline, Cochrane Library, CINAHL, and Embase databases. RESULTS The reviewed studies indicated widespread vitamin D deficiency among HSCT patients, with baseline levels ranging from 12.8 to 29.2 ng/mL. Supplementation protocols varied significantly, with dosages ranging from 1000 IU/day to 60,000 IU/week. Post-supplementation levels improved in some studies. Studies exploring the relationship between vitamin D and GvHD showed mixed results. Lower baseline vitamin D levels were associated with an increased risk of acute GvHD in some studies, while others found no significant correlation. However, a significant association between low levels of vitamin D and the incidence of chronic GvHD was observed. CONCLUSION Vitamin D deficiency is prevalent in HSCT patients and may influence the risk of developing chronic GvHD. Future research should focus on larger and more rigorous studies to determine the optimal role of vitamin D as an adjuvant therapy in the context of HSCT.
Collapse
Affiliation(s)
- Stefano Mancin
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Giovanni Cangelosi
- Units of Diabetology, ASUR Marche, Via Augusto Murri 21, 63900 Fermo, Italy
| | - Sofia Matteucci
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Sara Morales Palomares
- Department of Pharmacy, Health and Nutritional Sciences (DFSSN), University of Calabria, 87036 Rende, Italy
| | - Mauro Parozzi
- School of Nursing, ASST Santi Paolo e Carlo, "San Paolo" Campus, University of Milan, 20142 Milan, Italy
| | - Elena Sandri
- Faculty of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, c/Quevedo, 2, 46001 Valencia, Spain
| | - Marco Sguanci
- Research Unit of Nursing Science, Department of Medicine and Surgery, Campus Bio-Medico di Roma University, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Michela Piredda
- Research Unit of Nursing Science, Department of Medicine and Surgery, Campus Bio-Medico di Roma University, Via Alvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
2
|
Althagafy HS, El-Aziz MA, Ibrahim IM, Abd-Alhameed EK, Hassanein EM. Pharmacological updates of nifuroxazide: Promising preclinical effects and the underlying molecular mechanisms. Eur J Pharmacol 2023; 951:175776. [PMID: 37192715 DOI: 10.1016/j.ejphar.2023.175776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Nifuroxazide (NFX) is a safe nitrofuran antibacterial drug used clinically to treat acute diarrhea and infectious traveler diarrhea or colitis. Recent studies revealed that NFX displays multiple pharmacological effects, including anticancer, antioxidant, and anti-inflammatory effects. NFX has potential roles in inhibiting thyroid, breast, lung, bladder, liver, and colon cancers and osteosarcoma, melanoma, and others mediated by suppressing STAT3 as well as ALDH1, MMP2, MMP9, Bcl2 and upregulating Bax. Moreover, it has promising effects against sepsis-induced organ injury, hepatic disorders, diabetic nephropathy, ulcerative colitis, and immune disorders. These promising effects appear to be mediated by suppressing STAT3 as well as NF-κB, TLR4, and β-catenin expressions and effectively decreasing downstream cytokines TNF-α, IL-1β, and IL-6. Our review summarizes the available studies on the molecular biological mechanisms of NFX in cancer and other diseases and it is recommended to translate the studies in experimental animals and cultured cells and repurpose NFX in various diseases for scientific evidence based on human studies.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - EmadH M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
3
|
Peggs KS, Albon SJ, Oporto Espuelas M, Irving C, Richardson R, Casanovas-Company J, Wallace R, Guvenel A, Ghorashian S, Collura A, Subramaniyam M, Flutter B, Popova B, Castro F, Lopes A, Champion K, Schofield O, Clifton-Hadley L, Taylor T, Farrell M, Adams S, Gilmour KC, Mackinnon S, Tholouli E, Amrolia PJ. Immunotherapy with CD25/CD71-allodepleted T cells to improve T-cell reconstitution after matched unrelated donor hematopoietic stem cell transplant: a randomized trial. Cytotherapy 2023; 25:82-93. [PMID: 36220712 DOI: 10.1016/j.jcyt.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/21/2022] [Accepted: 08/27/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND AIMS Delayed immune reconstitution is a major challenge after matched unrelated donor (MUD) stem cell transplant (SCT). In this randomized phase 2 multi-center trial, Adoptive Immunotherapy with CD25/71 allodepleted donor T cells to improve immunity after unrelated donor stem cell transplant (NCT01827579), the authors tested whether allodepleted donor T cells (ADTs) can safely be used to improve immune reconstitution after alemtuzumab-based MUD SCT for hematological malignancies. METHODS Patients received standard of care or up to three escalating doses of ADTs generated through CD25+/CD71+ immunomagnetic depletion. The primary endpoint of the study was circulating CD3+ T-cell count at 4 months post-SCT. Twenty-one patients were treated, 13 in the ADT arm and eight in the control arm. RESULTS The authors observed a trend toward improved CD3+ T-cell count at 4 months in the ADT arm versus the control arm (230/µL versus 145/µL, P = 0.18), and three ADT patients achieved normal CD3+ T-cell count at 4 months (>700/µL). The rates of significant graft-versus-host disease (GVHD) were comparable in both cohorts, with grade ≥2 acute GVHD in seven of 13 and four of eight patients and chronic GVHD in three of 13 and three of eight patients in the ADT and control arms, respectively. CONCLUSIONS These data suggest that adoptive transfer of ADTs is safe, but that in the MUD setting the benefit in terms of T-cell reconstitution is limited. This approach may be of more use in the context of more rigorous T-cell depletion.
Collapse
Affiliation(s)
- Karl S Peggs
- Department of Hematology, University College London Hospital, London, UK
| | - Sarah J Albon
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, UK; Gene and Cell Therapy, Great Ormond Street Hospital for Children, London, UK
| | - Macarena Oporto Espuelas
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, UK.
| | - Catherine Irving
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, UK; Gene and Cell Therapy, Great Ormond Street Hospital for Children, London, UK
| | - Rachel Richardson
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, UK; Gene and Cell Therapy, Great Ormond Street Hospital for Children, London, UK
| | - Joan Casanovas-Company
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, UK; Gene and Cell Therapy, Great Ormond Street Hospital for Children, London, UK
| | - Rebecca Wallace
- Gene and Cell Therapy, Great Ormond Street Hospital for Children, London, UK; Molecular Hematology Section, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Aleks Guvenel
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, UK; Gene and Cell Therapy, Great Ormond Street Hospital for Children, London, UK
| | - Sara Ghorashian
- Molecular Hematology Section, University College London Great Ormond Street Institute of Child Health, London, UK; Department of Hematology, Great Ormond Street Hospital for Children, London, UK
| | - Angela Collura
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, UK; Gene and Cell Therapy, Great Ormond Street Hospital for Children, London, UK
| | - Meera Subramaniyam
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, UK; Gene and Cell Therapy, Great Ormond Street Hospital for Children, London, UK
| | - Barry Flutter
- Gene and Cell Therapy, Great Ormond Street Hospital for Children, London, UK; Molecular Hematology Section, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Bilyana Popova
- Cancer Research UK and University College London Cancer Trials Center, London, UK
| | - Fernanda Castro
- Cancer Research UK and University College London Cancer Trials Center, London, UK
| | - Andre Lopes
- Cancer Research UK and University College London Cancer Trials Center, London, UK
| | - Kim Champion
- Cancer Research UK and University College London Cancer Trials Center, London, UK
| | - Oliver Schofield
- Cancer Research UK and University College London Cancer Trials Center, London, UK
| | - Laura Clifton-Hadley
- Cancer Research UK and University College London Cancer Trials Center, London, UK
| | - Thomas Taylor
- Department of Hematology, University College London Hospital, London, UK
| | - Maria Farrell
- Department of Hematology, Manchester Royal Infirmary, Manchester, UK
| | - Stuart Adams
- Department of Hematology, Great Ormond Street Hospital for Children, London, UK
| | - Kimberly C Gilmour
- Cell Therapy and Immunology, Camelia Botnar Laboratories, Great Ormond Street Hospital for Children, London, UK
| | - Stephen Mackinnon
- Department of Hematology, University College London Hospital, London, UK
| | - Eleni Tholouli
- Department of Hematology, Manchester Royal Infirmary, Manchester, UK
| | - Persis J Amrolia
- Molecular and Cellular Immunology Section, University College London Great Ormond Street Institute of Child Health, London, UK; Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
4
|
Kroeze A, Cornelissen AS, Pascutti MF, Verheij M, Bulder I, Klarenbeek S, Ait Soussan A, Hazenberg MD, Nur E, van der Schoot CE, Voermans C, Zeerleder SS. Cell-free DNA levels are increased in acute graft-versus-host disease. Eur J Haematol 2022; 109:271-281. [PMID: 35617105 DOI: 10.1111/ejh.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cell-free DNA (cfDNA) and nucleosomes, consisting of cfDNA and histones, are markers of cell activation and damage. In systemic inflammation these markers predict severity and fatality. However, the role of cfDNA in acute Graft-versus-Host Disease (aGvHD), a major complication of allogeneic hematopoietic stem cell transplantation (HSCT), is unknown. OBJECTIVE The aim of this study is to investigate the role of cfDNA as a marker of aGvHD. METHODS We followed nucleosome levels in 37 allogeneic HSCT patients and an established xenotransplantation mouse model. We determined the origin of cfDNA with a species-specific polymerase chain reaction. RESULTS In the plasma of aGvHD patients, nucleosome levels significantly increased around the time of aGvHD diagnosis compared to pretransplant, concurrently with a significant increase of known aGvHD markers ST2 and REG3α. In mice, we confirmed that nucleosomes were elevated during clinically detectable aGvHD. We found cfDNA to be mainly of human origin and to a lesser extent of mouse origin, indicating that cfDNA is released by (proliferating) human xeno-reactive PBMC and damaged mouse cells. CONCLUSION We show increased cfDNA both in an aGvHD mouse model and in aGvHD patients. We also demonstrate that donor hematopoietic cells and to a lesser degree (damaged) host cells are the cellular source of cfDNA in aGvHD. We propose that nucleosomes and cfDNA might be an additive marker for aGvHD.
Collapse
Affiliation(s)
- Anna Kroeze
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - Anne S Cornelissen
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | | | - Myrddin Verheij
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - Ingrid Bulder
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aicha Ait Soussan
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
| | - Mette D Hazenberg
- Department of Hematology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Erfan Nur
- Department of Hematology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
| | - Carlijn Voermans
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - Sacha S Zeerleder
- Department of Immunopathology, Sanquin Research, Amsterdam, The Netherlands
- Department of Hematology, Division of Internal Medicine, Luzerner Kantonsspital, Luzern, and University of Berne, Bern, Switzerland
| |
Collapse
|
5
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
6
|
Gasior M, Ferreras C, de Paz R, Bueno D, Mozo Y, Sisinni L, Canizales JT, González B, Olivas-Mazón R, Marcos A, Romero AB, Constanzo A, Mirones I, Fernández-Arroyo A, Balas A, Vicario JL, Escudero A, Yuste VJ, Pérez-Martínez A. The role of early natural killer cell adoptive infusion before engraftment in protecting against human herpesvirus-6B encephalitis after naïve T-cell-depleted allogeneic stem cell transplantation. Transfusion 2021; 61:1505-1517. [PMID: 33713461 DOI: 10.1111/trf.16354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Naïve T-cell-depleted grafts have been employed as an ex vivo T-cell depletion (TCD) platform to prevent graft-versus-host disease (GvHD) and improve immune reconstitution by providing rapid donor memory T-cell reconstitution after allogenic hematopoietic stem cell transplantation (allo-HSCT). CD45RA- memory T cells confer protection against viruses such as cytomegalovirus, Epstein-Barr virus, and adenovirus; however, reports have shown an unexpectedly high incidence of human herpesvirus (HHV)-6B encephalitis among pediatric allo-HSCT patients. METHODS We report the first 18 consecutive allo-HSCT, 16 haplo-HSCT, and two human leukocyte antigen-matched related donors implanted with naïve TCD grafts. All donors were administered three cell products: first, a CD34+ stem cell product; second, a CD45RA+ TCD graft, followed by an adoptive natural killer (NK) cell infusion within 10 days after HSCT. The study's primary endpoint was the incidence of HHV-6B encephalitis. RESULTS Engraftment was achieved in 94.5% of cases; 2-year overall survival, event-free survival, and GvHD/relapse-free survival were 87.2% (95% CI 78.6-95.8), 67.3% (95% CI 53.1-81.5), and 64% (95% CI 50.5-78.1), respectively. HHV-6B reactivation occurred in 7 of the haplo-HSCT patients, six of who received a cell infusion with an NK/CD4 ratio <2. None of the patients developed encephalitis. CONCLUSIONS In this clinical study, we show that early adoptive NK cell infusion after a 45RA+ TCD allo-HSCT graft is safe and can prevent HHV-6B encephalitis. We recommend infusing adoptive NK cells after allo-HSCT using CD45RA+ TCD grafts.
Collapse
Affiliation(s)
- Mercedes Gasior
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Cristina Ferreras
- Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Raquel de Paz
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - David Bueno
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Yasmina Mozo
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Luisa Sisinni
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | | | - Berta González
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Raquel Olivas-Mazón
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Antonio Marcos
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Ana Belén Romero
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Aída Constanzo
- Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Isabel Mirones
- Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain
| | | | - Antonio Balas
- Histocompatibility and HLA Typing Lab. Transfusion Center of Madrid, Madrid, Spain
| | - Jose Luis Vicario
- Histocompatibility and HLA Typing Lab. Transfusion Center of Madrid, Madrid, Spain
| | - Adela Escudero
- Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | | | - Antonio Pérez-Martínez
- Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain.,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Fleischhauer K, Hsu KC, Shaw BE. Prevention of relapse after allogeneic hematopoietic cell transplantation by donor and cell source selection. Bone Marrow Transplant 2018; 53:1498-1507. [PMID: 29795435 PMCID: PMC7286200 DOI: 10.1038/s41409-018-0218-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/27/2023]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is the most established form of cancer immunotherapy and has been successfully applied for the treatment and cure of otherwise lethal neoplastic blood disorders. Cancer immune surveillance is mediated to a large extent by alloreactive T and natural killer (NK) cells recognizing genetic differences between patient and donor. Profound insights into the biology of these effector cells has been obtained over recent years and used for the development of innovative strategies for intelligent donor selection, aiming for improved graft-versus-leukemia effect without unmanageable graft-versus-host disease. The cellular composition of the stem cell source plays a major role in modulating these effects. This review summarizes the current state-of the-art of donor selection according to HLA, NK alloreactivity and stem cell source.
Collapse
Affiliation(s)
- Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, University Hospital Essen, Essen, Germany.
- German Cancer Consortium, Heidelberg, Germany.
| | - Katharine C Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research (CIBMTR), Froedtert & the Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
8
|
Hilger N, Mueller C, Stahl L, Mueller AM, Zoennchen B, Dluczek S, Halbich C, Wickenhauser C, Gerloff D, Wurm AA, Behre G, Kretschmer A, Fricke S. Incubation of Immune Cell Grafts With MAX.16H5 IgG1 Anti-Human CD4 Antibody Prolonged Survival After Hematopoietic Stem Cell Transplantation in a Mouse Model for Fms Like Tyrosine Kinase 3 Positive Acute Myeloid Leukemia. Front Immunol 2018; 9:2408. [PMID: 30405611 PMCID: PMC6204383 DOI: 10.3389/fimmu.2018.02408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/28/2018] [Indexed: 12/24/2022] Open
Abstract
Despite the constant development of innovative therapeutic options for hematological malignancies, the gold-standard therapy regimen for curative treatment often includes allogeneic hematopoietic stem cell transplantation (HSCT). The graft-vs.-leukemia effect (GVL) is one of the main therapeutic goals that arises from HSCT. On the other hand, graft-vs.-host disease (GVHD) is still one of the main and most serious complications following allogeneic HSCT. In acute myeloid leukemia (AML), HSCT together with high-dose chemotherapy is used as a treatment option. An aggressive progression of the disease, a decreased response to treatment, and a poor prognosis are connected to internal tandem duplication (ITD) mutations in the Fms like tyrosine kinase 3 (FLT3) gene, which affects around 30% of AML patients. In this study, C3H/HeN mice received an allogeneic graft together with 32D-FLT3ITD AML cells to induce acute GVHD and GVL. It was examined if pre-incubation of the graft with the anti-human cluster of differentiation (CD) 4 antibody MAX.16H5 IgG1 prevented the development of GVHD and whether the graft function was impaired. Animals receiving grafts pre-incubated with the antibody together with FLT3ITD AML cells survived significantly longer than mice receiving untreated grafts. The observed prolonged survival due to MAX.16H5 incubation of immune cell grafts prior to transplantation may allow an extended application of additional targeted strategies in the treatment of AML.
Collapse
Affiliation(s)
- Nadja Hilger
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.,Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Claudia Mueller
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Lilly Stahl
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Anne M Mueller
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Bianca Zoennchen
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Christoph Halbich
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | | | - Dennis Gerloff
- Department of Dermatology and Venereology, University Hospital Halle, Halle, Germany
| | - Alexander A Wurm
- Division of Hematology and Medical Oncology, Leipzig University Hospital, Leipzig, Germany
| | - Gerhard Behre
- Division of Hematology and Medical Oncology, Leipzig University Hospital, Leipzig, Germany
| | - Anna Kretschmer
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Stephan Fricke
- Immune Tolerance, Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
9
|
Du W, Mohammadpour H, O'Neill RE, Kumar S, Chen C, Qiu M, Mei L, Qiu J, McCarthy PL, Lee KP, Cao X. Serine protease inhibitor 6 protects alloreactive T cells from Granzyme B-mediated mitochondrial damage without affecting graft-versus-tumor effect. Oncoimmunology 2017; 7:e1397247. [PMID: 29399396 DOI: 10.1080/2162402x.2017.1397247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 10/18/2017] [Accepted: 10/22/2017] [Indexed: 02/03/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative therapy for hematologic malignancies. Donor T cells are able to eliminate residual tumor cells after allo-HCT, producing the beneficial graft-versus-tumor (GVT) effect, but can also cause graft-versus-host disease (GVHD) when attacking host normal tissues. We previously reported that granzyme B (GzmB) is involved in activation-induced cell death (AICD) of donor T cells and exerts differential impacts on GVHD and GVT effect. Serine protease inhibitor 6 (Spi6) is the sole endogenous inhibitor of GzmB that can protect immune and tissue cells against GzmB-mediated damage. This study is aimed to delineate the mechanism by which the GzmB-Spi6 axis regulates allogeneic T cell response. Using multiple clinically relevant murine allo-HCT models, we have found that Spi6 is concentrated in mitochondria during allogeneic T cell activation, while Spi6-/- T cells exhibit abnormal mitochondrial membrane potential, mass, reactive oxygen species (ROS) production and increased GzmB-dependent AICD mainly in the form of fratricide. Compared with WT T cells, Spi6-/- T cells exhibit decreased expansion in the host and cause significantly reduced GVHD. Notably, however, Spi6-/- T cells demonstrate the same level of GVT activity as WT T cells, which were confirmed by two independent tumor models. In summary, our findings demonstrate that Spi6 plays a novel and critical role in maintaining the integrity of T cell mitochondrial function during allogeneic response, and suggest that disabling Spi6 in donor T cells may represent a novel strategy that can alleviate GVHD without sacrificing the beneficial GVT effect.
Collapse
Affiliation(s)
- Wei Du
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Hemn Mohammadpour
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Rachel E O'Neill
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sandeep Kumar
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Chuan Chen
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Michelle Qiu
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Lin Mei
- Department of Internal Medicine; University at Buffalo, Buffalo, NY, USA
| | - Jingxin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Philip L McCarthy
- Department of Medicine; Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kelvin P Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Xuefang Cao
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
10
|
Jia H, Cui J, Jia X, Zhao J, Feng Y, Zhao P, Zang D, Yu J, Zhao T, Wang H, Xu K. Therapeutic effects of STAT3 inhibition by nifuroxazide on murine acute graft graft-vs.-host disease: Old drug, new use. Mol Med Rep 2017; 16:9480-9486. [PMID: 29152660 PMCID: PMC5780006 DOI: 10.3892/mmr.2017.7825] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/26/2017] [Indexed: 12/30/2022] Open
Abstract
Graft-vs.-host disease (GvHD) is a major and lethal complication of allogeneic bone marrow transplantation (allo-BMT). Although great development has been made, the treatment progress of this disorder is slow. Research has illustrated that STAT3 was critical for T cell alloactivation in GvHD. In the present study, the authors hypothesized that nifuroxazide, as the STAT3 inhibitor, treatment may attenuate the development of acute GvHD (aGvHD). The results demonstrated that nifuroxazide suppressed the development of aGvHD and significantly delayed aGvHD-induced lethality. Mice receiving nifuroxazide had mostly normal-appearing skin with minimal focal ulceration, mild edema and congestion in the liver, and a less-pronounced villus injury and less inflammatory infiltrate in the small intestine. Treatment with nifuroxazide inhibited the activation of STAT3, resulting in the regulation of the CD4+ T cells and CD4+CD25+ T cells and reduction of interferon-γ and tumor necrosis factor-α levels. In conclusion, nifuroxazide may be efficacious for post-transplant of GvHD, providing a potent drug for use as a prophylactic or as a second-line therapy for aGvHD in clinical trials.
Collapse
Affiliation(s)
- Huijie Jia
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Jing Cui
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Xiaolong Jia
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Jingjing Zhao
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Yuchen Feng
- Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Peijuan Zhao
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Dan Zang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Jian Yu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Tiesuo Zhao
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Hui Wang
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453000, P.R. China
| | - Kailin Xu
- Laboratory of Transplantation and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
11
|
Fleischhauer K, Shaw BE. HLA-DP in unrelated hematopoietic cell transplantation revisited: challenges and opportunities. Blood 2017; 130:1089-1096. [PMID: 28667011 DOI: 10.1182/blood-2017-03-742346] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/17/2017] [Indexed: 11/20/2022] Open
Abstract
When considering HLA-matched hematopoietic cell transplantation (HCT), sibling and unrelated donors (UDs) are biologically different because UD-HCT is typically performed across HLA-DP disparities absent in sibling HCT. Mismatched HLA-DP is targeted by direct alloreactive T cell responses with important implications for graft-versus-host disease and graft-versus-leukemia. This concise review details special features of HLA-DP as model antigens for clinically permissive mismatches mediating limited T-cell alloreactivity with minimal toxicity, and describes future avenues for their exploitation in cellular immunotherapy of malignant blood disorders.
Collapse
Affiliation(s)
- Katharina Fleischhauer
- Institute for Experimental Cellular Therapy, Essen University Hospital, Essen, Germany
- German Cancer Consortium, Heidelberg, Germany; and
| | - Bronwen E Shaw
- Center for International Blood and Marrow Transplant Research, Froedtert & The Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
12
|
Exploiting Cell Death Pathways for Inducible Cell Elimination to Modulate Graft-versus-Host-Disease. Biomedicines 2017; 5:biomedicines5020030. [PMID: 28613269 PMCID: PMC5489816 DOI: 10.3390/biomedicines5020030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cell transplantation is a potent form of immunotherapy, potentially life-saving for many malignant hematologic diseases. However, donor lymphocytes infused with the graft while exerting a graft versus malignancy effect can also cause potentially fatal graft versus host disease (GVHD). Our group has previously validated the inducible caspase-9 suicide gene in the haploidentical stem cell transplant setting, which proved successful in reversing signs and symptoms of GVHD within hours, using a non-therapeutic dimerizing agent. Cellular death pathways such as apoptosis and necroptosis are important processes in maintaining healthy cellular homeostasis within the human body. Here, we review two of the most widely investigated cell death pathways active in T-cells (apoptosis and necroptosis), as well as the emerging strategies that can be exploited for the safety of T-cell therapies. Furthermore, such strategies could be exploited for the safety of other cellular therapeutics as well.
Collapse
|
13
|
Li Pira G, Di Cecca S, Biagini S, Girolami E, Cicchetti E, Bertaina V, Quintarelli C, Caruana I, Lucarelli B, Merli P, Pagliara D, Brescia LP, Bertaina A, Montanari M, Locatelli F. Preservation of Antigen-Specific Functions of αβ T Cells and B Cells Removed from Hematopoietic Stem Cell Transplants Suggests Their Use As an Alternative Cell Source for Advanced Manipulation and Adoptive Immunotherapy. Front Immunol 2017; 8:332. [PMID: 28386262 PMCID: PMC5362590 DOI: 10.3389/fimmu.2017.00332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem cell transplantation is standard therapy for numerous hematological diseases. The use of haploidentical donors, sharing half of the HLA alleles with the recipient, has facilitated the use of this procedure as patients can rely on availability of a haploidentical donor within their family. Since HLA disparity increases the risk of graft-versus-host disease, T-cell depletion has been used to remove alloreactive lymphocytes from the graft. Selective removal of αβ T cells, which encompass the alloreactive repertoire, combined with removal of B cells to prevent EBV-related lymphoproliferative disease, proved safe and effective in clinical studies. Depleted αβ T cells and B cells are generally discarded as by-products. Considering the possible use of donor T cells for donor lymphocyte infusions or for generation of pathogen-specific T cells as mediators of graft-versus-infection effect, we tested whether cells in the discarded fractions were functionally intact. Response to alloantigens and to viral antigens comparable to that of unmanipulated cells indicated a functional integrity of αβ T cells, in spite of the manipulation used for their depletion. Furthermore, B cells proved to be efficient antigen-presenting cells, indicating that antigen uptake, processing, and presentation were fully preserved. Therefore, we propose that separated αβ T lymphocytes could be employed for obtaining pathogen-specific T cells, applying available methods for positive selection, which eventually leads to indirect allodepletion. In addition, these functional T cells could undergo additional manipulation, such as direct allodepletion or genetic modification.
Collapse
Affiliation(s)
- Giuseppina Li Pira
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Stefano Di Cecca
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Simone Biagini
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Elia Girolami
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Elisabetta Cicchetti
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Valentina Bertaina
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Concetta Quintarelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy; Department of "Medicina Clinica e Chirurgia", University of Naples Federico II, Naples, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Barbarella Lucarelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Pietro Merli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Daria Pagliara
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Letizia Pomponia Brescia
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Alice Bertaina
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Mauro Montanari
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital , Rome , Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy; Department of Pediatrics, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Cai B, Guo M, Wang Y, Zhang Y, Yang J, Guo Y, Dai H, Yu C, Sun Q, Qiao J, Hu K, Zuo H, Dong Z, Zhang Z, Feng M, Li B, Sun Y, Liu T, Liu Z, Wang Y, Huang Y, Yao B, Han W, Ai H. Co-infusion of haplo-identical CD19-chimeric antigen receptor T cells and stem cells achieved full donor engraftment in refractory acute lymphoblastic leukemia. J Hematol Oncol 2016; 9:131. [PMID: 27887660 PMCID: PMC5124292 DOI: 10.1186/s13045-016-0357-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/10/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Elderly patients with relapsed and refractory acute lymphoblastic leukemia (ALL) have poor prognosis. Autologous CD19 chimeric antigen receptor-modified T (CAR-T) cells have potentials to cure patients with B cell ALL; however, safety and efficacy of allogeneic CD19 CAR-T cells are still undetermined. CASE PRESENTATION We treated a 71-year-old female with relapsed and refractory ALL who received co-infusion of haplo-identical donor-derived CD19-directed CAR-T cells and mobilized peripheral blood stem cells (PBSC) following induction chemotherapy. Undetectable minimal residual disease by flow cytometry was achieved, and full donor cell engraftment was established. The transient release of cytokines and mild fever were detected. Significantly elevated serum lactate dehydrogenase, alanine transaminase, bilirubin and glutamic-oxalacetic transaminase were observed from days 14 to 18, all of which were reversible after immunosuppressive therapy. CONCLUSIONS Our preliminary results suggest that co-infusion of haplo-identical donor-derived CAR-T cells and mobilized PBSCs may induce full donor engraftment in relapsed and refractory ALL including elderly patients, but complications related to donor cell infusions should still be cautioned. TRIAL REGISTRATION Allogeneic CART-19 for Elderly Relapsed/Refractory CD19+ ALL. NCT02799550.
Collapse
Affiliation(s)
- Bo Cai
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Mei Guo
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Yao Wang
- Department of Immunology/Department of Bio-therapeutic, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Yajing Zhang
- Department of Immunology/Department of Bio-therapeutic, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Jun Yang
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Yelei Guo
- Department of Immunology/Department of Bio-therapeutic, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Hanren Dai
- Department of Immunology/Department of Bio-therapeutic, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Changlin Yu
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Qiyun Sun
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Jianhui Qiao
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Kaixun Hu
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Hongli Zuo
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Zheng Dong
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Zechuan Zhang
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Mingxing Feng
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Bingxia Li
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Yujing Sun
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Tieqiang Liu
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Zhiqing Liu
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Yi Wang
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Yajing Huang
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Bo Yao
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China
| | - Weidong Han
- Department of Immunology/Department of Bio-therapeutic, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Huisheng Ai
- Department of Hematology and Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, 8 Dongdajie, Beijing, 100071, China.
| |
Collapse
|
15
|
Immunity to Infections after Haploidentical Hematopoietic Stem Cell Transplantation. Mediterr J Hematol Infect Dis 2016; 8:e2016057. [PMID: 27872737 PMCID: PMC5111540 DOI: 10.4084/mjhid.2016.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
The advantage of using a Human Leukocyte Antigen (HLA)-mismatched related donor is that almost every patient who does not have an HLA-identical donor or who urgently needs hematopoietic stem cell transplantation (HSCT) has at least one family member with whom shares one haplotype (haploidentical) and who is promptly available as a donor. The major challenge of haplo-HSCT is intense bi-directional alloreactivity leading to high incidences of graft rejection and graft-versus-host disease (GVHD). Advances in graft processing and pharmacologic prophylaxis of GVHD have reduced these risks and have made haplo-HSCT a viable alternative for patients lacking a matched donor. Indeed, the haplo-HSCT has spread to centers worldwide even though some centers have preferred an approach based on T cell depletion of G-CSF-mobilized peripheral blood progenitor cells (PBPCs), others have focused on new strategies for GvHD prevention, such as G-CSF priming of bone marrow and robust post-transplant immune suppression or post-transplant cyclophosphamide (PTCY). Today, the graft can be a megadose of T-cell depleted PBPCs or a standard dose of unmanipulated bone marrow and/or PBPCs. Although haplo-HSCT modalities are based mainly on high intensity conditioning regimens, recently introduced reduced intensity regimens (RIC) showed promise in decreasing early transplant-related mortality (TRM), and extending the opportunity of HSCT to an elderly population with more comorbidities. Infections are still mostly responsible for toxicity and non-relapse mortality due to prolonged immunosuppression related, or not, to GVHD. Future challenges lie in determining the safest preparative conditioning regimen, minimizing GvHD and promoting rapid and more robust immune reconstitution.
Collapse
|
16
|
Abstract
Hematopoietic Stem Cells Transplantation (HSCT) is an effective treatment for hematological and non-hematological diseases. The main challenge in autologous HSCT is purging of malignant cells to prevent relapse. In allogeneic HSCT graft-versus-host disease (GvHD) and opportunistic infections are frequent complications. Two types of graft manipulation have been introduced: the first one in the autologous context aimed at separating malignant cells from hematopoietic stem cells (HSC), and the second one in allogeneic HSCT aimed at reducing the incidence of GvHD and at accelerating immune reconstitution. Here we describe the manipulations used for cell purging in autologous HSCT or for T Cell Depletion (TCD) and T cell selection in allogeneic HSCT. More complex manipulations, requiring a Good Manufacturing Practice (GMP) facility, are briefly mentioned.
Collapse
|