1
|
Wang Y, Lin R, Liu M, Wang S, Chen H, Zeng W, Nie X, Wang S. N-Myristoyltransferase, a Potential Antifungal Candidate Drug-Target for Aspergillus flavus. Microbiol Spectr 2023; 11:e0421222. [PMID: 36541770 PMCID: PMC9927591 DOI: 10.1128/spectrum.04212-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
The filamentous fungus Aspergillus flavus causes devastating diseases not only to cash crops but also to humans by secreting a series of secondary metabolites called aflatoxins. In the cotranslational or posttranslational process, N-myristoyltransferase (Nmt) is a crucial enzyme that catalyzes the myristate group from myristoyl-coenzyme A (myristoyl-CoA) to the N terminus or internal glycine residue of a protein by forming a covalent bond. Members of the Nmt family execute a diverse range of biological functions across a broad range of fungi. However, the underlying mechanism of AflNmt action in the A. flavus life cycle is unclear, particularly during the growth, development, and secondary metabolic synthesis stages. In the present study, AlfNmt was found to be essential for the development of spore and sclerotia, based on the regulation of the xylose-inducible promoter. AflNmt, located in the cytoplasm of A. flavus, is also involved in modulating aflatoxin (AFB1) in A. flavus, which has not previously been reported in Aspergillus spp. In addition, we purified, characterized, and crystallized the recombinant AflNmt protein (rAflNmt) from the Escherichia coli expression system. Interestingly, the crystal structure of rAlfNmt is moderately different from the models predicted by AlphaFold2 in the N-terminal region, indicating the limitations of machine-learning prediction. In conclusion, these results provide a molecular basis for the functional role of AflNmt in A. flavus and structural insights concerning protein prediction. IMPORTANCE As an opportunistic pathogen, A. flavus causes crop loss due to fungal growth and mycotoxin contamination. Investigating the role of virulence factors during infection and searching for novel drug targets have been popular scientific topics in the field of fungal control. Nmt has become a potential target in some organisms. However, whether Nmt is involved in the developmental stages of A. flavus and aflatoxin synthesis, and whether AlfNmt is an ideal target for structure-based drug design, remains unclear. This study systematically explored and identified the role of AlfNmt in the development of spore and sclerotia, especially in aflatoxin biosynthesis. Moreover, although there is not much difference between the AflNmt model predicted using the AlphaFold2 technique and the structure determined using the X-ray method, current AI prediction models may not be suitable for structure-based drug development. There is still room for further improvements in protein prediction.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ranxun Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mengxin Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongyu Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wanlin Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinyi Nie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Shang S, Liu J, Hua F. Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduct Target Ther 2022; 7:396. [PMID: 36577755 PMCID: PMC9797573 DOI: 10.1038/s41392-022-01245-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 11/06/2022] [Indexed: 12/30/2022] Open
Abstract
Metabolic reprogramming is involved in the pathogenesis of not only cancers but also neurodegenerative diseases, cardiovascular diseases, and infectious diseases. With the progress of metabonomics and proteomics, metabolites have been found to affect protein acylations through providing acyl groups or changing the activities of acyltransferases or deacylases. Reciprocally, protein acylation is involved in key cellular processes relevant to physiology and diseases, such as protein stability, protein subcellular localization, enzyme activity, transcriptional activity, protein-protein interactions and protein-DNA interactions. Herein, we summarize the functional diversity and mechanisms of eight kinds of nonhistone protein acylations in the physiological processes and progression of several diseases. We also highlight the recent progress in the development of inhibitors for acyltransferase, deacylase, and acylation reader proteins for their potential applications in drug discovery.
Collapse
Affiliation(s)
- Shuang Shang
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Jing Liu
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| | - Fang Hua
- grid.506261.60000 0001 0706 7839CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 100050 Beijing, P.R. China
| |
Collapse
|
3
|
Post-Translational Modifications by Lipid Metabolites during the DNA Damage Response and Their Role in Cancer. Biomolecules 2022; 12:biom12111655. [DOI: 10.3390/biom12111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Genomic DNA damage occurs as an inevitable consequence of exposure to harmful exogenous and endogenous agents. Therefore, the effective sensing and repair of DNA damage are essential for maintaining genomic stability and cellular homeostasis. Inappropriate responses to DNA damage can lead to genomic instability and, ultimately, cancer. Protein post-translational modifications (PTMs) are a key regulator of the DNA damage response (DDR), and recent progress in mass spectrometry analysis methods has revealed that a wide range of metabolites can serve as donors for PTMs. In this review, we will summarize how the DDR is regulated by lipid metabolite-associated PTMs, including acetylation, S-succinylation, N-myristoylation, palmitoylation, and crotonylation, and the implications for tumorigenesis. We will also discuss potential novel targets for anti-cancer drug development.
Collapse
|
4
|
Yu A, Cable C, Sharma S, Shihan MH, Mattis AN, Mileva I, Hannun YA, Duwaerts CC, Chen JY. Targeting acid ceramidase ameliorates fibrosis in mouse models of non-alcoholic steatohepatitis. Front Med (Lausanne) 2022; 9:881848. [PMID: 36275798 PMCID: PMC9582277 DOI: 10.3389/fmed.2022.881848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common cause of liver disease worldwide, and is characterized by the accumulation of fat in the liver. Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, is a leading cause of liver transplantation. Fibrosis is the histologic feature most associated with liver-related morbidity and mortality in patients with NASH, and treatment options remain limited. In previous studies, we discovered that acid ceramidase (aCDase) is a potent antifibrotic target using human hepatic stellate cells (HSCs) and models of hepatic fibrogenesis. Using two dietary mouse models, we demonstrate that depletion of aCDase in HSC reduces fibrosis without worsening metabolic features of NASH, including steatosis, inflammation, and insulin resistance. Consistently, pharmacologic inhibition of aCDase ameliorates fibrosis but does not alter metabolic parameters. The findings suggest that targeting aCDase is a viable therapeutic option to reduce fibrosis in patients with NASH.
Collapse
Affiliation(s)
- Amy Yu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Carson Cable
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Sachin Sharma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Mahbubul H. Shihan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Aras N. Mattis
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
- The Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Izolda Mileva
- Department of Medicine and Biochemistry and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Yusuf A. Hannun
- Department of Medicine and Biochemistry and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Caroline C. Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- The Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer Y. Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- The Liver Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Li W, Li F, Zhang X, Lin HK, Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther 2021; 6:422. [PMID: 34924561 PMCID: PMC8685280 DOI: 10.1038/s41392-021-00825-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
More and more in-depth studies have revealed that the occurrence and development of tumors depend on gene mutation and tumor heterogeneity. The most important manifestation of tumor heterogeneity is the dynamic change of tumor microenvironment (TME) heterogeneity. This depends not only on the tumor cells themselves in the microenvironment where the infiltrating immune cells and matrix together forming an antitumor and/or pro-tumor network. TME has resulted in novel therapeutic interventions as a place beyond tumor beds. The malignant cancer cells, tumor infiltrate immune cells, angiogenic vascular cells, lymphatic endothelial cells, cancer-associated fibroblastic cells, and the released factors including intracellular metabolites, hormonal signals and inflammatory mediators all contribute actively to cancer progression. Protein post-translational modification (PTM) is often regarded as a degradative mechanism in protein destruction or turnover to maintain physiological homeostasis. Advances in quantitative transcriptomics, proteomics, and nuclease-based gene editing are now paving the global ways for exploring PTMs. In this review, we focus on recent developments in the PTM area and speculate on their importance as a critical functional readout for the regulation of TME. A wealth of information has been emerging to prove useful in the search for conventional therapies and the development of global therapeutic strategies.
Collapse
Affiliation(s)
- Wen Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
| | - Feifei Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China.
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| |
Collapse
|
6
|
Bai A, Bielawski J, Bielawska A, Hannun YA. Synthesis of erythro- B13 enantiomers and stereospecific action of full set of B13-isomers in MCF7 breast carcinoma cells: Cellular metabolism and effects on sphingolipids. Bioorg Med Chem 2021; 32:116011. [PMID: 33461145 DOI: 10.1016/j.bmc.2021.116011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 11/30/2022]
Abstract
B13 is an acid ceramidase (ACDase) inhibitor. The two chiral centers of this aromatic amido alcohol lead to four stereoisomers, yet we have little knowledge about its erythro- enantiomers, (1R, 2S) and (1S, 2R). In this paper, for the first time, the synthesis of two erythro- enantiomers is described, and the compounds are evaluated along with two threo- enantiomers, (1R, 2R) and (1S, 2S). The key metabolites and sphingolipid (SL) profile of the full set of B13 stereoisomers in MCF7 breast carcinoma cells are presented. The results demonstrated that the erythro- enantiomers were more effective than the threo- enantiomers on growth inhibition in MCF7 cells, although there were no statistically significant differences within the threo- and erythro- series. Measurement of intracellular levels of the compounds indicated that the erythro- seemed a little more cell permeable than the threo- enantiomers; also, the (1R, 2S) isomer with the same stereo structure as natural ceramide (Cer) could be hydrolyzed and phosphorylated in MCF7 cells. Furthermore, we also observed the formation of C16 homologs from the full set of B13 isomers within the cells, indicating the occurrence of de-acylation and re-acylation of the amino group of the aromatic alcohol. Moreover, the decrease in the Cer/Sph ratio suggests that the growth inhibition from (1R, 2S) isomer is not because of the inhibition of ceramidases. Taken together, (1R, 2S) could be developed as a substitute of natural Cer.
Collapse
Affiliation(s)
- Aiping Bai
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Lipidomics Shared Resources, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Jacek Bielawski
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Lipidomics Shared Resources, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Alicja Bielawska
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Lipidomics Shared Resources, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Yusuf A Hannun
- Departments of Medicine and Biochemistry & the Stony Brook Cancer Center at Stony, Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
7
|
Vethakanraj HS, Chandrasekaran N, Sekar AK. Acid ceramidase, a double-edged sword in cancer aggression: A minireview. Curr Cancer Drug Targets 2020; 21:CCDT-EPUB-112652. [PMID: 33357194 DOI: 10.2174/1568009620666201223154621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 11/22/2022]
Abstract
Acid ceramidase (AC), the key enzyme of the ceramide metabolic pathway hydrolyzes pro-apoptotic ceramide to sphingosine, which by the action of sphingosine-1-kinase is metabolized to mitogenic sphingosine-1-phosphate. The intracellular level of AC determines ceramide/sphingosine-1-phosphate rheostat which in turn decides the cell fate. The upregulated AC expression during cancerous condition acts as a "double-edged sword" by converting pro-apoptotic ceramide to anti-apoptotic sphingosine-1-phosphate, wherein on one end, the level of ceramide is decreased and on the other end, the level of sphingosine-1-phosphate is increased, thus altogether aggravating the cancer progression. In addition, cancer cells with upregulated AC expression exhibited increased cell proliferation, metastasis, chemoresistance, radioresistance and numerous strategies were developed in the past to effectively target the enzyme. Gene silencing and pharmacological inhibition of AC sensitized the resistant cells to chemo/radiotherapy thereby promoting cell death. The core objective of this review is to explore AC mediated tumour progression and the potential role of AC inhibitors in various cancer cell lines/models.
Collapse
|
8
|
Alsamman S, Christenson SA, Yu A, Ayad NME, Mooring MS, Segal JM, Hu JKH, Schaub JR, Ho SS, Rao V, Marlow MM, Turner SM, Sedki M, Pantano L, Ghoshal S, Ferreira DDS, Ma HY, Duwaerts CC, Espanol-Suner R, Wei L, Newcomb B, Mileva I, Canals D, Hannun YA, Chung RT, Mattis AN, Fuchs BC, Tager AM, Yimlamai D, Weaver VM, Mullen AC, Sheppard D, Chen JY. Targeting acid ceramidase inhibits YAP/TAZ signaling to reduce fibrosis in mice. Sci Transl Med 2020; 12:eaay8798. [PMID: 32817366 PMCID: PMC7976849 DOI: 10.1126/scitranslmed.aay8798] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/11/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Hepatic stellate cells (HSCs) drive hepatic fibrosis. Therapies that inactivate HSCs have clinical potential as antifibrotic agents. We previously identified acid ceramidase (aCDase) as an antifibrotic target. We showed that tricyclic antidepressants (TCAs) reduce hepatic fibrosis by inhibiting aCDase and increasing the bioactive sphingolipid ceramide. We now demonstrate that targeting aCDase inhibits YAP/TAZ activity by potentiating its phosphorylation-mediated proteasomal degradation via the ubiquitin ligase adaptor protein β-TrCP. In mouse models of fibrosis, pharmacologic inhibition of aCDase or genetic knockout of aCDase in HSCs reduces fibrosis, stromal stiffness, and YAP/TAZ activity. In patients with advanced fibrosis, aCDase expression in HSCs is increased. Consistently, a signature of the genes most down-regulated by ceramide identifies patients with advanced fibrosis who could benefit from aCDase targeting. The findings implicate ceramide as a critical regulator of YAP/TAZ signaling and HSC activation and highlight aCDase as a therapeutic target for the treatment of fibrosis.
Collapse
Affiliation(s)
- Sarah Alsamman
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Amy Yu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Nadia M E Ayad
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Meghan S Mooring
- Division of Pediatric Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joe M Segal
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Jimmy Kuang-Hsien Hu
- Division of Oral Biology & Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Steve S Ho
- Pliant Therapeutics, South San Francisco, CA 94080, USA
| | - Vikram Rao
- Pliant Therapeutics, South San Francisco, CA 94080, USA
| | | | | | - Mai Sedki
- Internal Medicine, Kaiser Permanente, San Francisco, CA 94115, USA
| | - Lorena Pantano
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA
| | - Sarani Ghoshal
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Diego Dos Santos Ferreira
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Hsiao-Yen Ma
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Caroline C Duwaerts
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA
- Liver Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Regina Espanol-Suner
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lan Wei
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin Newcomb
- Departments of Medicine and Biochemistry and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Izolda Mileva
- Departments of Medicine and Biochemistry and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniel Canals
- Departments of Medicine and Biochemistry and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Departments of Medicine and Biochemistry and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Raymond T Chung
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Aras N Mattis
- Liver Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Fibrosis Research Center, and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dean Yimlamai
- Division of Pediatric Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan C Mullen
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dean Sheppard
- Division of Pulmonary, Critical Care, Allergy and Sleep, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Y Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94115, USA.
- Liver Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Zhao D, Hajiaghamohseni LM, Liu X, Szulc ZM, Bai A, Bielawska A, Norris JS, Reddy SV, Hannun YA, Haque A. Inhibition of acid ceramidase regulates MHC class II antigen presentation and suppression of autoimmune arthritis. Cytokine 2020; 135:155219. [PMID: 32738771 DOI: 10.1016/j.cyto.2020.155219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/04/2020] [Accepted: 07/20/2020] [Indexed: 12/30/2022]
Abstract
The bioactive sphingolipid ceramide affects immune responses although its effect on antigen (Ag) processing and delivery by HLA class II to CD4+T-cells remains unclear. Therefore, we examined the actions of a novel cell-permeable acid ceramidase (AC) inhibitor [(1R,2R) N myristoylamino-(4'-nitrophenyl)-propandiol-1,3] on antigen presentation and inflammatory cytokine production by Ag-presenting cells (APCs) such as B-cells, macrophages, and dendritic cells. We found that AC inhibition in APCs perturbed Ag-processing and presentation via HLA-DR4 (MHC class II) proteins as measured by coculture assay and T-cell production of IL-2. Mass spectral analyses showed that B13 treatment significantly raised levels of four types of ceramides in human B-cells. B13 treatment did not alter Ag internalization and class II protein expression, but significantly inhibited lysosomal cysteinyl cathepsins (B, S and L) and thiol-reductase (GILT), HLA class II Ag-processing, and generation of functional class II-peptide complexes. Ex vivo Ag presentation assays showed that inhibition of AC impaired primary and recall CD4+T-cell responses and cytokine production in response against type II collagen. Further, B13 delayed onset and reduced severity of inflamed joints and cytokine production in the collagen-induced arthritis mouse model in vivo. These findings suggest that inhibition of AC in APCs may dysregulate endolysosomal proteases and HLA class II-associated self-antigen presentation to CD4+T-cells, attenuating inflammatory cytokine production and suppressing host autoimmune responses.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States; Darby Children's Research Institute, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States; Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States
| | - Laela M Hajiaghamohseni
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States; Darby Children's Research Institute, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States; Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States
| | - Xiang Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States; Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States
| | - Aiping Bai
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States
| | - James S Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States; Darby Children's Research Institute, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States; Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States
| | - Sakamuri V Reddy
- Darby Children's Research Institute, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States
| | - Yusuf A Hannun
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States; Darby Children's Research Institute, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States; Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States.
| |
Collapse
|
10
|
Yuan M, Song ZH, Ying MD, Zhu H, He QJ, Yang B, Cao J. N-myristoylation: from cell biology to translational medicine. Acta Pharmacol Sin 2020; 41:1005-1015. [PMID: 32203082 PMCID: PMC7468318 DOI: 10.1038/s41401-020-0388-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Various lipids and lipid metabolites are bound to and modify the proteins in eukaryotic cells, which are known as ‘protein lipidation’. There are four major types of the protein lipidation, i.e. myristoylation, palmitoylation, prenylation, and glycosylphosphatidylinositol anchor. N-myristoylation refers to the attachment of 14-carbon fatty acid myristates to the N-terminal glycine of proteins by N-myristoyltransferases (NMT) and affects their physiology such as plasma targeting, subcellular tracking and localization, thereby influencing the function of proteins. With more novel pathogenic N-myristoylated proteins are identified, the N-myristoylation will attract great attentions in various human diseases including infectious diseases, parasitic diseases, and cancers. In this review, we summarize the current understanding of N-myristoylation in physiological processes and discuss the hitherto implication of crosstalk between N-myristoylation and other protein modification. Furthermore, we mention several well-studied NMT inhibitors mainly in infectious diseases and cancers and generalize the relation of NMT and cancer progression by browsing the clinic database. This review also aims to highlight the further investigation into the dynamic crosstalk of N-myristoylation in physiological processes as well as the potential application of protein N-myristoylation in translational medicine.
Collapse
|
11
|
Choi MK, Song IS. Recent advances in the formulation of sphingolipid anticancer therapeutics. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00475-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Iessi E, Marconi M, Manganelli V, Sorice M, Malorni W, Garofalo T, Matarrese P. On the role of sphingolipids in cell survival and death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:149-195. [PMID: 32247579 DOI: 10.1016/bs.ircmb.2020.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingolipids, universal components of biological membranes of all eukaryotic organisms, from yeasts to mammals, in addition of playing a structural role, also play an important part of signal transduction pathways. They participate or, also, ignite several fundamental subcellular signaling processes but, more in general, they directly contribute to key biological activities such as cell motility, growth, senescence, differentiation as well as cell fate, i.e., survival or death. The sphingolipid metabolic pathway displays an intricate network of reactions that result in the formation of multiple sphingolipids, including ceramide, and sphingosine-1-phosphate. Different sphingolipids, that have key roles in determining cell fate, can induce opposite effects: as a general rule, sphingosine-1-phosphate promotes cell survival and differentiation, whereas ceramide is known to induce apoptosis. Furthermore, together with cholesterol, sphingolipids also represent the basic lipid component of lipid rafts, cholesterol- and sphingolipid-enriched membrane microdomains directly involved in cell death and survival processes. In this review, we briefly describe the characteristics of sphingolipids and lipid membrane microdomains. In particular, we will consider the involvement of various sphingolipids per se and of lipid rafts in apoptotic pathway, both intrinsic and extrinsic, in nonapoptotic cell death, in autophagy, and in cell differentiation. In addition, their roles in the most common physiological and pathological contexts either as pathogenetic elements or as biomarkers of diseases will be considered. We would also hint how the manipulation of sphingolipid metabolism could represent a potential therapeutic target to be investigated and functionally validated especially for those diseases for which therapeutic options are limited or ineffective.
Collapse
Affiliation(s)
- Elisabetta Iessi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Marconi
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| | | | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Walter Malorni
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | - Tina Garofalo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Oncology Unit, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
13
|
Liu Q, Li X, Bao YS, Lu J, Li H, Huang Z, Liu F. Chemical synthesis and functional characterization of a new class of ceramide analogues as anti-cancer agents. Bioorg Med Chem 2019; 27:1489-1496. [DOI: 10.1016/j.bmc.2019.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 01/20/2023]
|
14
|
Snider JM, Luberto C, Hannun YA. Approaches for probing and evaluating mammalian sphingolipid metabolism. Anal Biochem 2019; 575:70-86. [PMID: 30917945 DOI: 10.1016/j.ab.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
Abstract
Sphingolipid metabolism plays a critical role in regulating processes that control cellular fate. This dynamic pathway can generate and degrade the central players: ceramide, sphingosine and sphingosine-1-phosphate in almost any membrane in the cell, adding an unexpected level of complexity in deciphering signaling events. While in vitro assays have been developed for most enzymes in SL metabolism, these assays are setup for optimal activity conditions and can fail to take into account regulatory components such as compartmentalization, substrate limitations, and binding partners that can affect cellular enzymatic activity. Therefore, many in-cell assays have been developed to derive results that are authentic to the cellular situation which may give context to alteration in SL mass. This review will discuss approaches for utilizing probes for mammalian in-cell assays to interrogate most enzymatic steps central to SL metabolism. The use of inhibitors in conjunction with these probes can verify the specificity of cellular assays as well as provide valuable insight into flux in the SL network. The use of inhibitors specific to each of the central sphingolipid enzymes are also discussed to assist researchers in further interrogation of these pathways.
Collapse
Affiliation(s)
- Justin M Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chiara Luberto
- The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Departments of Biochemistry, Pathology and Pharmacology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
15
|
Li Q, Alsaidan OA, Ma Y, Kim S, Liu J, Albers T, Liu K, Beharry Z, Zhao S, Wang F, Lebedyeva I, Cai H. Pharmacologically targeting the myristoylation of the scaffold protein FRS2α inhibits FGF/FGFR-mediated oncogenic signaling and tumor progression. J Biol Chem 2018. [PMID: 29540482 DOI: 10.1074/jbc.ra117.000940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling facilitates tumor initiation and progression. Although currently approved inhibitors of FGFR kinase have shown therapeutic benefit in clinical trials, overexpression or mutations of FGFRs eventually confer drug resistance and thereby abrogate the desired activity of kinase inhibitors in many cancer types. In this study, we report that loss of myristoylation of fibroblast growth factor receptor substrate 2 (FRS2α), a scaffold protein essential for FGFR signaling, inhibits FGF/FGFR-mediated oncogenic signaling and FGF10-induced tumorigenesis. Moreover, a previously synthesized myristoyl-CoA analog, B13, which targets the activity of N-myristoyltransferases, suppressed FRS2α myristoylation and decreased the phosphorylation with mild alteration of FRS2α localization at the cell membrane. B13 inhibited oncogenic signaling induced by WT FGFRs or their drug-resistant mutants (FGFRsDRM). B13 alone or in combination with an FGFR inhibitor suppressed FGF-induced WT FGFR- or FGFRDRM-initiated phosphoinositide 3-kinase (PI3K) activity or MAPK signaling, inducing cell cycle arrest and thereby inhibiting cell proliferation and migration in several cancer cell types. Finally, B13 significantly inhibited the growth of xenograft tumors without pathological toxicity to the liver, kidney, or lung in vivo In summary, our study suggests a possible therapeutic approach for inhibiting FGF/FGFR-mediated cancer progression and drug-resistant FGF/FGFR mutants.
Collapse
Affiliation(s)
- Qianjin Li
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Omar Awad Alsaidan
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Yongjie Ma
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Sungjin Kim
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Junchen Liu
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | | | - Kebin Liu
- Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia 30912, and
| | - Zanna Beharry
- the Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965
| | - Shaying Zhao
- the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Fen Wang
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | | | - Houjian Cai
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| |
Collapse
|
16
|
Kim S, Alsaidan OA, Goodwin O, Li Q, Sulejmani E, Han Z, Bai A, Albers T, Beharry Z, Zheng YG, Norris JS, Szulc ZM, Bielawska A, Lebedyeva I, Pegan SD, Cai H. Blocking Myristoylation of Src Inhibits Its Kinase Activity and Suppresses Prostate Cancer Progression. Cancer Res 2017; 77:6950-6962. [PMID: 29038344 DOI: 10.1158/0008-5472.can-17-0981] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/24/2017] [Accepted: 10/09/2017] [Indexed: 11/16/2022]
Abstract
Protein N-myristoylation enables localization to membranes and helps maintain protein conformation and function. N-myristoyltransferases (NMT) catalyze co- or posttranslational myristoylation of Src family kinases and other oncogenic proteins, thereby regulating their function. In this study, we provide genetic and pharmacologic evidence that inhibiting the N-myristoyltransferase NMT1 suppresses cell-cycle progression, proliferation, and malignant growth of prostate cancer cells. Loss of myristoylation abolished the tumorigenic potential of Src and its synergy with androgen receptor in mediating tumor invasion. We identified the myristoyl-CoA analogue B13 as a small-molecule inhibitor of NMT1 enzymatic activity. B13 exposure blocked Src myristoylation and Src localization to the cytoplasmic membrane, attenuating Src-mediated oncogenic signaling. B13 exerted its anti-invasive and antitumor effects against prostate cancer cells, with minimal toxic side-effects in vivo Structural optimization based on structure-activity relationships enabled the chemical synthesis of LCL204, with enhanced inhibitory potency against NMT1. Collectively, our results offer a preclinical proof of concept for the use of protein myristoylation inhibitors as a strategy to block prostate cancer progression. Cancer Res; 77(24); 6950-62. ©2017 AACR.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Omar Awad Alsaidan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Octavia Goodwin
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Qianjin Li
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Essilvo Sulejmani
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Zhen Han
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Aiping Bai
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Thomas Albers
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia
| | - Zanna Beharry
- Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - James S Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Iryna Lebedyeva
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia
| | - Scott D Pegan
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia.
| |
Collapse
|
17
|
Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes. Sci Rep 2016; 6:30816. [PMID: 27487939 PMCID: PMC4973238 DOI: 10.1038/srep30816] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022] Open
Abstract
FasL-mediated cytotoxicity is one of the mechanisms that CTLs use to kill tumor cells. However, human colon carcinoma often deregulates the Fas signaling pathway to evade host cancer immune surveillance. We aimed at testing the hypothesis that novel ceramide analogs effectively modulate Fas function to sensitize colon carcinoma cells to FasL-induced apoptosis. We used rational design and synthesized twenty ceramide analogs as Fas function modulators. Five ceramide analogs, IG4, IG7, IG14, IG17, and IG19, exhibit low toxicity and potent activity in sensitization of human colon carcinoma cells to FasL-induced apoptosis. Functional deficiency of Fas limits both FasL and ceramide analogs in the induction of apoptosis. Ceramide enhances FasL-induced activation of the MAPK, NF-κB, and caspase 8 despite induction of potent tumor cell death. Finally, a sublethal dose of several ceramide analogs significantly increased CTL-mediated and FasL-induced apoptosis of colon carcinoma cells. We have therefore developed five novel ceramide analogs that act at a sublethal dose to enhance the efficacy of tumor-specific CTLs, and these ceramide analogs hold great promise for further development as adjunct agents in CTL-based colon cancer immunotherapy.
Collapse
|
18
|
|
19
|
Fragment-Based Hologram QSAR Studies on a Series of 2,4-Dioxopyrimidine-1-Carboxamides As Highly Potent Inhibitors of Acid Ceramidase. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2016; 15:139-148. [PMID: 28058055 PMCID: PMC5175217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A series of structurally related 2,4-dioxopyrimidine-1-carboxamide derivatives as highly potent inhibitors against acid ceramidase were subjected to hologram quantitative structure-activity relationship (HQSAR) analysis. A training set containing 24 compounds served to establish the HQSAR model. The best HQSAR model was generated using atoms, bond, connectivity, donor and acceptor as fragment distinction and 3-6 as fragment size with six components showing cross-validated q2 value of 0.834 and conventional r2 value of 0.965. The model was then employed to predict the potency of test set compounds that were excluded in the training set, and a good agreement between the experimental and predicted values was observed exhibiting the powerful predictable capability of this model [Formula: see text]. Atom contribution maps indicate that the electron-withdrawing effects at position 5 of the uracil ring, the preferential acyl substitution at N3 position and the substitution of eight-carbon alkyl chain length at N1 position predominantly contribute to the inhibitory activity. Based upon these key structural features derived from atom contribution maps, we have designed novel inhibitors of acid ceramidase possessing better inhibitory activity.
Collapse
|
20
|
Abstract
The topic of ceramidases has experienced an enormous boost during the last few years. Ceramidases catalyze the degradation of ceramide to sphingosine and fatty acids. Ceramide is not only the central hub of sphingolipid biosynthesis and degradation, it is also a key molecule in sphingolipid signaling, promoting differentiation or apoptosis. Acid ceramidase inhibition sensitizes certain types of cancer to chemo- and radio-therapy and this is suggestive of a role of acid ceramidase inhibitors as chemo-sensitizers which can act synergistically with chemo-therapeutic drugs. In this review, we summarize the development of ceramide analogues as first-generation ceramidase inhibitors together with data on their activity in cells and disease models. Furthermore, we describe the recent developments that have led to highly potent second-generation ceramidase inhibitors that act at nanomolar concentrations. In the third part, various assays of ceramidases are described and their relevance for accurately measuring ceramidase activities and for the development of novel inhibitors is highlighted. Besides potential clinical implications, the recent improvements in ceramidase inhibition and assaying may help to better understand the mechanisms of ceramide biology.
Collapse
Affiliation(s)
- Essa M Saied
- Humboldt Universität zu Berlin, Institute for Chemistry, Berlin, Germany; Suez Canal University, Chemistry Department, Faculty of Science, Ismailia, Egypt
| | - Christoph Arenz
- Humboldt Universität zu Berlin, Institute for Chemistry, Berlin, Germany.
| |
Collapse
|
21
|
Bai A, Szulc ZM, Bielawski J, Pierce JS, Rembiesa B, Terzieva S, Mao C, Xu R, Wu B, Clarke CJ, Newcomb B, Liu X, Norris J, Hannun YA, Bielawska A. Targeting (cellular) lysosomal acid ceramidase by B13: design, synthesis and evaluation of novel DMG-B13 ester prodrugs. Bioorg Med Chem 2014; 22:6933-44. [PMID: 25456083 DOI: 10.1016/j.bmc.2014.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 10/06/2014] [Accepted: 10/15/2014] [Indexed: 11/29/2022]
Abstract
Acid ceramidase (ACDase) is being recognized as a therapeutic target for cancer. B13 represents a moderate inhibitor of ACDase. The present study concentrates on the lysosomal targeting of B13 via its N,N-dimethylglycine (DMG) esters (DMG-B13 prodrugs). Novel analogs, the isomeric mono-DMG-B13, LCL522 (3-O-DMG-B13·HCl) and LCL596 (1-O-DMG-B13·HCl) and di-DMG-B13, LCL521 (1,3-O, O-DMG-B13·2HCl) conjugates, were designed and synthesized through N,N-dimethyl glycine (DMG) esterification of the hydroxyl groups of B13. In MCF7 cells, DMG-B13 prodrugs were efficiently metabolized to B13. The early inhibitory effect of DMG-B13 prodrugs on cellular ceramidases was ACDase specific by their lysosomal targeting. The corresponding dramatic decrease of cellular Sph (80-97% Control/1h) by DMG-B13 prodrugs was mainly from the inhibition of the lysosomal ACDase.
Collapse
Affiliation(s)
- Aiping Bai
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Lipidomics Facility, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Zdzislaw M Szulc
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Lipidomics Facility, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Jacek Bielawski
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Lipidomics Facility, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Jason S Pierce
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Lipidomics Facility, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Barbara Rembiesa
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Lipidomics Facility, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Silva Terzieva
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Lipidomics Facility, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Cungui Mao
- Department of Medicine and the Stony Brook Cancer Center at Stony Brook University, Stony Brook, NY 11794, USA
| | - Ruijuan Xu
- Department of Medicine and the Stony Brook Cancer Center at Stony Brook University, Stony Brook, NY 11794, USA
| | - Bill Wu
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Christopher J Clarke
- Department of Medicine and the Stony Brook Cancer Center at Stony Brook University, Stony Brook, NY 11794, USA
| | - Benjamin Newcomb
- Department of Medicine and the Stony Brook Cancer Center at Stony Brook University, Stony Brook, NY 11794, USA
| | - Xiang Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - James Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center at Stony Brook University, Stony Brook, NY 11794, USA.
| | - Alicja Bielawska
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA; Lipidomics Facility, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA.
| |
Collapse
|
22
|
Li Y, Li S, Qin X, Hou W, Dong H, Yao L, Xiong L. The pleiotropic roles of sphingolipid signaling in autophagy. Cell Death Dis 2014; 5:e1245. [PMID: 24853423 PMCID: PMC4047895 DOI: 10.1038/cddis.2014.215] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 12/11/2022]
Abstract
The autophagic process involves encompassing damaged proteins and organelles within double- or multi-membraned structures and delivering these molecules to the lytic compartments of vacuoles. Sphingolipids (SLs), which are ubiquitous membrane lipids in eukaryotes, participate in the generation of various membrane structures, including rafts, caveolae, and cytosolic vesicles. SLs are a complex family of molecules that have a growing number of members, including ceramide, sphingosine-1-phosphate, and dihydroceramide, which have been associated with the essential cellular process of autophagy. This review highlights recent studies focusing on the regulation and function of SL-associated autophagy and its role in cell fate, diseases, and therapeutic interventions.
Collapse
Affiliation(s)
- Y Li
- 1] The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, China [2] Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - S Li
- 1] The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, China [2] Department of Oral Biology, Stomatology School, The Fourth Military Medical University, Xi'an 710032, China
| | - X Qin
- Department of Chemistry, Pharmacy School, The Fourth Military Medical University, Xi'an 710032, China
| | - W Hou
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - H Dong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - L Yao
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an 710032, China
| | - L Xiong
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
23
|
Paschall AV, Zimmerman MA, Torres CM, Yang D, Chen MR, Li X, Bieberich E, Bai A, Bielawski J, Bielawska A, Liu K. Ceramide targets xIAP and cIAP1 to sensitize metastatic colon and breast cancer cells to apoptosis induction to suppress tumor progression. BMC Cancer 2014; 14:24. [PMID: 24422988 PMCID: PMC3898374 DOI: 10.1186/1471-2407-14-24] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/09/2014] [Indexed: 11/10/2022] Open
Abstract
Background Ceramide is a bioeffector that mediates various cellular processes, including apoptosis. However, the mechanism underlying ceramide function in apoptosis is apparently cell type-dependent and is not well-understood. We aimed at identifying molecular targets of ceramide in metastatic human colon and breast cancer cells, and determining the efficacy of ceramide analog in suppression of colon and breast cancer metastasis. Methods The activity of and mechanism underlying ceramide as a cytotoxic agent, and as a sensitizer for Fas-mediated apoptosis was analyzed in human cell lines established from primary or metastatic colon and breast cancers. The efficacy of ceramide analog LCL85 in suppression of metastasis was examined in preclinical mouse tumor models. Results Exposure of human colon carcinoma cells to ceramide analog LCL85 results in apoptosis in a dose-dependent manner. Interestingly, a sublethal dose of LCL85 increased C16 ceramide content and overcame tumor cell resistance to Fas-mediated apoptosis. Subsequently, treatment of tumor cells with exogenous C16 ceramide resulted in increased tumor cell sensitivity to Fas-mediated apoptosis. LCL85 resembles Smac mimetic BV6 in sensitization of colon carcinoma cells to Fas-mediated apoptosis by inducing proteasomal degradation of cIAP1 and xIAP proteins. LCL85 also decreased xIAP1 and cIAP1 protein levels and sensitized metastatic human breast cancer cells to Fas-mediated apoptosis. Silencing xIAP and cIAP1 with specific siRNAs significantly increased the metastatic human colon carcinoma cell sensitivity to Fas-mediated apoptosis, suggesting that IAP proteins mediate apoptosis resistance in metastatic human colon carcinoma cells and ceramide induces IAP protein degradation to sensitize the tumor cells to apoptosis induction. Consistent with its apoptosis sensitization activity, subtoxic doses of LCL85 suppressed colon carcinoma cell metastatic potential in an experimental lung metastasis mouse model, as well as breast cancer growth and spontaneous lung metastasis in an orthotopic breast cancer mouse model. Conclusion We have identified xIAP and cIAP1 as molecular targets of ceramide and determined that ceramide analog LCL85 is an effective sensitizer in overcoming resistance of human cell lines established from metastatic colon and breast cancers to apoptosis induction to suppress metastasis in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA.
| |
Collapse
|
24
|
Cheng JC, Bai A, Beckham TH, Marrison ST, Yount CL, Young K, Lu P, Bartlett AM, Wu BX, Keane BJ, Armeson KE, Marshall DT, Keane TE, Smith MT, Jones EE, Drake RR, Bielawska A, Norris JS, Liu X. Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J Clin Invest 2013; 123:4344-58. [PMID: 24091326 DOI: 10.1172/jci64791] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/11/2013] [Indexed: 01/06/2023] Open
Abstract
Escape of prostate cancer (PCa) cells from ionizing radiation-induced (IR-induced) killing leads to disease progression and cancer relapse. The influence of sphingolipids, such as ceramide and its metabolite sphingosine 1-phosphate, on signal transduction pathways under cell stress is important to survival adaptation responses. In this study, we demonstrate that ceramide-deacylating enzyme acid ceramidase (AC) was preferentially upregulated in irradiated PCa cells. Radiation-induced AC gene transactivation by activator protein 1 (AP-1) binding on the proximal promoter was sensitive to inhibition of de novo ceramide biosynthesis, as demonstrated by promoter reporter and ChIP-qPCR analyses. Our data indicate that a protective feedback mechanism mitigates the apoptotic effect of IR-induced ceramide generation. We found that deregulation of c-Jun induced marked radiosensitization in vivo and in vitro, which was rescued by ectopic AC overexpression. AC overexpression in PCa clonogens that survived a fractionated 80-Gy IR course was associated with increased radioresistance and proliferation, suggesting a role for AC in radiotherapy failure and relapse. Immunohistochemical analysis of human PCa tissues revealed higher levels of AC after radiotherapy failure than those in therapy-naive PCa, prostatic intraepithelial neoplasia, or benign tissues. Addition of an AC inhibitor to an animal model of xenograft irradiation produced radiosensitization and prevention of relapse. These data indicate that AC is a potentially tractable target for adjuvant radiotherapy.
Collapse
|
25
|
Korbelik M, Zhang W, Saw KM, Szulc ZM, Bielawska A, Separovic D. Cationic ceramides and analogues, LCL30 and LCL85, as adjuvants to photodynamic therapy of tumors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 126:72-7. [PMID: 23911762 DOI: 10.1016/j.jphotobiol.2013.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/01/2013] [Accepted: 06/22/2013] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) is known to alter the expression of various genes in treated cells. This prompted us to examine the activity of genes encoding two important enzymes in sphingolipid (SL) metabolism, dihydroceramide desaturase (DES) and sphingosine kinase (SPHK), in mouse SCCVII tumor cells treated by PDT using either the porphyrin-based photosensitizer Photofrin or silicon phthalocyanine Pc4. The results revealed that PDT induced an upregulation in the expression of two major isoforms of both genes (DES1 and DES2 as well as SPHK1 and SPHK2). While the changes were generally moderate (2-3-fold gains), the increase in DES2 expression was more pronounced and it was much greater with Photofrin-PDT than with Pc4-PDT (over 23-fold vs. less than 5-fold). Combining either Photofrin-PDT or Pc4-PDT with the cationic C16-ceramide LCL30 (20mg/kg i.p.) for treatment of subcutaneously growing SCCVII tumors rendered important differences in the therapy outcome. Photofrin-PDT, used at a dose that attained good initial response but no tumor cures, produced 50% cures when combined with a single LCL30 treatment. In contrast, the same LCL30 treatment combined with Pc4-PDT had no significant effect on tumor response. The optimal timing of LCL30 injection was immediately after Photofrin-PDT. The therapeutic benefit was lost when LCL30 was given in two 20mg/kg injections encompassing intervals before and after PDT. LCL85, the cationic B13 ceramide analogue and SL-modulating agent, also increased cure rates of Photofrin-PDT treated tumors, but the therapeutic benefit was less pronounced than with LCL30. These results with LCL30 and LCL85, and our previous findings for LCL29 (another SL analogue), assert the potential of SLs for use as adjuvants to augment the efficacy of PDT-mediated tumor destruction.
Collapse
|
26
|
Abstract
Non-surgical therapies for human malignancies must negotiate complex cell signaling pathways to impede cancer cell growth, ideally promoting death of cancer cells while sparing healthy tissue. For most of the past half century, medical approaches for treating cancer have relied primarily on cytotoxic chemotherapeutics that interfere with DNA replication and cell division, susceptibilities of rapidly dividing cancer cells. As a consequence, these therapies exert considerable cell stress, promoting the generation of ceramide through de novo synthesis and recycling of complex glycosphingolipids and sphingomyelin into apoptotic ceramide. Radiotherapy of cancer exerts similar geno- and cytotoxic cell stresses, and generation of ceramide following ionizing radiation therapy is a well-described feature of radiation-induced cell death. Emerging evidence now describes sphingolipids as mediators of death in response to newer targeted therapies, cementing ceramide generation as a common mechanism of cell death in response to cancer therapy. Many studies have now shown that dysregulation of ceramide accumulation-whether by reduced generation or accelerated metabolism-is a common mechanism of resistance to standard cancer therapies. The aims of this chapter will be to discuss described mechanisms of cancer resistance to therapy related to dysregulation of sphingolipid metabolism and to explore clinical and preclinical approaches to interdict sphingolipid metabolism to improve outcomes of standard cancer therapies.
Collapse
|
27
|
Pizzirani D, Pagliuca C, Realini N, Branduardi D, Bottegoni G, Mor M, Bertozzi F, Scarpelli R, Piomelli D, Bandiera T. Discovery of a New Class of Highly Potent Inhibitors of Acid Ceramidase: Synthesis and Structure–Activity Relationship (SAR). J Med Chem 2013; 56:3518-30. [DOI: 10.1021/jm301879g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniela Pizzirani
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Chiara Pagliuca
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Natalia Realini
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Davide Branduardi
- Theoretical Molecular Biophysics
Group, Max Planck Institute for Biophysics, Max-von-Laue Strasse 3, 60438, Frankfurt am Main, Germany
| | - Giovanni Bottegoni
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Marco Mor
- Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle
Scienze 27/A, I-43124 Parma, Italy
| | - Fabio Bertozzi
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Rita Scarpelli
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Daniele Piomelli
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
- Department of Anatomy and Neurobiology, University of California—Irvine, Irvine, California
92697-4625, United States
| | - Tiziano Bandiera
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| |
Collapse
|
28
|
Camacho L, Meca-Cortés O, Abad JL, García S, Rubio N, Díaz A, Celià-Terrassa T, Cingolani F, Bermudo R, Fernández PL, Blanco J, Delgado A, Casas J, Fabriàs G, Thomson TM. Acid ceramidase as a therapeutic target in metastatic prostate cancer. J Lipid Res 2013; 54:1207-20. [PMID: 23423838 DOI: 10.1194/jlr.m032375] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acid ceramidase (AC) catalyzes the hydrolysis of ceramide into sphingosine, in turn a substrate of sphingosine kinases that catalyze its conversion into the mitogenic sphingosine-1-phosphate. AC is expressed at high levels in several tumor types and has been proposed as a cancer therapeutic target. Using a model derived from PC-3 prostate cancer cells, the highly tumorigenic, metastatic, and chemoresistant clone PC-3/Mc expressed higher levels of the AC ASAH1 than the nonmetastatic clone PC-3/S. Stable knockdown of ASAH1 in PC-3/Mc cells caused an accumulation of ceramides, inhibition of clonogenic potential, increased requirement for growth factors, and inhibition of tumorigenesis and lung metastases. We developed de novo ASAH1 inhibitors, which also caused a dose-dependent accumulation of ceramides in PC-3/Mc cells and inhibited their growth and clonogenicity. Finally, immunohistochemical analysis of primary prostate cancer samples showed that higher levels of ASAH1 were associated with more advanced stages of this neoplasia. These observations confirm ASAH1 as a therapeutic target in advanced and chemoresistant forms of prostate cancer and suggest that our new potent and specific AC inhibitors could act by counteracting critical growth properties of these highly aggressive tumor cells.
Collapse
Affiliation(s)
- Luz Camacho
- Department of Biomedicinal Chemistry, Research Unit on Bioactive Molecules (RUBAM), Institute for Advanced Chemistry of Catalonia, National Research Council (IQAC-CSIC), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bhabak KP, Kleuser B, Huwiler A, Arenz C. Effective inhibition of acid and neutral ceramidases by novel B-13 and LCL-464 analogues. Bioorg Med Chem 2013; 21:874-82. [DOI: 10.1016/j.bmc.2012.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/07/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
|
30
|
Discovery of highly potent acid ceramidase inhibitors with in vitro tumor chemosensitizing activity. Sci Rep 2013; 3:1035. [PMID: 23301156 PMCID: PMC3539145 DOI: 10.1038/srep01035] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/07/2012] [Indexed: 12/14/2022] Open
Abstract
The expression of acid ceramidase (AC) - a cysteine amidase that hydrolyses the proapoptotic lipid ceramide - is abnormally high in several human tumors, which is suggestive of a role in chemoresistance. Available AC inhibitors lack, however, the potency and drug-likeness necessary to test this idea. Here we show that the antineoplastic drug carmofur, which is used in the clinic to treat colorectal cancers, is a potent AC inhibitor and that this property is essential to its anti-proliferative effects. Modifications in the chemical scaffold of carmofur yield new AC inhibitors that act synergistically with standard antitumoral drugs to prevent cancer cell proliferation. These findings identify AC as an unexpected target for carmofur, and suggest that this molecule can be used as starting point for the design of novel chemosensitizing agents.
Collapse
|
31
|
Abstract
Sphingolipid-metabolizing enzymes are becoming targets for chemotherapeutic development with an increasing interest in the recent years. In this chapter we introduce the sphingolipid family of lipids, and the role of individual species in cell homeostasis. We also discuss their roles in several rare diseases and overall, in cancer transformation. We follow the biosynthesis pathway of the sphingolipid tree, focusing on the enzymes in order to understand how using small molecule inhibitors makes it possible to modulate cancer progression. Finally, we describe the most used and historically significant inhibitors employed in cancer research, their relationships to sphingolipid metabolism, and some promising results found in this field.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, University of Stony Brook, Stony Brook, New York 11794
| | - Yusuf A. Hannun
- Health Science Center, Stony Brook University, 100 Nicolls Road, L-4, 178, Stony Brook, NY 11794, USA
| |
Collapse
|
32
|
Beckham TH, Lu P, Jones EE, Marrison T, Lewis CS, Cheng JC, Ramshesh VK, Beeson G, Beeson CC, Drake RR, Bielawska A, Bielawski J, Szulc ZM, Ogretmen B, Norris JS, Liu X. LCL124, a cationic analog of ceramide, selectively induces pancreatic cancer cell death by accumulating in mitochondria. J Pharmacol Exp Ther 2013; 344:167-78. [PMID: 23086228 PMCID: PMC3533418 DOI: 10.1124/jpet.112.199216] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/15/2012] [Indexed: 12/19/2022] Open
Abstract
Treatment of pancreatic cancer that cannot be surgically resected currently relies on minimally beneficial cytotoxic chemotherapy with gemcitabine. As the fourth leading cause of cancer-related death in the United States with dismal survival statistics, pancreatic cancer demands new and more effective treatment approaches. Resistance to gemcitabine is nearly universal and appears to involve defects in the intrinsic/mitochondrial apoptotic pathway. The bioactive sphingolipid ceramide is a critical mediator of apoptosis initiated by a number of therapeutic modalities. It is noteworthy that insufficient ceramide accumulation has been linked to gemcitabine resistance in multiple cancer types, including pancreatic cancer. Taking advantage of the fact that cancer cells frequently have more negatively charged mitochondria, we investigated a means to circumvent resistance to gemcitabine by targeting delivery of a cationic ceramide (l-t-C6-CCPS [LCL124: ((2S,3S,4E)-2-N-[6'-(1″-pyridinium)-hexanoyl-sphingosine bromide)]) to cancer cell mitochondria. LCL124 was effective in initiating apoptosis by causing mitochondrial depolarization in pancreatic cancer cells but demonstrated significantly less activity against nonmalignant pancreatic ductal epithelial cells. Furthermore, we demonstrate that the mitochondrial membrane potentials of the cancer cells were more negative than nonmalignant cells and that dissipation of this potential abrogated cell killing by LCL124, establishing that the effectiveness of this compound is potential-dependent. LCL124 selectively accumulated in and inhibited the growth of xenografts in vivo, confirming the tumor selectivity and therapeutic potential of cationic ceramides in pancreatic cancer. It is noteworthy that gemcitabine-resistant pancreatic cancer cells became more sensitive to subsequent treatment with LCL124, suggesting that this compound may be a uniquely suited to overcome gemcitabine resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Thomas H Beckham
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Singh AT, Dharmarajan A, Aye ILMH, Keelan JA. Ceramide biosynthesis and metabolism in trophoblast syncytialization. Mol Cell Endocrinol 2012; 362:48-59. [PMID: 22652149 DOI: 10.1016/j.mce.2012.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 05/02/2012] [Accepted: 05/18/2012] [Indexed: 02/02/2023]
Abstract
Sphingolipid mediators such as ceramide are pleiotropic regulators of cellular growth, differentiation and apoptosis. We investigated the role of ceramide biosynthesis, metabolism and actions in term human cytotrophoblasts syncytialized over 7 days in culture. Intracellular C16 ceramide levels increased modestly after 3 days in culture, then declined. Ceramidase was present at particularly high levels in syncytialized trophoblasts; inhibition of ceramidase reduced the degree of cell fusion. Exposure to short chain C8 ceramide or aSMase enhanced secretion of the differentiation marker hCG without affecting fusion or cell viability. In contrast, pharmacological inhibition of ceramidase reduced the extent of fusion. Inhibition of the ceramide-responsive JNK and PP2A pathways did not abolish the effects of ceramide, and JNK phosphorylation was unresponsive to ceramide; however, ceramide significantly inhibited phosphorylation of Akt. This study suggests that changes in ceramide biosynthesis and metabolism play a differential role in the biochemical and morphological features of trophoblast differentiation.
Collapse
Affiliation(s)
- Ambika T Singh
- School of Women's and Infant's Health, Dentistry and Health Sciences, The University of Western Australia, Perth, Australia
| | | | | | | |
Collapse
|
34
|
Zhu ZA, Zhu ZQ, Cai HX, Liu Y. Reversion of multidrug resistance by SKI-II in SGC7901/DDP cells and exploration of underlying mechanisms. Asian Pac J Cancer Prev 2012; 13:625-31. [PMID: 22524836 DOI: 10.7314/apjcp.2012.13.2.625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to investigate whether SKI-II could reverse drug resistance and its possible mechanisms, we treated SGC7901/DDP cells with SKI-II or SKI-II in combination with DDP. Then cell growth, apoptosis, micro- morphological changes, and expression of SphK1, P-gp, NF-kB, Bcl-2 and Bax were assessed by MTT assay, flow cytometry, electron microscopy, immunocytochemistry and Western blot assay respectively. SGC7901/DDP cells were insensitive to cisplatin 2.5 mg/L, but when pretreated with SKI-II, their proliferation was inhibited by cisplatin 2.5mg/L significantly, the inhibition rate increasing with time and dose. The apoptosis rate was also significantly elevated. Expression of SphK1 and P-gp was decreased significantly, Pearson correlation analysis showing significant correlation between the two (r=0.595, P<0.01). Expression of NF-kB and Bcl-2 was decreased significantly, while that of Bax was increased, compared to the control group. There were significant correlations between SphK1 and NF-kB(r=0.723, P<0.01), and NF-kB and Bcl-2(r=0.768, P<0.01). All these data indicated that SKI-II could reverse drug resistance of SGC7901/DDP to cisplatin by down-regulating expression of P-gp and up-regulating apoptosis through down-regulation of SphK1. The increased apoptotic sensitivity of SGC7901/ DDP to cisplatin was due to the decreasing proportion of Bcl-2/Bax via down-regulating NF-kB.
Collapse
Affiliation(s)
- Zu-An Zhu
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | | | | | | |
Collapse
|
35
|
Bhabak KP, Arenz C. Novel amide- and sulfonamide-based aromatic ethanolamines: effects of various substituents on the inhibition of acid and neutral ceramidases. Bioorg Med Chem 2012; 20:6162-70. [PMID: 22989912 DOI: 10.1016/j.bmc.2012.08.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/19/2012] [Accepted: 08/08/2012] [Indexed: 12/30/2022]
Abstract
In the present study we describe the design and synthesis of a series of amide- and sulfonamide-based compounds as inhibitor of recombinant acid and neutral ceramidases. Inhibition of ceramidases has been shown to induce apoptosis and to increase the efficacy of conventional chemotherapy in several cancer models. B-13, lead in vitro inhibitor of acid ceramidase has been recently shown to be virtually inactive towards lysosomal acid ceramidase in living cells at lower concentrations and for a shorter time of treatment, suggesting the development of more potent inhibitors. In this study, a detailed SAR investigation has been performed to understand the effect of different substituents on the phenyl ring of amide- and sulfonamide-based compounds that partially resemble the structure of well-known inhibitors such as B-13, D-e-MAPP as well as NOE. Our results suggest that the electronic effects of the substituents on phenyl ring in B-13 and D-e-MAPP analogues have negligible effects either in enhancing the inhibition potencies or for selectivity towards aCDase over nCDase. However, the hydrophobicity and the steric effects of longer alkyl chains (n-Pr, n-Bu or t-Bu groups) at the phenyl ring were found to be important for an enhanced selectivity towards aCDase over nCDase.
Collapse
Affiliation(s)
- Krishna P Bhabak
- Humboldt Universität zu Berlin, Institute for Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | | |
Collapse
|
36
|
Camacho L, Simbari F, Garrido M, Abad JL, Casas J, Delgado A, Fabriàs G. 3-Deoxy-3,4-dehydro analogs of XM462. Preparation and activity on sphingolipid metabolism and cell fate. Bioorg Med Chem 2012; 20:3173-9. [PMID: 22537678 DOI: 10.1016/j.bmc.2012.03.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 12/16/2022]
Abstract
Three analogs of the dihydroceramide desaturase inhibitor XM462 are reported. The compounds inhibit both dihydroceramide desaturase and acid ceramidase, but with different potencies depending on the N-acyl moiety. Other enzymes of sphingolipid metabolism, such as neutral ceramidase, acid sphingomyelinase, acid glucosylceramide hydrolase, sphingomyelin synthase and glucosylceramide synthase, are not affected. The effect on the sphingolipidome of the two best inhibitors, namely (R,E)-N-(1-hydroxy-4-(tridecylthio)but-3-en-2-yl)octanamide (RBM2-1B) and (R,E)-N-(1-hydroxy-4-(tridecylthio)but-3-en-2-yl)pivalamide (RBM2-1D), is in accordance with the results obtained in the enzyme assays. These two compounds reduce cell viability in A549 and HCT116 cell lines with similar potencies and both induced apoptotic cell death to similar levels than C8-Cer in HCT116 cells. The possible therapeutic implications of the activities of these compounds are discussed.
Collapse
Affiliation(s)
- Luz Camacho
- Research Unit on Bioactive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia, Spanish Council for Scientific Research, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Beckham TH, Lu P, Cheng JC, Zhao D, Turner LS, Zhang X, Hoffman S, Armeson KE, Liu A, Marrison T, Hannun YA, Liu X. Acid ceramidase-mediated production of sphingosine 1-phosphate promotes prostate cancer invasion through upregulation of cathepsin B. Int J Cancer 2012; 131:2034-43. [PMID: 22322590 DOI: 10.1002/ijc.27480] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/27/2012] [Indexed: 12/16/2022]
Abstract
Invasiveness is one of the key features of aggressive prostate cancer; however, our understanding of the precise mechanisms effecting invasion remains limited. The ceramide hydrolyzing enzyme acid ceramidase (AC), overexpressed in most prostate tumors, causes an aggressive and invasive phenotype through downstream effectors that have not yet been well characterized. Here, we demonstrate that AC, through generation of sphingosine-1-phosphate (S1P), promotes Ets1 nuclear expression and binding to the promoter region of matrix-degrading protease cathepsin B. Through confocal microscopy and flow cytometry, we found that AC overexpression promotes pericellular localization of cathepsin B and its translocation to the outer leaflet of the cell membrane. AC overexpressing cells have an increased abundance of cathepsin B-enriched invasive structures and enhanced ability to invade through a collagen matrix, but not in the presence of an inhibitor of cathepsin B. In human prostate tissues, AC and cathepsin B overexpression were strongly associated and may relate to poor outcome. These results demonstrate a novel pathway by which AC, through S1P, promotes an invasive phenotype in prostate cancer by causing overexpression and secretion of cathepsin B through activation and nuclear expression of Ets1. As prostate cancer prognosis is dramatically worse when invasion has occurred, this study provides critical insight into the progression toward lethal prostate cancer.
Collapse
Affiliation(s)
- Thomas H Beckham
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Palma CD, Perrotta C. Ceramide as a target of chemotherapy: its role in apoptosis and autophagy. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.11.71] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Canals D, Perry DM, Jenkins RW, Hannun YA. Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 2011; 163:694-712. [PMID: 21615386 DOI: 10.1111/j.1476-5381.2011.01279.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sphingolipids represent a class of diverse bioactive lipid molecules that are increasingly appreciated as key modulators of diverse physiologic and pathophysiologic processes that include cell growth, cell death, autophagy, angiogenesis, and stress and inflammatory responses. Sphingomyelinases and ceramidases are key enzymes of sphingolipid metabolism that regulate the formation and degradation of ceramide, one of the most intensely studied classes of sphingolipids. Improved understanding of these enzymes that control not only the levels of ceramide but also the complex interconversion of sphingolipid metabolites has provided the foundation for the functional analysis of the roles of sphingolipids. Our current understanding of the roles of various sphingolipids in the regulation of different cellular processes has come from loss-of-function/gain-of-function studies utilizing genetic deletion/downregulation/overexpression of enzymes of sphingolipid metabolism (e.g. knockout animals, RNA interference) and from the use of pharmacologic inhibitors of these same enzymes. While genetic approaches to evaluate the functional roles of sphingolipid enzymes have been instrumental in advancing the field, the use of pharmacologic inhibitors has been equally important in identifying new roles for sphingolipids in important cellular processes.The latter also promises the development of novel therapeutic targets with implications for cancer therapy, inflammation, diabetes, and neurodegeneration. In this review, we focus on the status and use of pharmacologic compounds that inhibit sphingomyelinases and ceramidases, and we will review the history, current uses and future directions for various small molecule inhibitors, and will highlight studies in which inhibitors of sphingolipid metabolizing enzymes have been used to effectively treat models of human disease.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | |
Collapse
|
40
|
Zheng N, Tsai HN, Zhang X, Rosania GR. The subcellular distribution of small molecules: from pharmacokinetics to synthetic biology. Mol Pharm 2011; 8:1619-28. [PMID: 21805990 DOI: 10.1021/mp200092v] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The systemic pharmacokinetics and pharmacodynamics of small molecules are determined by subcellular transport phenomena. Although approaches used to study the subcellular distribution of small molecules have gradually evolved over the past several decades, experimental analysis and prediction of cellular pharmacokinetics remains a challenge. In this review, we survey the progress of subcellular distribution research since the 1960s, with a focus on the advantages, disadvantages and limitations of the various experimental techniques. Critical review of the existing body of knowledge points to many opportunities to advance the rational design of organelle-targeted chemical agents. These opportunities include (1) development of quantitative, non-fluorescence-based, whole cell methods and techniques to measure the subcellular distribution of chemical agents in multiple compartments; (2) exploratory experimentation with nonspecific transport probes that have not been enriched with putative, organelle-targeting features; (3) elaboration of hypothesis-driven, mechanistic and modeling-based approaches to guide experiments aimed at elucidating subcellular distribution and transport; and (4) introduction of revolutionary conceptual approaches borrowed from the field of synthetic biology combined with cutting edge experimental strategies. In our laboratory, state-of-the-art subcellular transport studies are now being aimed at understanding the formation of new intracellular membrane structures in response to drug therapy, exploring the function of drug-membrane complexes as intracellular drug depots, and synthesizing new organelles with extraordinary physical and chemical properties.
Collapse
Affiliation(s)
- Nan Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
41
|
Separovic D, Joseph N, Breen P, Bielawski J, Pierce JS, Buren EV, Bhatti G, Saad ZH, Bai A, Bielawska A. Combining anticancer agents photodynamic therapy and LCL85 leads to distinct changes in the sphingolipid profile, autophagy, caspase-3 activation in the absence of cell death, and long-term sensitization. Biochem Biophys Res Commun 2011; 409:372-7. [PMID: 21545791 DOI: 10.1016/j.bbrc.2011.04.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 04/19/2011] [Indexed: 11/18/2022]
Abstract
Two anticancer agents, LCL85 and photodynamic therapy (PDT) were combined to test whether the combination PDT/LCL85 evokes changes in the sphingolipid (SL) profile and promotes cell death. Treatment of SCCVII mouse squamous carcinoma cells using the silicone phthalocyanine Pc 4 for PDT induced increases in the prodeath global ceramides/dihydroceramides (DHceramides), and no changes in the prosurvival sphingosine-1-phosphate (S1P). In contrast, after LCL85, the levels of most ceramides and DHceramides were reduced, whereas the levels of S1P were increased. After PDT/LCL85 the levels of global ceramides and DHceramides, and of S1P, were restored to resting levels. PDT/LCL85 also enhanced the levels of C18-, C20-, and C20:1-ceramide, and C18-DHceramide. Treatment with PDT, with or without LCL85, led to substantial reductions in sphingosine levels. PDT/LCL85 induced enhanced autophagy and caspase-3 activation. None of the treatments affected short-term viability of cells. In contrast, long-term clonogenic survival was reduced not only after PDT or LCL85, but even more after PDT/LCL85. Overall, our data show that short-term exposure to PDT/LCL85 led to distinct signature effects on the SL profile, enhanced autophagy, and caspase-3 activation without cell death. Long-term exposure to PDT/LCL85 enhanced overall cell killing, supporting translational potential of PDT/LCL85.
Collapse
Affiliation(s)
- Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hu X, Yang D, Zimmerman M, Liu F, Yang J, Kannan S, Burchert A, Szulc Z, Bielawska A, Ozato K, Bhalla K, Liu K. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res 2011; 71:2882-91. [PMID: 21487040 DOI: 10.1158/0008-5472.can-10-2493] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IFN regulatory factor 8 (IRF8) is a key transcription factor for myeloid cell differentiation and its expression is frequently lost in hematopoietic cells of human myeloid leukemia patients. IRF8-deficient mice exhibit uncontrolled clonal expansion of undifferentiated myeloid cells that can progress to a fatal blast crisis, thereby resembling human chronic myelogeneous leukemia (CML). Therefore, IRF8 is a myeloid leukemia suppressor. Whereas the understanding of IRF8 function in CML has recently improved, the molecular mechanisms underlying IRF8 function in CML are still largely unknown. In this study, we identified acid ceramidase (A-CDase) as a general transcription target of IRF8. We demonstrated that IRF8 expression is regulated by IRF8 promoter DNA methylation in myeloid leukemia cells. Restoration of IRF8 expression repressed A-CDase expression, resulting in C16 ceramide accumulation and increased sensitivity of CML cells to FasL-induced apoptosis. In myeloid cells derived from IRF8-deficient mice, A-CDase protein level was dramatically increased. Furthermore, we demonstrated that IRF8 directly binds to the A-CDase promoter. At the functional level, inhibition of A-CDase activity, silencing A-CDase expression, or application of exogenous C16 ceramide sensitized CML cells to FasL-induced apoptosis, whereas overexpression of A-CDase decreased CML cells' sensitivity to FasL-induced apoptosis. Consequently, restoration of IRF8 expression suppressed CML development in vivo at least partially through a Fas-dependent mechanism. In summary, our findings determine the mechanism of IRF8 downregulation in CML cells and they determine a primary pathway of resistance to Fas-mediated apoptosis and disease progression.
Collapse
MESH Headings
- Acid Ceramidase/biosynthesis
- Animals
- Apoptosis/physiology
- Cell Line, Tumor
- Ceramides/metabolism
- DNA Methylation
- Fas Ligand Protein/immunology
- Fas Ligand Protein/pharmacology
- HT29 Cells
- Humans
- Interferon Regulatory Factors/biosynthesis
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Myeloid Cells/enzymology
- Myeloid Cells/metabolism
- Promoter Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Xiaolin Hu
- Department of Biochemistry and Molecular Biology, and Cancer Center, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cakir Z, Saydam G, Sahin F, Baran Y. The roles of bioactive sphingolipids in resveratrol-induced apoptosis in HL60: acute myeloid leukemia cells. J Cancer Res Clin Oncol 2011; 137:279-86. [PMID: 20401667 DOI: 10.1007/s00432-010-0884-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/22/2010] [Indexed: 12/28/2022]
Abstract
PURPOSE Acute promyelocytic leukemia results from a translocation between 15 and 17 chromosomes that produce PML/RARα fusion protein. PML/RARα inhibits differentiation of myeloid precursor cells at stem cell level. Resveratrol is a phytoalexin that exerts cytotoxic effects on cancer cells. Ceramides have crucial roles in cell growth, proliferation, differentiation, drug resistance, and apoptosis. In this study, we examined the possible cytotoxic effects of resveratrol on acute myeloid leukemia cells and determined the roles of ceramide-metabolizing genes in resveratrol-induced apoptosis, in addition to investigating the possibility of increasing the sensitivity of HL60 cells to resveratrol by manipulating sphingolipids. METHODS Cytotoxic effects of resveratrol, C8:ceramide, PDMP, and SK-1 inhibitor were determined by XTT cell proliferation assay. Changes in caspase-3 enzyme activity and mitochondrial membrane potential (MMP) were measured using caspase-3 colorimetric assay and JC-1 MMP detection kit. Expression levels of ceramide-metabolizing genes were examined by RT-PCR. RESULTS The results revealed that manipulations of ceramide metabolism toward generation or accumulation of apoptotic ceramides increased apoptotic effects of resveratrol in HL60 cells, synergistically. More importantly, gene expression analyses revealed that resveratrol-induced apoptosis via increasing expression levels of ceramide-generating genes and decreasing expression levels of antiapoptotic sphingosine kinase-1 and glucosylceramide synthase genes. CONCLUSION These results showed for the first time that increasing intracellular levels of ceramides by biochemical approaches has also increased sensitivity of HL60 cells to resveratrol. We also showed that resveratrol induces apoptosis through manipulating ceramide-metabolizing genes that resulted in the accumulation of ceramides in HL60 cells.
Collapse
Affiliation(s)
- Zeynep Cakir
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Gulbahce Campus, 35430 Urla, Izmir, Turkey
| | | | | | | |
Collapse
|
44
|
C16-Ceramide Analog Combined with Pc 4 Photodynamic Therapy Evokes Enhanced Total Ceramide Accumulation, Promotion of DEVDase Activation in the Absence of Apoptosis, and Augmented Overall Cell Killing. J Lipids 2010; 2011:713867. [PMID: 21490809 PMCID: PMC3066794 DOI: 10.1155/2011/713867] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/24/2010] [Indexed: 12/13/2022] Open
Abstract
Because of the failure of single modality approaches, combination therapy for cancer treatment is a promising alternative. Sphingolipid analogs, with or without anticancer drugs, can improve tumor response. C16-pyridinium ceramide analog LCL30, was used in combination with photodynamic therapy (PDT), an anticancer treatment modality, to test the hypothesis that the combined treatment will trigger changes in the sphingolipid profile and promote cell death. Using SCCVII mouse squamous carcinoma cells, and the silicone phthalocyanine Pc 4 for PDT, we showed that combining PDT with LCL30 (PDT/LCL30) was more effective than individual treatments in raising global ceramide levels, as well as in reducing dihydrosphingosine levels. Unlike LCL30, PDT, alone or combined, increased total dihydroceramide levels. Sphingosine levels were unaffected by LCL30, but were abolished after PDT or the combination. LCL30-triggered rise in sphingosine-1-phosphate was reversed post-PDT or the combination. DEVDase activation was evoked after PDT or LCL30, and was promoted post- PDT/LCL30. Neither mitochondrial depolarization nor apoptosis were observed after any of the treatments. Notably, treatment with the combination resulted in augmented overall cell killing. Our data demonstrate that treatment with PDT/LCL30 leads to enhanced global ceramide levels and DEVDase activation in the absence of apoptosis, and promotion of total cell killing.
Collapse
|
45
|
Potent inhibition of Acid ceramidase by novel B-13 analogues. J Lipids 2010; 2011:971618. [PMID: 21490813 PMCID: PMC3066644 DOI: 10.1155/2011/971618] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/01/2010] [Accepted: 10/26/2010] [Indexed: 01/08/2023] Open
Abstract
The lipid-signalling molecule ceramide is known to induce apoptosis in a variety of cell types. Inhibition of the lysosomal acid ceramidase can increase cellular ceramide levels and thus induce apoptosis. Indeed, inhibitors of acid ceramidase have been reported to induce cell death and to display potentiating effects to classical radio- or chemo therapy in a number of in vitro and in vivo cancer models. The most potent in vitro inhibitor of acid ceramidase, B-13, recently revealed to be virtually inactive towards lysosomal acid ceramidase in living cells. In contrast, a number of weakly basic B-13 analogues have been shown to accumulate in the acidic compartments of living cells and to efficiently inhibit lysosomal acid ceramidase. However, introduction of weakly basic groups at the ω-position of the fatty acid moiety of B-13 led to a significant reduction of potency towards acid ceramidase from cellular extracts. Herein, we report a novel B-13-derived scaffold for more effective inhibitors of acid ceramidase. Furthermore, we provide hints for an introduction of basic functional groups at an alternative site of the B-13 scaffold that do not interfere with acid ceramidase inhibition in vitro.
Collapse
|
46
|
Separovic D, Bielawski J, Pierce JS, Merchant S, Tarca AL, Bhatti G, Ogretmen B, Korbelik M. Enhanced tumor cures after Foscan photodynamic therapy combined with the ceramide analog LCL29. Evidence from mouse squamous cell carcinomas for sphingolipids as biomarkers of treatment response. Int J Oncol 2010; 38:521-7. [PMID: 21152858 DOI: 10.3892/ijo.2010.863] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/02/2010] [Indexed: 01/12/2023] Open
Abstract
To improve anticancer therapeutic success of photodynamic therapy (PDT), combination treatments represent a viable strategy. Sphingolipid analogs combined with anticancer drugs can enhance tumor response. We have shown that LCL29, a C6-pyridinium ceramide, promotes therapeutic efficacy of Photofrin-PDT in mouse SCCVII squamous cell carcinoma tumors. The long-term effect of the combination PDT + LCL29 is unknown. In this study we used the same model to test the long-term curative potential of Foscan-PDT + LCL29. We show that treatment of SCCVII tumors with the combination led to enhanced long-term tumor cure compared to PDT alone. LCL29 itself did not prevent tumor growth. All treatments triggered early increases in tumor-associated C16-ceramide, C18-ceramide, dihydrosphingosine, and global levels of dihydroceramides. PDT-evoked increases in tumor-associated sphingosine-1-phosphate and dihydrosphingosine-1-phosphate remained elevated or were attenuated after the combination, respectively; in contrast, LCL29 had no effect on these two sphingolipids. Our data demonstrate that adjuvant LCL29 improves PDT long-term therapeutic efficacy, implying translational potential of the combination. Furthermore, our findings indicate that changes in the sphingolipid profile might serve as predictive biomarkers of tumor response to treatments.
Collapse
Affiliation(s)
- D Separovic
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Józefowski S, Czerkies M, Łukasik A, Bielawska A, Bielawski J, Kwiatkowska K, Sobota A. Ceramide and Ceramide 1-Phosphate Are Negative Regulators of TNF-α Production Induced by Lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2010; 185:6960-73. [DOI: 10.4049/jimmunol.0902926] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
Qin JD, Weiss L, Slavin S, Gatt S, Dagan A. Synthetic, non-natural analogs of ceramide elevate cellular ceramide, inducing apoptotic death to prostate cancer cells and eradicating tumors in mice. Cancer Invest 2010; 28:535-43. [PMID: 20014940 DOI: 10.3109/07357900903478915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The anticancer effects of synthetic, non-natural analogs of ceramide were tested using human TSU-Pr1 prostate cancer cells in-vitro as well as in-vivo, following their effects on tumors development in mice. When incubated with the cultured cancer cells, the analogs elevated cellular ceramide and induced a cytotoxicity and death by apoptosis. When a ceramide analog was injected intradermally or intraperitoneally into BALB/c-Nude or NOD-SCID mice bearing a human prostate tumor, a considerable regression of the tumor was observed. The synthetic ceramide analogs should thus be further investigated as potential anticancer drugs.
Collapse
Affiliation(s)
- Jing Dong Qin
- Department of Biochemistry, Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
49
|
Gangoiti P, Camacho L, Arana L, Ouro A, Granado MH, Brizuela L, Casas J, Fabriás G, Abad JL, Delgado A, Gómez-Muñoz A. Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease. Prog Lipid Res 2010; 49:316-34. [PMID: 20193711 DOI: 10.1016/j.plipres.2010.02.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/18/2010] [Accepted: 02/22/2010] [Indexed: 01/05/2023]
Abstract
Simple bioactive sphingolipids include ceramide, sphingosine and their phosphorylated forms sphingosine 1-phosphate and ceramide 1-phosphate. These molecules are crucial regulators of cell functions. In particular, they play important roles in the regulation of angiogenesis, apoptosis, cell proliferation, differentiation, migration, and inflammation. Decoding the mechanisms by which these cellular functions are regulated requires detailed understanding of the signaling pathways that are implicated in these processes. Most importantly, the development of inhibitors of the enzymes involved in their metabolism may be crucial for establishing new therapeutic strategies for treatment of disease.
Collapse
Affiliation(s)
- Patricia Gangoiti
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rénert AF, Leprince P, Dieu M, Renaut J, Raes M, Bours V, Chapelle JP, Piette J, Merville MP, Fillet M. The proapoptotic C16-ceramide-dependent pathway requires the death-promoting factor Btf in colon adenocarcinoma cells. J Proteome Res 2010; 8:4810-22. [PMID: 19705920 DOI: 10.1021/pr9005316] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ceramides are central molecules in sphingolipid metabolism. They are involved in the regulation of cancer-cell growth, differentiation, senescence and apoptosis. To better understand how these secondary messengers induce their biological effects, adenocarcinoma cells (HCT116) were treated with exogenous long-chain ceramides (C16-ceramide) in order to mimic endogenous sphingolipids. This treatment induced a decrease of cell viability partly due to apoptosis as shown by PARP cleavage and a decrease of pro-caspase 3. Two-dimensional differential in-gel electrophoresis (2D-DIGE) revealed the differential expression of 51 proteins in response to C16-ceramide. These proteins are notably involved in cell proliferation, apoptosis, protein transport and transcriptional regulation. Among them, the cell death-promoting factor Btf was found to be implicated in the apoptotic signal triggered by ceramide. In adenocarcinoma cells, Btf regulates apoptosis related proteins such as Mdm2, p53, BAX and pBcl-2 and thus plays an important role in the ceramide mediated cell death. These findings bring new insight into the proapoptotic ceramide-dependent signaling pathway.
Collapse
Affiliation(s)
- Anne-Françoise Rénert
- GIGA Signal Transduction, Unit of Medical Chemistry, University of Liège, Sart-Tilman, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|