1
|
Shalbi F, Ali AR. A mini-review on integrase inhibitors: The cornerstone of next-generation HIV treatment. Eur J Med Chem 2024; 279:116900. [PMID: 39332384 DOI: 10.1016/j.ejmech.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Integrase inhibitors represent one of the most remarkable and effective advances in the treatment of HIV-1 infection. Their lack of human cellular equivalence has established integrase as a unique and ideal target for HIV-1 treatment. Over the last two decades, a variety of drugs and small molecule inhibitors have been developed to control or treat HIV infection. Many of these FDA-approved drugs are considered first-line options for AIDS patients. Unfortunately, resistance to these drugs has dictated the development of novel and more efficacious antiretroviral drugs. In this review article, we illustrate the key classes of antiretroviral integrase inhibitors available. We provide a comprehensive analysis of recent advancements in the development of integrase inhibitors, focusing on novel compounds and their distinct mechanisms of action. Our literature review highlights emerging allosteric integrase inhibitors that offer improved efficacy, resistance profiles, and pharmacokinetics. By integrating these recent advancements and clinical insights, this review aims to provide a thorough and updated understanding of integrase inhibitors, emphasizing their evolving role in HIV treatment.
Collapse
Affiliation(s)
- Fathi Shalbi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Akiyama T, Johns BA, Taoda Y, Yoshida H, Taishi T, Kawasuji T, Murai H, Yoshinaga T, Sato A, Seki T, Koyama M, Miki S, Kawauchi-Miki S, Kagitani-Suyama A, Fujiwara T. Molecular design and evaluation of aza-polycyclic carbamoyl pyridones as HIV-1 integrase strand transfer inhibitors. Bioorg Med Chem Lett 2024; 111:129902. [PMID: 39059564 DOI: 10.1016/j.bmcl.2024.129902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Integrase strand transfer inhibitors (INSTIs) are the most prescribed anchor drug in antiretroviral therapy. Today, there is an increasing need for long-acting treatment of HIV-1 infection. Improving drug pharmacokinetics and anti-HIV-1 activity are key to developing more robust inhibitors suitable for long-acting formulations, but 2nd-generation INSTIs have chiral centers, making it difficult to conduct further exploration. In this study, we designed aza-tricyclic and aza-bicyclic carbamoyl pyridone scaffolds which are devoid of the problematic hemiaminal stereocenter present in dolutegravir (DTG). This scaffold hopping made it easy to introduce several substituents, and evolving structure-activity studies using these scaffolds resulted in several leads with promising properties.
Collapse
Affiliation(s)
- Toshiyuki Akiyama
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan.
| | - Brian A Johns
- GlaxoSmithKline Research & Development, Infectious Diseases Therapeutic Area Unit, Five Moore Drive, Research Triangle Park, NC 27709, United States
| | - Yoshiyuki Taoda
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Hiroshi Yoshida
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Teruhiko Taishi
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Takashi Kawasuji
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Hitoshi Murai
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Tomokazu Yoshinaga
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Akihiko Sato
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Takahiro Seki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Mikiko Koyama
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Shigeru Miki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Shinobu Kawauchi-Miki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Akemi Kagitani-Suyama
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Tamio Fujiwara
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| |
Collapse
|
3
|
Mahajan PS, Smith SJ, Li M, Craigie R, Hughes SH, Zhao XZ, Burke TR. N-Substituted Bicyclic Carbamoyl Pyridones: Integrase Strand Transfer Inhibitors that Potently Inhibit Drug-Resistant HIV-1 Integrase Mutants. ACS Infect Dis 2024; 10:917-927. [PMID: 38346249 PMCID: PMC10928719 DOI: 10.1021/acsinfecdis.3c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
HIV-1 integrase (IN) is an important molecular target for the development of anti-AIDS drugs. A recently FDA-approved second-generation integrase strand transfer inhibitor (INSTI) cabotegravir (CAB, 2021) is being marketed for use in long-duration antiviral formulations. However, missed doses during extended therapy can potentially result in persistent low levels of CAB that could select for resistant mutant forms of IN, leading to virological failure. We report a series of N-substituted bicyclic carbamoyl pyridones (BiCAPs) that are simplified analogs of CAB. Several of these potently inhibit wild-type HIV-1 in single-round infection assays in cultured cells and retain high inhibitory potencies against a panel of viral constructs carrying resistant mutant forms of IN. Our lead compound, 7c, proved to be more potent than CAB against the therapeutically important resistant double mutants E138K/Q148K (>12-fold relative to CAB) and G140S/Q148R (>36-fold relative to CAB). A significant number of the BiCAPs also potently inhibit the drug-resistant IN mutant R263K, which has proven to be problematic for the FDA-approved second-generation INSTIs.
Collapse
Affiliation(s)
- Pankaj S Mahajan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Steven J Smith
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Min Li
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert Craigie
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
4
|
Mohan H, Nguyen J, MacKenzie B, Yee A, Laurette EY, Sanghvi T, Tejada O, Dontsova V, Leung KY, Goddard C, De Young T, Sled JG, Greene NDE, Copp AJ, Serghides L. Folate deficiency increases the incidence of dolutegravir-associated foetal defects in a mouse pregnancy model. EBioMedicine 2023; 95:104762. [PMID: 37586112 PMCID: PMC10450420 DOI: 10.1016/j.ebiom.2023.104762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Dolutegravir (DTG) is a recommended first-line regimen for all people with Human Immunodeficiency Virus (HIV) infection. Initial findings from Botswana, a country with no folate fortification program, showed an elevated prevalence of neural tube defects (NTDs) with peri-conceptional exposure to DTG. Here we explore whether a low folate diet influences the risk of DTG-associated foetal anomalies in a mouse model. METHODS C57BL/6 mice fed a folate-deficient diet for 2 weeks, were mated and then randomly allocated to control (water), or 1xDTG (2.5 mg/kg), or 5xDTG (12.5 mg/kg) both administered orally with 50 mg/kg tenofovir disoproxil fumarate 33.3 mg/kg emtricitabine. Treatment was administered once daily from gestational day (GD) 0.5 to sacrifice (GD15.5). Foetuses were assessed for gross anomalies. Maternal and foetal folate levels were quantified. FINDINGS 313 litters (103 control, 106 1xDTG, 104 5xDTG) were assessed. Viability, placental weight, and foetal weight did not differ between groups. NTDs were only observed in the DTG groups (litter rate: 0% control; 1.0% 1xDTG; 1.3% 5xDTG). Tail, abdominal wall, limb, craniofacial, and bleeding defects all occurred at higher rates in the DTG groups versus control. Compared with our previous findings on DTG usage in folate-replete mouse pregnancies, folate deficiency was associated with higher rates of several defects, including NTDs, but in the DTG groups only. We observed a severe left-right asymmetry phenotype that was more frequent in DTG groups than controls. INTERPRETATION Maternal folate deficiency may increase the risk for DTG-associated foetal defects. Periconceptional folic acid supplementation could be considered for women with HIV taking DTG during pregnancy, particularly in countries lacking folate fortification programs. FUNDING This project has been funded by Federal funds from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN275201800001I and award #R01HD104553. LS is supported by a Tier 1 Canada Research Chair in Maternal-Child Health and HIV. HM is supported by a Junior Investigator award from the Ontario HIV Treatment Network.
Collapse
Affiliation(s)
- Haneesha Mohan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jessica Nguyen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ben MacKenzie
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Audrey Yee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Evelyn Yukino Laurette
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Tanvi Sanghvi
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Oscar Tejada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Valeriya Dontsova
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kit-Yi Leung
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cameron Goddard
- Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Taylor De Young
- Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Center, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Nicholas D E Greene
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Andrew J Copp
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Lena Serghides
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Han S, Lu Y. Fluorine in anti-HIV drugs approved by FDA from 1981 to 2023. Eur J Med Chem 2023; 258:115586. [PMID: 37393791 DOI: 10.1016/j.ejmech.2023.115586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Human immunodeficiency virus (HIV) is the etiological agent of acquired immunodeficiency syndrome (AIDS). Nowadays, FDA has approved over thirty antiretroviral drugs grouped in six categories. Interestingly, one-third of these drugs contain different number of fluorine atoms. The introduction of fluorine to obtain drug-like compounds is a well-accepted strategy in medicinal chemistry. In this review, we summarized 11 fluorine-containing anti-HIV drugs, focusing on their efficacy, resistance, safety, and specific roles of fluorine in the development of each drug. These examples may be of help for the discovery of new drug candidates bearing fluorine in their structures.
Collapse
Affiliation(s)
- Sheng Han
- School of Medicine, Shanghai University, Shanghai, China.
| | - Yiming Lu
- School of Medicine, Shanghai University, Shanghai, China; Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Gelineau-van Waes J, van Waes MA, Hallgren J, Hulen J, Bredehoeft M, Ashley-Koch AE, Krupp D, Gregory SG, Stessman HA. Gene-nutrient interactions that impact magnesium homeostasis increase risk for neural tube defects in mice exposed to dolutegravir. Front Cell Dev Biol 2023; 11:1175917. [PMID: 37377737 PMCID: PMC10292217 DOI: 10.3389/fcell.2023.1175917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
In 2018, data from a surveillance study in Botswana evaluating adverse birth outcomes raised concerns that women on antiretroviral therapy (ART) containing dolutegravir (DTG) may be at increased risk for neural tube defects (NTDs). The mechanism of action for DTG involves chelation of Mg2+ ions in the active site of the viral integrase. Plasma Mg2+ homeostasis is maintained primarily through dietary intake and reabsorption in the kidneys. Inadequate dietary Mg2+ intake over several months results in slow depletion of plasma Mg2+ and chronic latent hypomagnesemia, a condition prevalent in women of reproductive age worldwide. Mg2+ is critical for normal embryonic development and neural tube closure. We hypothesized that DTG therapy might slowly deplete plasma Mg2+ and reduce the amount available to the embryo, and that mice with pre-existing hypomagnesemia due to genetic variation and/or dietary Mg2+ insufficiency at the time of conception and initiation of DTG treatment would be at increased risk for NTDs. We used two different approaches to test our hypothesis: 1) we selected mouse strains that had inherently different basal plasma Mg2+ levels and 2) placed mice on diets with different concentrations of Mg2+. Plasma and urine Mg2+ were determined prior to timed mating. Pregnant mice were treated daily with vehicle or DTG beginning on the day of conception and embryos examined for NTDs on gestational day 9.5. Plasma DTG was measured for pharmacokinetic analysis. Our results demonstrate that hypomagnesemia prior to conception, due to genetic variation and/or insufficient dietary Mg2+ intake, increases the risk for NTDs in mice exposed to DTG. We also analyzed whole-exome sequencing data from inbred mouse strains and identified 9 predicted deleterious missense variants in Fam111a that were unique to the LM/Bc strain. Human FAM111A variants are associated with hypomagnesemia and renal Mg2+ wasting. The LM/Bc strain exhibits this same phenotype and was the strain most susceptible to DTG-NTDs. Our results suggest that monitoring plasma Mg2+ levels in patients on ART regimens that include DTG, identifying other risk factors that impact Mg2+ homeostasis, and correcting deficiencies in this micronutrient might provide an effective strategy for mitigating NTD risk.
Collapse
Affiliation(s)
- J. Gelineau-van Waes
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | | | - J. Hallgren
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - J. Hulen
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - M. Bredehoeft
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - A. E. Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - D. Krupp
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - S. G. Gregory
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - H. A. Stessman
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
7
|
Mahajan PS, Burke TR. Synthetic Approaches to a Key Pyridone-carboxylic Acid Precursor Common to the HIV-1 Integrase Strand Transfer Inhibitors Dolutegravir, Bictegravir, and Cabotegravir. Org Process Res Dev 2023; 27:847-853. [PMID: 37229216 PMCID: PMC10204085 DOI: 10.1021/acs.oprd.3c00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 05/27/2023]
Abstract
Dolutegravir (DTG), Bictegravir (BIC), and Cabotegravir (CAB) are the second-generation integrase strand transfer inhibitors (INSTIs) that have been FDA-approved for the treatment of HIV-1 infection. Preparation of these INSTIs utilizes the common intermediate 1-(2,2-dimethoxyethyl)-5-methoxy-6-(methoxycarbonyl)-4-oxo-1,4-dihydropyridine-3-carboxylic acid (6). Presented herein is a literature and patent review of synthetic routes used to access the pharmaceutically important intermediate 6. The review highlights the ways in which small fine-tuned synthetic modifications have been used to achieve good yields and regioselectivity of ester hydrolysis.
Collapse
|
8
|
Mahajan PS, Smith SJ, Hughes SH, Zhao X, Burke TR. A Practical Approach to Bicyclic Carbamoyl Pyridones with Application to the Synthesis of HIV-1 Integrase Strand Transfer Inhibitors. Molecules 2023; 28:molecules28031428. [PMID: 36771093 PMCID: PMC9919513 DOI: 10.3390/molecules28031428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
An efficient one-pot synthetic method has been developed for the preparation of bicyclic carbamoyl pyridones from the known common intermediate methyl 5-((2,4-difluorobenzyl)carbamoyl)-1-(2,2-dimethoxyethyl)-3-methoxy-4-oxo-1,4-dihydropyridine-2-carboxylate (8). The scalable protocol is facile and employs readily available reagents, needing only a single purification as the final step. The utility of the approach was demonstrated by preparing a library of HIV-1 integrase strand transfer inhibitors (INSTIs) that differ by the presence or absence of a double bond in the B-ring of the bicyclic carbamoyl pyridines 6 and 7. Several of the analogs show good antiviral potencies in single-round HIV-1 replication antiviral assays and show no cytotoxicity in cell culture assays. In general, the compounds with a B-ring double bond have higher antiviral potencies than their saturated congeners. Our methodology should be applicable to the synthesis of a range of new metal-chelating analogs.
Collapse
Affiliation(s)
- Pankaj S. Mahajan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Steven J. Smith
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xuezhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
- Correspondence: ; Tel.: +1-301-846-5906; Fax: +1-301-846-6033
| |
Collapse
|
9
|
Urvashi, Senthil Kumar JB, Das P, Tandon V. Development of Azaindole-Based Frameworks as Potential Antiviral Agents and Their Future Perspectives. J Med Chem 2022; 65:6454-6495. [PMID: 35477274 PMCID: PMC9063994 DOI: 10.1021/acs.jmedchem.2c00444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/29/2022]
Abstract
The azaindole (AI) framework continues to play a significant role in the design of new antiviral agents. Modulating the position and isosteric replacement of the nitrogen atom of AI analogs notably influences the intrinsic physicochemical properties of lead compounds. The intra- and intermolecular interactions of AI derivatives with host receptors or viral proteins can also be fine tuned by carefully placing the nitrogen atom in the heterocyclic core. This wide-ranging perspective article focuses on AIs that have considerable utility in drug discovery programs against RNA viruses. The inhibition of influenza A, human immunodeficiency, respiratory syncytial, neurotropic alpha, dengue, ebola, and hepatitis C viruses by AI analogs is extensively reviewed to assess their plausible future potential in antiviral drug discovery. The binding interaction of AIs with the target protein is examined to derive a structural basis for designing new antiviral agents.
Collapse
Affiliation(s)
- Urvashi
- Drug Discovery Laboratory, Special Centre for
Molecular Medicine, Jawaharlal Nehru University, New Delhi 110
067, India
- Department of Chemistry, University of
Delhi, New Delhi 110007, India
| | - J. B. Senthil Kumar
- Drug Discovery Laboratory, Special Centre for
Molecular Medicine, Jawaharlal Nehru University, New Delhi 110
067, India
| | - Parthasarathi Das
- Department of Chemistry, Indian Institute
of Technology (ISM), Dhanbad 826004, India
| | - Vibha Tandon
- Drug Discovery Laboratory, Special Centre for
Molecular Medicine, Jawaharlal Nehru University, New Delhi 110
067, India
| |
Collapse
|
10
|
Garrepalli S, Gudipati R, Amasa SR, Ravindhranath K, Pal M. Synthesis of two diastereomeric impurities of a fluorinated antiretroviral drug dolutegravir. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
|
12
|
Ercan S, Şenyiğit B, Şenses Y. Dual inhibitor design for HIV-1 reverse transcriptase and integrase enzymes: a molecular docking study. J Biomol Struct Dyn 2019; 38:573-580. [DOI: 10.1080/07391102.2019.1700166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Selami Ercan
- School of Health Sciences, Department of Nursing, Batman University, Batman, Turkey
| | | | - Yusuf Şenses
- Institute of Science, Batman University, Batman, Turkey
| |
Collapse
|
13
|
Sirous H, Fassihi A, Brogi S, Campiani G, Christ F, Debyser Z, Gemma S, Butini S, Chemi G, Grillo A, Zabihollahi R, Aghasadeghi MR, Saghaie L, Memarian HR. Synthesis, Molecular Modelling and Biological Studies of 3-hydroxypyrane- 4-one and 3-hydroxy-pyridine-4-one Derivatives as HIV-1 Integrase Inhibitors. Med Chem 2019; 15:755-770. [PMID: 30569867 DOI: 10.2174/1573406415666181219113225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Despite the progress in the discovery of antiretroviral compounds for treating HIV-1 infection by targeting HIV integrase (IN), a promising and well-known drug target against HIV-1, there is a growing need to increase the armamentarium against HIV, for avoiding the drug resistance issue. OBJECTIVE To develop novel HIV-1 IN inhibitors, a series of 3-hydroxy-pyrane-4-one (HP) and 3- hydroxy-pyridine-4-one (HPO) derivatives have been rationally designed and synthesized. METHODS To provide a significant characterization of the novel compounds, in-depth computational analysis was performed using a novel HIV-1 IN/DNA binary 3D-model for investigating the binding mode of the newly conceived molecules in complex with IN. The 3D-model was generated using the proto-type foamy virus (PFV) DNA as a structural template, positioning the viral polydesoxyribonucleic chain into the HIV-1 IN homology model. Moreover, a series of in vitro tests were performed including HIV-1 activity inhibition, HIV-1 IN activity inhibition, HIV-1 IN strand transfer activity inhibition and cellular toxicity. RESULTS Bioassay results indicated that most of HP analogues including HPa, HPb, HPc, HPd, HPe and HPg, showed favorable inhibitory activities against HIV-1-IN in the low micromolar range. Particularly halogenated derivatives (HPb and HPd) offered the best biological activities in terms of reduced toxicity and optimum inhibitory activities against HIV-1 IN and HIV-1 in cell culture. CONCLUSION Halogenated derivatives, HPb and HPd, displayed the most promising anti-HIV profile, paving the way to the optimization of the presented scaffolds for developing new effective antiviral agents.
Collapse
Affiliation(s)
- Hajar Sirous
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran.,Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| | - Simone Brogi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy.,Department of Pharmacy, DoE Department of Excellence 2018-2022, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Frauke Christ
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory of Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Chemi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Grillo
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100 Siena, Italy.,European Research Centre for Drug Discovery and Development (NatSynDrugs), via Aldo Moro 2, 53100 Siena, Italy
| | - Rezvan Zabihollahi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran
| | - Hamid R Memarian
- Department of Chemistry, Faculty of Sciences, University of Isfahan, 81746-73441 Isfahan, Iran
| |
Collapse
|
14
|
Sirous H, Chemi G, Gemma S, Butini S, Debyser Z, Christ F, Saghaie L, Brogi S, Fassihi A, Campiani G, Brindisi M. Identification of Novel 3-Hydroxy-pyran-4-One Derivatives as Potent HIV-1 Integrase Inhibitors Using in silico Structure-Based Combinatorial Library Design Approach. Front Chem 2019; 7:574. [PMID: 31457006 PMCID: PMC6700280 DOI: 10.3389/fchem.2019.00574] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/29/2019] [Indexed: 11/16/2022] Open
Abstract
We describe herein the development and experimental validation of a computational protocol for optimizing a series of 3-hydroxy-pyran-4-one derivatives as HIV integrase inhibitors (HIV INIs). Starting from a previously developed micromolar inhibitors of HIV integrase (HIV IN), we performed an in-depth investigation based on an in silico structure-based combinatorial library designing approach. This method allowed us to combine a combinatorial library design and side chain hopping with Quantum Polarized Ligand Docking (QPLD) studies and Molecular Dynamics (MD) simulation. The combinatorial library design allowed the identification of the best decorations for our promising scaffold. The resulting compounds were assessed by the mentioned QPLD methodology using a homology model of full-length binary HIV IN/DNA for retrieving the best performing compounds acting as HIV INIs. Along with the prediction of physico-chemical properties, we were able to select a limited number of drug-like compounds potentially displaying potent HIV IN inhibition. From this final set, based on the synthetic accessibility, we further shortlisted three representative compounds for the synthesis. The compounds were experimentally assessed in vitro for evaluating overall HIV-1 IN inhibition, HIV-1 IN strand transfer activity inhibition, HIV-1 activity inhibition and cellular toxicity. Gratifyingly, all of them showed relevant inhibitory activity in the in vitro tests along with no toxicity. Among them HPCAR-28 represents the most promising compound as potential anti-HIV agent, showing inhibitory activity against HIV IN in the low nanomolar range, comparable to that found for Raltegravir, and relevant potency in inhibiting HIV-1 replication and HIV-1 IN strand transfer activity. In summary, our results outline HPCAR-28 as a useful optimized hit for the potential treatment of HIV-1 infection by targeting HIV IN.
Collapse
Affiliation(s)
- Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Giulia Chemi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Zeger Debyser
- Molecular Medicine, K.U. Leuven and IRC KULAK, Leuven, Belgium
| | - Frauke Christ
- Molecular Medicine, K.U. Leuven and IRC KULAK, Leuven, Belgium
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Afshin Fassihi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Naples Federico II, Naples, Italy
| |
Collapse
|
15
|
Hughes DL. Review of Synthetic Routes and Final Forms of Integrase Inhibitors Dolutegravir, Cabotegravir, and Bictegravir. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David L. Hughes
- Cidara Therapeutics, Inc., 6310 Nancy Ridge Dr., Suite 101, San Diego, California 92121, United States
| |
Collapse
|
16
|
Jiang Z, You Q, Zhang X. Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective. Eur J Med Chem 2019; 165:172-197. [PMID: 30684796 DOI: 10.1016/j.ejmech.2019.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
Numerous metal-containing enzymes (metalloenzymes) have been considered as drug targets related to diseases such as cancers, diabetes, anemia, AIDS, malaria, bacterial infection, fibrosis, and neurodegenerative diseases. Inhibitors of the metalloenzymes have been developed independently, most of which are mimics of substrates of the corresponding enzymes. However, little attention has been paid to the interactions between inhibitors and active site metal ions. This review is focused on different metal binding fragments and their chelating properties in the metal-containing active binding pockets of metalloenzymes. We have enumerated over one hundred of inhibitors targeting various metalloenzymes and identified over ten kinds of fragments with different binding patterns. Furthermore, we have investigated the inhibitors that are undergoing clinical evaluation in order to help looking for more potential scaffolds bearing metal binding fragments. This review will provide deep insights for the rational design of novel inhibitors targeting the metal-containing binding sites of specific proteins.
Collapse
Affiliation(s)
- Zhensheng Jiang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaojin Zhang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
17
|
Gudisela MR, Bommu P, Navuluri S, Mulakayala N. Synthesis and Characterization of Potential Impurities of Dolutegravir: A HIV Drug. ChemistrySelect 2018. [DOI: 10.1002/slct.201800948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mura Reddy Gudisela
- Department of Chemistry; VFSTR, Vadlamudi; Guntur 522213 India
- PS3 Laboratories LLC; Hyderabad - 500072 India
| | | | | | | |
Collapse
|
18
|
Hou YM, Matsubara R, Takase R, Masuda I, Sulkowska JI. TrmD: A Methyl Transferase for tRNA Methylation With m 1G37. Enzymes 2017; 41:89-115. [PMID: 28601227 DOI: 10.1016/bs.enz.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TrmD is an S-adenosyl methionine (AdoMet)-dependent methyl transferase that synthesizes the methylated m1G37 in tRNA. TrmD is specific to and essential for bacterial growth, and it is fundamentally distinct from its eukaryotic and archaeal counterpart Trm5. TrmD is unusual by using a topological protein knot to bind AdoMet. Despite its restricted mobility, the TrmD knot has complex dynamics necessary to transmit the signal of AdoMet binding to promote tRNA binding and methyl transfer. Mutations in the TrmD knot block this intramolecular signaling and decrease the synthesis of m1G37-tRNA, prompting ribosomes to +1-frameshifts and premature termination of protein synthesis. TrmD is unique among AdoMet-dependent methyl transferases in that it requires Mg2+ in the catalytic mechanism. This Mg2+ dependence is important for regulating Mg2+ transport to Salmonella for survival of the pathogen in the host cell. The strict conservation of TrmD among bacterial species suggests that a better characterization of its enzymology and biology will have a broad impact on our understanding of bacterial pathogenesis.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Thomas Jefferson University, Philadelphia, PA, United States.
| | - Ryuma Matsubara
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Ryuichi Takase
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Isao Masuda
- Thomas Jefferson University, Philadelphia, PA, United States
| | | |
Collapse
|
19
|
Righi G, Pelagalli R, Isoni V, Tirotta I, Dallocchio R, Dessì A, Macchi B, Frezza C, Rossetti I, Bovicelli P. Synthesis, molecular modeling and biological evaluation of two new chicoric acid analogs. Nat Prod Res 2017; 31:397-403. [DOI: 10.1080/14786419.2016.1169413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Giuliana Righi
- CNR-IBPM Department of Chemistry, “Sapienza” Universy of Rome, Rome, Italy
| | - Romina Pelagalli
- Department of Chemistry and IMC-CNR, “Sapienza” Universy of Rome, Roma, Italy
| | - Valerio Isoni
- Department of Chemistry and IMC-CNR, “Sapienza” Universy of Rome, Roma, Italy
| | - Ilaria Tirotta
- Department of Chemistry and IMC-CNR, “Sapienza” Universy of Rome, Roma, Italy
| | | | | | - Beatrice Macchi
- Department of System Medicine, “Tor Vergata” University, Rome, Italy
| | - Caterina Frezza
- Department of System Medicine, “Tor Vergata” University, Rome, Italy
| | - Ilaria Rossetti
- Department of Chemistry and IMC-CNR, “Sapienza” Universy of Rome, Roma, Italy
| | - Paolo Bovicelli
- CNR-IBPM Department of Chemistry, “Sapienza” Universy of Rome, Rome, Italy
| |
Collapse
|
20
|
Singh R, Yadav P, Urvashi, Tandon V. Novel Dioxolan Derivatives of Indole as HIV-1 Integrase Strand Transfer Inhibitors Active Against RAL Resistant Mutant Virus. ChemistrySelect 2016. [DOI: 10.1002/slct.201601024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Raja Singh
- Special Centre for Molecular Medicine; Jawaharlal Nehru University
| | - Pooja Yadav
- Department of Chemistry; University of Delhi
| | - Urvashi
- Department of Chemistry; University of Delhi
| | - Vibha Tandon
- Department of Chemistry; University of Delhi
- Special Centre for Molecular Medicine; Jawaharlal Nehru University
| |
Collapse
|
21
|
Discovery of novel 5-hydroxy-4-pyridone-3-carboxy acids as potent inhibitors of influenza Cap-dependent endonuclease. Bioorg Med Chem Lett 2016; 26:4739-4742. [DOI: 10.1016/j.bmcl.2016.08.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/17/2016] [Accepted: 08/13/2016] [Indexed: 02/05/2023]
|
22
|
Sankareswaran S, Mannam M, Chakka V, Mandapati SR, Kumar P. Identification and Control of Critical Process Impurities: An Improved Process for the Preparation of Dolutegravir Sodium. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00156] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Srimurugan Sankareswaran
- Micro Labs Ltd., Chemical Research Department, API R&D Centre, Bommasandra-Jigini Link Road, KIADB INDL Area, Bommasandra, Bangalore 560105, Karnataka, India
| | - Madhavarao Mannam
- Micro Labs Ltd., Chemical Research Department, API R&D Centre, Bommasandra-Jigini Link Road, KIADB INDL Area, Bommasandra, Bangalore 560105, Karnataka, India
| | - Veerababu Chakka
- Micro Labs Ltd., Chemical Research Department, API R&D Centre, Bommasandra-Jigini Link Road, KIADB INDL Area, Bommasandra, Bangalore 560105, Karnataka, India
| | - Srirami Reddy Mandapati
- Micro Labs Ltd., Chemical Research Department, API R&D Centre, Bommasandra-Jigini Link Road, KIADB INDL Area, Bommasandra, Bangalore 560105, Karnataka, India
| | - Pramod Kumar
- Micro Labs Ltd., Chemical Research Department, API R&D Centre, Bommasandra-Jigini Link Road, KIADB INDL Area, Bommasandra, Bangalore 560105, Karnataka, India
| |
Collapse
|
23
|
Schreiner E, Richter F, Nerdinger S. Development of Synthetic Routes to Dolutegravir. TOPICS IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1007/7081_2016_200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Design and synthesis of 5-chloro-2-hydroxy-3-triazolylbenzoic acids as HIV integrase inhibitors. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1325-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Effects of raltegravir or elvitegravir resistance signature mutations on the barrier to dolutegravir resistance in vitro. Antimicrob Agents Chemother 2015; 59:2596-606. [PMID: 25691633 DOI: 10.1128/aac.04844-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/09/2015] [Indexed: 11/20/2022] Open
Abstract
The recently approved HIV-1 integrase strand transfer inhibitor (INSTI) dolutegravir (DTG) (S/GSK1349572) has overall advantageous activity when tested in vitro against HIV-1 with raltegravir (RAL) and elvitegravir (EVG) resistance signature mutations. We conducted an in vitro resistance selection study using wild-type HIV-1 and mutants with the E92Q, Y143C, Y143R, Q148H, Q148K, Q148R, and N155H substitutions to assess the DTG in vitro barrier to resistance. No viral replication was observed at concentrations of ≥ 32 nM DTG, whereas viral replication was observed at 160 nM RAL or EVG in the mutants. In the Q148H, Q148K, or Q148R mutants, G140S/Q148H, E138K/Q148K, E138K/Q148R, and G140S/Q148R secondary mutations were identified with each INSTI and showed high resistance to RAL or EVG but limited resistance to DTG. E138K and G140S, as secondary substitutions to Q148H, Q148K, or Q148R, were associated with partial recovery in viral infectivity and/or INSTI resistance. In the E92Q, Y143C, Y143R, and N155H mutants, no secondary substitutions were associated with DTG. These in vitro results suggest that DTG has a high barrier to the development of resistance in the presence of RAL or EVG signature mutations other than Q148. One explanation for this high barrier to resistance is that no additional secondary substitution of E92Q, Y143C, Y143R, or N155H simultaneously increased the fold change in 50% effective concentration (EC50) to DTG and infectivity. Although increased DTG resistance via the Q148 pathway and secondary substitutions occurs at low concentrations, a higher starting concentration may reduce or eliminate the development of DTG resistance in this pathway in vitro.
Collapse
|
26
|
A divalent metal ion-dependent N(1)-methyl transfer to G37-tRNA. ACTA ACUST UNITED AC 2014; 21:1351-1360. [PMID: 25219964 DOI: 10.1016/j.chembiol.2014.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 01/09/2023]
Abstract
The catalytic mechanism of the majority of S-adenosyl methionine (AdoMet)-dependent methyl transferases requires no divalent metal ions. Here we report that methyl transfer from AdoMet to N(1) of G37-tRNA, catalyzed by the bacterial TrmD enzyme, is strongly dependent on divalent metal ions and that Mg(2+) is the most physiologically relevant. Kinetic isotope analysis, metal rescue, and spectroscopic measurements indicate that Mg(2+) is not involved in substrate binding, but in promoting methyl transfer. On the basis of the pH-activity profile indicating one proton transfer during the TrmD reaction, we propose a catalytic mechanism in which the role of Mg(2+) is to help to increase the nucleophilicity of N(1) of G37 and stabilize the negative developing charge on O(6) during attack on the methyl sulfonium of AdoMet. This work demonstrates how Mg(2+) contributes to the catalysis of AdoMet-dependent methyl transfer in one of the most crucial posttranscriptional modifications to tRNA.
Collapse
|
27
|
Danial M, Klok HA. Polymeric anti-HIV therapeutics. Macromol Biosci 2014; 15:9-35. [PMID: 25185484 DOI: 10.1002/mabi.201400298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/14/2014] [Indexed: 11/09/2022]
Abstract
The scope of this review is to highlight the application of polymer therapeutics in an effort to curb the transmission and infection of the human immunodeficiency virus (HIV). Following a description of the HIV life cycle, the use of approved antiretroviral drugs that inhibit critical steps in the HIV infection process is highlighted. After that, a comprehensive overview of the structure and inhibitory properties of polymeric anti-HIV therapeutic agents is presented. This overview will include inhibitors based on polysaccharides, synthetic polymers, dendritic polymers, polymer conjugates as well as polymeric DC-SIGN antagonists. The review will conclude with a section that discusses the applications of polymers and polymer conjugates as systemic and topical anti-HIV therapeutics.
Collapse
Affiliation(s)
- Maarten Danial
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland.
| | | |
Collapse
|
28
|
Magalhães UDO, Souza AMTD, Albuquerque MG, Brito MAD, Bello ML, Cabral LM, Rodrigues CR. Hologram quantitative structure-activity relationship and comparative molecular field analysis studies within a series of tricyclic phthalimide HIV-1 integrase inhibitors. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:953-61. [PMID: 24039405 PMCID: PMC3771852 DOI: 10.2147/dddt.s47057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acquired immunodeficiency syndrome is a public health problem worldwide caused by the Human immunodeficiency virus (HIV). Treatment with antiretroviral drugs is the best option for viral suppression, reducing morbidity and mortality. However, viral resistance in HIV-1 therapy has been reported. HIV-1 integrase (IN) is an essential enzyme for effective viral replication and an attractive target for the development of new inhibitors. In the study reported here, two- and three-dimensional quantitative structure–activity relationship (2D/3D-QSAR) studies, applying hologram quantitative structure–activity relationship (HQSAR) and comparative molecular field analysis (CoMFA) methods, respectively, were performed on a series of tricyclic phthalimide HIV-1 IN inhibitors. The best HQSAR model (q2 = 0.802, r2 = 0.972) was obtained using atoms, bonds, and connectivity as the fragment distinction, a fragment size of 2–5 atoms, hologram length of 61 bins, and six components. The best CoMFA model (q2 = 0.748, r2 = 0.974) was obtained with alignment of all atoms of the tricyclic phthalimide moiety (alignment II). The HQSAR contribution map identified that the carbonyl-hydroxy-aromatic nitrogen motif made a positive contribution to the activity of the compounds. Furthermore, CoMFA contour maps suggested that bulky groups in meta and para positions in the phenyl ring would increase the biological activity of this class. The conclusions of this work may lead to a better understanding of HIV-1 IN inhibition and contribute to the design of new and more potent derivatives.
Collapse
Affiliation(s)
- Uiaran de Oliveira Magalhães
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Laboratório de Modelagem Molecular and QSAR (ModMolQSAR), Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
29
|
Dewdney TG, Wang Y, Kovari IA, Reiter SJ, Kovari LC. Reduced HIV-1 integrase flexibility as a mechanism for raltegravir resistance. J Struct Biol 2013; 184:245-50. [PMID: 23891838 DOI: 10.1016/j.jsb.2013.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
Abstract
HIV-1 integrase is an essential enzyme necessary for the replication of the HIV virus as it catalyzes the insertion of the viral genome into the host chromosome. Raltegravir was the first integrase inhibitor approved by the FDA for antiretroviral treatment. HIV patients on raltegravir containing regimens often develop drug resistance mutations at residue 140 and 148 in the catalytic 140's loop resulting in a 5-10 fold decrease in susceptibility to raltegravir. Obtaining crystallographic structure information on the Q148H/R, G140S/A primary and secondary mutations has been elusive. Using 10 ns molecular dynamics simulations, we present a detailed analysis of the structural changes induced by these mutations. The formation frequency of a transient helix in the catalytic 140's loop is increased and the length of this helix is extended from 3-residues to 4 in the mutants relative to the wild type. This helix causes reduced flexibility in the protein active site and therefore serves as a gating mechanism restricting the access of raltegravir to the integrase binding pocket. These results suggest that resistance to raltegravir occurs through a common mechanism of altering the formation frequency of transient secondary structures such as α2 and β5 in addition to the conformational changes in the 140's loop therefore decreasing the flexibility of the HIV-1 integrase protein. The reduced integrase flexibility serves as a mechanism of resistance to raltegravir.
Collapse
Affiliation(s)
- Tamaria G Dewdney
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
30
|
Structural and functional insights into foamy viral integrase. Viruses 2013; 5:1850-66. [PMID: 23872492 PMCID: PMC3738965 DOI: 10.3390/v5071850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023] Open
Abstract
Successful integration of retroviral DNA into the host chromosome is an essential step for viral replication. The process is mediated by virally encoded integrase (IN) and orchestrated by 3'-end processing and the strand transfer reaction. In vitro reaction conditions, such as substrate specificity, cofactor usage, and cellular binding partners for such reactions by the three distinct domains of prototype foamy viral integrase (PFV-IN) have been described well in several reports. Recent studies on the three-dimensional structure of the interacting complexes between PFV-IN and DNA, cofactors, binding partners, or inhibitors have explored the mechanistic details of such interactions and shown its utilization as an important target to develop anti-retroviral drugs. The presence of a potent, non-transferable nuclear localization signal in the PFV C-terminal domain extends its use as a model for investigating cellular trafficking of large molecular complexes through the nuclear pore complex and also to identify novel cellular targets for such trafficking. This review focuses on recent advancements in the structural analysis and in vitro functional aspects of PFV-IN.
Collapse
|
31
|
Johns BA, Kawasuji T, Weatherhead JG, Taishi T, Temelkoff DP, Yoshida H, Akiyama T, Taoda Y, Murai H, Kiyama R, Fuji M, Tanimoto N, Jeffrey J, Foster SA, Yoshinaga T, Seki T, Kobayashi M, Sato A, Johnson MN, Garvey EP, Fujiwara T. Carbamoyl pyridone HIV-1 integrase inhibitors 3. A diastereomeric approach to chiral nonracemic tricyclic ring systems and the discovery of dolutegravir (S/GSK1349572) and (S/GSK1265744). J Med Chem 2013; 56:5901-16. [PMID: 23845180 DOI: 10.1021/jm400645w] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report herein the discovery of the human immunodeficiency virus type-1 (HIV-1) integrase inhibitors dolutegravir (S/GSK1349572) (3) and S/GSK1265744 (4). These drugs stem from a series of carbamoyl pyridone analogues designed using a two-metal chelation model of the integrase catalytic active site. Structure-activity studies evolved a tricyclic series of carbamoyl pyridines that demonstrated properties indicative of once-daily dosing and superior potency against resistant viral strains. An inherent hemiaminal ring fusion stereocenter within the tricyclic carbamoyl pyridone scaffold led to a critical substrate controlled diastereoselective synthetic strategy whereby chiral information from small readily available amino alcohols was employed to control relative and absolute stereochemistry of the final drug candidates. Modest to extremely high levels of stereochemical control were observed depending on ring size and position of the stereocenter. This approach resulted in the discovery of 3 and 4, which are currently in clinical development.
Collapse
Affiliation(s)
- Brian A Johns
- GlaxoSmithKline Research & Development , Infectious Diseases Therapeutic Area Unit, Five Moore Drive, Research Triangle Park, North Carolina 27709, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Arora R, de Beauchene IC, Polanski J, Laine E, Tchertanov L. Raltegravir flexibility and its impact on recognition by the HIV-1 IN targets. J Mol Recognit 2013; 26:383-401. [PMID: 23836466 DOI: 10.1002/jmr.2277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 04/04/2013] [Accepted: 04/07/2013] [Indexed: 01/10/2023]
Abstract
HIV-1 IN is a pertinent target for the development of AIDS chemotherapy. The first IN-specific inhibitor approved for the treatment of HIV/AIDS, RAL, was designed to block the ST reaction. We characterized the structural and conformational features of RAL and its recognition by putative HIV-1 targets - the unbound IN, the vDNA, and the IN•vDNA complex - mimicking the IN states over the integration process. RAL binding to the targets was studied by performing an extensive sampling of the inhibitor conformational landscape and by using four different docking algorithms: Glide, Autodock, VINA, and SurFlex. The obtained data evidenced that: (i) a large binding pocket delineated by the active site and an extended loop in the unbound IN accommodates RAL in distinct conformational states all lacking specific interactions with the target; (ii) a well-defined cavity formed by the active site, the vDNA, and the shortened loop in the IN•vDNA complex provide a more optimized inhibitor binding site in which RAL chelates Mg(2+) cations; (iii) a specific recognition between RAL and the unpaired cytosine of the processed DNA is governed by a pair of strong H-bonds similar to those observed in DNA base pair G-C. The identified RAL pose at the cleaved vDNA shed light on a putative step of RAL inhibition mechanism. This modeling study indicates that the inhibition process may include as a first step RAL recognition by the processed vDNA bound to a transient intermediate IN state, and thus provides a potentially promising route to the design of IN inhibitors with improved affinity and selectivity.
Collapse
Affiliation(s)
- Rohit Arora
- Bioinformatics, Molecular Dynamics & Modeling (BiMoDyM), Laboratoire de Biologie et Pharmacologie Appliquée (LBPA-CNRS), Ecole Normale Supérieure de Cachan, 61 avenue du Président Wilson, 94235, Cachan, France
| | | | | | | | | |
Collapse
|
33
|
Kawasuji T, Johns BA, Yoshida H, Weatherhead JG, Akiyama T, Taishi T, Taoda Y, Mikamiyama-Iwata M, Murai H, Kiyama R, Fuji M, Tanimoto N, Yoshinaga T, Seki T, Kobayashi M, Sato A, Garvey EP, Fujiwara T. Carbamoyl pyridone HIV-1 integrase inhibitors. 2. Bi- and tricyclic derivatives result in superior antiviral and pharmacokinetic profiles. J Med Chem 2013; 56:1124-35. [PMID: 23316884 DOI: 10.1021/jm301550c] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This work is a continuation of our initial discovery of a potent monocyclic carbamoyl pyridone human immunodeficiency virus type-1 (HIV-1) integrase inhibitor that displayed favorable antiviral and pharmacokinetic properties. We report herein a series of bicyclic carbamoyl pyridone analogues to address conformational issues from our initial SAR studies. This modification of the core unit succeeded to deliver low nanomolar potency in standard antiviral assays. An additional hydroxyl substituent on the bicyclic scaffold provides remarkable improvement of antiviral efficacies against clinically relevant resistant viruses. These findings led to additional cyclic tethering of the naked hydroxyl group resulting in tricyclic carbamoyl pyridone inhibitors to address remaining issues and deliver potential clinical candidates. The tricyclic carbamoyl pyridone derivatives described herein served as the immediate leads in molecules to the next generation integrase inhibitor dolutegravir which is currently in late stage clinical evaluation.
Collapse
Affiliation(s)
- Takashi Kawasuji
- Shionogi Pharmaceutical Research Center, Shionogi and Co., Ltd. , 3-1-1, Osaka 561-0825, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xue W, Jin X, Ning L, Wang M, Liu H, Yao X. Exploring the Molecular Mechanism of Cross-Resistance to HIV-1 Integrase Strand Transfer Inhibitors by Molecular Dynamics Simulation and Residue Interaction Network Analysis. J Chem Inf Model 2012; 53:210-22. [DOI: 10.1021/ci300541c] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Weiwei Xue
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xiaojie Jin
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Lulu Ning
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Meixia Wang
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Huanxiang Liu
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Xiaojun Yao
- State
Key Laboratory of Applied Organic Chemistry, Department of Chemistry, ‡School of Pharmacy, and §Key Lab of Preclinical
Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
35
|
Balaraju T, Kumar A, Bal C, Chattopadhyay D, Jena N, Bal NC, Sharon A. Aromatic interaction profile to understand the molecular basis of raltegravir resistance. Struct Chem 2012. [DOI: 10.1007/s11224-012-0181-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Naphthyridinone (NTD) integrase inhibitors: N1 protio and methyl combination substituent effects with C3 amide groups. Bioorg Med Chem Lett 2012; 23:422-5. [PMID: 23245515 DOI: 10.1016/j.bmcl.2012.11.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/19/2012] [Indexed: 11/23/2022]
Abstract
Substituent effects of a series of N1 protio and methyl naphthyridinone HIV-1 integrase strand-transfer inhibitors has been explored. The effects of combinations of the N1 substituent and C3 amide groups was extensively studied to compare enzyme inhibition, antiviral activity and protein binding effects on potency. The impact of substitution on ligand efficiency was considered and several compounds were advanced into in vivo pharmacokinetic studies ultimately leading to the clinical candidate GSK364735.
Collapse
|
37
|
Kawasuji T, Johns BA, Yoshida H, Taishi T, Taoda Y, Murai H, Kiyama R, Fuji M, Yoshinaga T, Seki T, Kobayashi M, Sato A, Fujiwara T. Carbamoyl pyridone HIV-1 integrase inhibitors. 1. Molecular design and establishment of an advanced two-metal binding pharmacophore. J Med Chem 2012; 55:8735-44. [PMID: 22963135 DOI: 10.1021/jm3010459] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Our group has focused on expanding the scope of a two-metal binding pharmacophore concept to explore HIV-1 integrase inhibitors through medicinal chemistry efforts to design novel scaffolds which allow for improvement of pharmacokinetic (PK) and resistance profiles. A novel chelating scaffold was rationally designed to effectively coordinate two magnesium cofactors and to extend an aromatic group into an optimal hydrophobic pharmacophore space. The new chemotype, consisting of a carbamoyl pyridone core unit, shows high inhibitory potency in both enzymatic and antiviral assay formats with low nM IC₅₀ and encouraging potency shift effects in the presence of relevant serum proteins. The new inhibitor design displayed a remarkable PK profile suggestive of once daily dosing without the need for a PK booster as demonstrated by robust drug concentrations at 24 h after oral dosing in rats, dogs, and cynomolgus monkeys.
Collapse
Affiliation(s)
- Takashi Kawasuji
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The future of integrase inhibitors of HIV-1. Curr Opin Virol 2012; 2:580-7. [PMID: 22980926 DOI: 10.1016/j.coviro.2012.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 11/21/2022]
Abstract
Integration of the HIV-1 DNA is required and essential to maintain the viral DNA in the infected cell. Integration process occurs in several events, mainly endonucleolytic processing of the 3' ends of the viral DNA and strand transfer or joining of the viral and cellular DNA. The design and discovery of integrase inhibitors were first focused at targeting the catalytic site of IN with a specific effect on strand transfer. Several integrase inhibitors were developed clinically, two first generation inhibitors, raltegravir and elvitegravir and then two second-generation inhibitors, dolutegravir and MK-2058. Recently, allosteric integrase inhibitors intended to interfere with the integrase-LEDGF/p75 interaction have been designed. These new inhibitors called LEDGINs have an effect on 3' processing and strand transfer. Thus, integrase inhibitors present a real added value in combined treatment for naive and experienced HIV infected patients. Combination experiments of LEDGINs and raltegravir suggest that these inhibitors could act additively despite sharing the same viral target. Future therapy could involve combinations of inhibitors of IN function acting though different binding pockets within IN. The place of this class on HIV inhibitors and their future role in perspective of novel therapies to eliminate latent HIV reservoirs and infection for cure should also be explored.
Collapse
|
39
|
Computational POM and 3D-QSAR evaluation of experimental in vitro HIV-1-Integrase inhibition of amide-containing diketoacids. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0120-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Hu L, Zhang S, He X, Luo Z, Wang X, Liu W, Qin X. Design and synthesis of novel β-diketo derivatives as HIV-1 integrase inhibitors. Bioorg Med Chem 2012; 20:177-82. [DOI: 10.1016/j.bmc.2011.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
|
41
|
Bacchi A, Carcelli M, Compari C, Fisicaro E, Pala N, Rispoli G, Rogolino D, Sanchez TW, Sechi M, Neamati N. HIV-1 IN Strand Transfer Chelating Inhibitors: A Focus on Metal Binding. Mol Pharm 2011; 8:507-19. [DOI: 10.1021/mp100343x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Nicolino Pala
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | | | | | - Tino W. Sanchez
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 304, Los Angeles, California 90089, United States
| | - Mario Sechi
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - Nouri Neamati
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 304, Los Angeles, California 90089, United States
| |
Collapse
|
42
|
Lenz JCC, Rockstroh JK. S/GSK1349572, a new integrase inhibitor for the treatment of HIV: promises and challenges. Expert Opin Investig Drugs 2011; 20:537-48. [PMID: 21381981 DOI: 10.1517/13543784.2011.562189] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The recent introduction of integrase inhibitors (INIs) into the HIV treatment armentarium has had a significant impact on HIV treatment. However, at present, raltegravir twice daily is the only licensed INI featuring a lower genetic barrier compared with boosted protease inhibitors. S/GSK1349572 represents a new INI in current development. It is a once-daily, unboosted INI with low pharmacokinetic variability and predictable exposure-response relationship. Phase IIb studies in antiretroviral-naïve patients have demonstrated non-inferiority to efavirenz-based HIV therapy. Phase II studies in INI-experienced patients show partially retained activity in vivo. Overall, the safety profile of S/GSK1349572 in all studies completed has been very favorable. AREAS COVERED A Pubmed and Medline search was carried out on all articles on S/GSK1349572 from 2005 to 2010, including recent abstract presentations from major HIV conferences (CROI 2010, WAC2010, EACS2009, HIV10 and ICAAC2010). The reader will become acquainted with the unique properties of this new INI and will understand the current promises and challenges of the data available from S/GSK1349572. EXPERT OPINION S/GSK1349572 represents a new, unboosted, once-daily INI in development with distinct pharmacokinetics and resistance profile, which has showed promising potency and tolerability in the first clinical studies.
Collapse
|
43
|
Gupta P, Garg P, Roy N. Comparative docking and CoMFA analysis of curcumine derivatives as HIV-1 integrase inhibitors. Mol Divers 2011; 15:733-50. [DOI: 10.1007/s11030-011-9304-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/05/2011] [Indexed: 12/01/2022]
|
44
|
Bodiwala HS, Sabde S, Gupta P, Mukherjee R, Kumar R, Garg P, Bhutani KK, Mitra D, Singh IP. Design and synthesis of caffeoyl-anilides as portmanteau inhibitors of HIV-1 integrase and CCR5. Bioorg Med Chem 2011; 19:1256-63. [DOI: 10.1016/j.bmc.2010.12.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/26/2010] [Accepted: 12/13/2010] [Indexed: 11/28/2022]
|
45
|
de Melo EB. Multivariate SAR/QSAR of 3-aryl-4-hydroxyquinolin-2(1H)-one derivatives as type I fatty acid synthase (FAS) inhibitors. Eur J Med Chem 2010; 45:5817-26. [DOI: 10.1016/j.ejmech.2010.09.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 11/24/2022]
|
46
|
Crosby DC, Lei X, Gibbs CG, McDougall BR, Robinson WE, Reinecke MG. Design, synthesis, and biological evaluation of novel hybrid dicaffeoyltartaric/diketo acid and tetrazole-substituted L-chicoric acid analogue inhibitors of human immunodeficiency virus type 1 integrase. J Med Chem 2010; 53:8161-75. [PMID: 20977258 DOI: 10.1021/jm1010594] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fourteen analogues of the anti-HIV-1 integrase (IN) inhibitor L-chicoric acid (L-CA) were prepared. Their IC(50) values for 3'-end processing and strand transfer against recombinant HIV-1 IN were determined in vitro, and their cell toxicities and EC(50) against HIV-1 were measured in cells (ex vivo). Compounds 1-6 are catechol/β-diketoacid hybrids, the majority of which exhibit submicromolar potency against 3'-end processing and strand transfer, though only with modest antiviral activities. Compounds 7-10 are L-CA/p-fluorobenzylpyrroloyl hybrids, several of which were more potent against strand transfer than 3'-end processing, a phenomenon previously attributed to the β-diketo acid pharmacophore. Compounds 11-14 are tetrazole bioisosteres of L-CA and its analogues, whose in vitro potencies were comparable to L-CA but with enhanced antiviral potency. The trihydroxyphenyl analogue 14 was 30-fold more potent than L-CA at relatively nontoxic concentrations. These data indicate that L-CA analogues are attractive candidates for development into clinically relevant inhibitors of HIV-1 IN.
Collapse
Affiliation(s)
- David C Crosby
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California 92697-4800, USA
| | | | | | | | | | | |
Collapse
|
47
|
Jones ED, Vandegraaff N, Le G, Choi N, Issa W, Macfarlane K, Thienthong N, Winfield LJ, Coates JA, Lu L, Li X, Feng X, Yu C, Rhodes DI, Deadman JJ. Design of a series of bicyclic HIV-1 integrase inhibitors. Part 1: Selection of the scaffold. Bioorg Med Chem Lett 2010; 20:5913-7. [DOI: 10.1016/j.bmcl.2010.07.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/18/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
|
48
|
Synthesis of polyhydroxylated aromatics having amidation of piperazine nitrogen as HIV-1 integrase inhibitor. Bioorg Med Chem Lett 2010; 20:5469-71. [DOI: 10.1016/j.bmcl.2010.07.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/27/2010] [Accepted: 07/21/2010] [Indexed: 11/23/2022]
|
49
|
Liao C, Nicklaus MC. Tautomerism and magnesium chelation of HIV-1 integrase inhibitors: a theoretical study. ChemMedChem 2010; 5:1053-66. [PMID: 20533499 PMCID: PMC3447627 DOI: 10.1002/cmdc.201000039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Indexed: 01/23/2023]
Abstract
The tautomerism and corresponding transition states of four authentic HIV-1 integrase (IN) inhibitor prototype structures, alpha,gamma-diketo acid, alpha,gamma-diketotriazole, dihydroxypyrimidine carboxamide and 4-quinolone-3-carboxylic acid, were investigated at the B3LYP/6-311++G(d,p) level in vacuum and in aqueous solvent models. To study the possible chelating modes of these tautomers with two magnesium ions--a process important for inhibition--we modeled an assembly of three formic acids, four water molecules and two Mg(2+) ions as a template mimicking the binding site of IN. The DFT calculation results show that deprotonated enolized or phenolic hydroxy groups of specific tautomers in water lead to the most stable complexes, with the two magnesium ions separated by a distance of approximately 3.70 to 3.74 A, and with each magnesium ion at the center of an octahedron. The drug candidate GS-9137 (Gilead), based on the 4-quinolone-3-carboxylic acid scaffold, and its analogues form similar but different chelating modes. When one water molecule in the complex is replaced by a methanol molecule, which mimics the terminal 3'-OH of viral DNA, a good chelating complex is retained. This supports the hypothesis that, in the binding site of IN after 3'-processing, the terminal 3'-OH of viral DNA interacts with one Mg(2+) by chelation.
Collapse
Affiliation(s)
- Chenzhong Liao
- Dr. C. Liao, Dr. M.C. Nicklaus, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS NCI-Frederick, 376 Boyles St., Frederick, MD 21702, USA, Fax: (+1) 301-846-6033
| | - Marc C. Nicklaus
- Dr. C. Liao, Dr. M.C. Nicklaus, Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS NCI-Frederick, 376 Boyles St., Frederick, MD 21702, USA, Fax: (+1) 301-846-6033
| |
Collapse
|
50
|
Abstract
Computer-aided drug design (CADD) methodologies have made great advances and contributed significantly to the discovery and/or optimization of many clinically used drugs in recent years. CADD tools have likewise been applied to the discovery of inhibitors of HIV-1 integrase, a difficult and worthwhile target for the development of efficient anti-HIV drugs. This article reviews the application of CADD tools, including pharmacophore search, quantitative structure-activity relationships, model building of integrase complexed with viral DNA and quantum-chemical studies in the discovery of HIV-1 integrase inhibitors. Different structurally diverse integrase inhibitors have been identified by, or with significant help from, various CADD tools.
Collapse
Affiliation(s)
- Chenzhong Liao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, NCI-Frederick, 376 Boyles Street, Frederick, MD 21702, USA
| | - Marc C Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, NCI-Frederick, 376 Boyles Street, Frederick, MD 21702, USA
| |
Collapse
|